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1. DFT functionals 

All the structures were optimized using the density functional theory (DFT)1 method 

with 6-31G(d,p)2 basis sets. The B3LYP functional includes Becke’s 

three-parameter-exchange functional and Lee-Young-Parr correlation functional3 , 

CAM-B3LYP4 is the long range corrected version of B3LYP using the 

Coulomb-attenuating method, PBEPBE5, uses 25% exchange and 75% correlation 

weighting. mPW1PW916 uses Perdew-Wang exchange as modified by Adamo and 

Barone combined with PW91 correlation. M06-2X7 is a hybrid meta-functional that 

contains 27% HF exchange, parameterized using delocalized system, and WB97X-D8 

includes empirical dispersion and long range corrections. 
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Table S1. The details for the solvent models used in molecular dynamics simulations. 

 

MD averaged 

@solution 

MD@CD3CN-CDCl3 

solvents  

MD@CDCl3 

solvents 

MD@ 

vacuum 

MD@mix  

solvents 

Solute 1 1 1 1 1 

Solvents      

CD3CN 1777 1777 0 0 1777 

CDCl3 1223 1223 3000 0     1223 
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Figure S1. The relative energy, △EM06-2X, and BSSE-binding energies, -Eb-M06-2X, 

and electrostatic potential maps of macrocycles and threads at M06-2X/6-31G(d, p) 

level based on the ten energetically low-lying conformations extracted from MD 

simulation of interlocked [2]rotaxane at Station I. The 10ps structure has the lowest 

energy with △EM06-2X=0. Computational results using the crystal structure were also 

given for comparison. 
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Figure S2. The optimized geometries and geometrical parameters of thread for three 

stations with six different functionals. 
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Figure S3. The optimized geometries for pseudorotaxanes at M062X/6-31G (d, p) 

level. 
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Table S2. Hydrogen bond lengths, dO…H, and stabilization energies obtained from 

second order perturbation, E(2) , for H-bonding interactions of [2]rotaxane interlocking 

at different stations based on the NBO analysis. 

 

 

 

 

 

Donor Type Acceptor Type dO…H (Å) Interaction E(2) (kcal/mol) 

I-HB1 O 151 LP (2) N83 – H85 BD*(1) 2.05 nO →σN-H * 7.58 

I-HB2 O 153 LP (2) N83– H84 BD*(1) 2.05 nO →σN-H * 7.80 

I-HB3 O 152 LP (2) C22– H23 BD*(1) 2.32 nO →σCH * 1.08 

II-HB1 O50 LP (1) N130-H131 BD*(1) 2.13 nO →σN-H * 7.19 

II-HB2 O57 LP (2) N126-H127 BD*(1) 2.15 nO →σN-H * 3.73 

II-HB3 O129 LP (2) N14-H150 BD*(1) 2.15 nO →σN-H * 5.08 

II-HB4 O129 LP (2) N15-H16 BD*(1) 2.41 nO →σN-H * 1.43 

III-HB1 O90 LP (1) N14-H150 BD*(1) 1.89 nO →σN-H * 9.88 
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Figure S4. The calculated 1H NMR chemical shifts for two degenerate molecular 

shuttle conformations (binding at Station I). 
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Figure S5. MD trajectories of molecular shuttle binding at Station I in (a) 

CD3CN-CDCl3 mix solvents (b) nonpolar CDCl3 solvents (c) vacuum without any 

solvents. 
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Figure S6. For the molecular shuttle binding at Station I: (a) comparison of the 

differences of computed 1H NMR chemical shifts using different DFT functionals 

with 6-31G (d, p) basis set with respect to the M06-2X functional results; (b) 

convergence test (along MD trajectory) of the calculated NMR chemical shifts of the 

protons attaching at Station I. 
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Table S3. The calculated 1H NMR chemical shifts with PCM model and explicit 

solvent model (MD ensemble-average) for molecular shuttle binding at Station I at 

M06-2X/6-31G(d, p) level. 

NO.H 
PCM  

solvent=CH3CN 

PCM 

 solvent=CHCl3 
Solu.MD Exp. 

1 8.82 8.70 8.70 7.54 

2 8.90 8.86 9.07 7.76 

3 3.97 3.85 2.47 2.37 

4 3.03 3.20 2.47 1.78 

5 2.78 2.71 2.49 1.85 

6 5.14 5.19 4.54 3.91 

7 8.52 8.50 8.53 6.65 

8 9.28 9.16 8.44 6.95 

9 3.98 3.87 2.95 2.50 

10 6.46 6.50 5.24 7.20 

11 8.50 8.42 8.10 6.96 

12 8.54 8.52 8.46 7.36 

13 4.91 4.69 5.20 7.51 

14 6.03 5.76 5.03 7.27 

15 8.16 8.12 7.87 7.03 

16 2.5 2.49 2.72 2.25 

17 8.37 8.34 7.75 6.66 

18 9.44 9.42 9.30 8.17 

19 9.34 9.38 9.43 8.43 

20 9.29 9.04 7.73 9.01 

21 4.95 4.93 5.16 4.65 

22 8.57 8.52 8.51 7.08 

23 8.26 8.26 8.56 6.83 

24 4.99 4.96 4.62 4.21 

25 3.92 3.89 4.04 3.59 

26 4.65 4.71 4.02 3.25 

 

 



S13 

 

 

Figure S7. The radial distribution function of 1ns snapshot of MD simulation of 

Station I. 

 

 


