Supporting Information for:

Nitrate Removal in Shallow, Open-Water Treatment Wetlands

Justin T. Jasper,^{1,2} Zackary L. Jones,^{1,3} Jonathan O. Sharp,^{1,3} David L. Sedlak^{1,2*}

¹ReNUWIt Engineering Research Center

²Department of Civil & Environmental Engineering University of California at Berkeley Berkeley, CA 94720

³Department of Civil & Environmental Engineering Colorado School of Mines Golden, CO 80401

> 14 pages 10 figures 2 tables

*corresponding author: Contact information: e-mail: sedlak@berkeley.edu

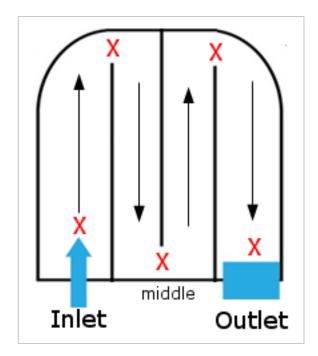
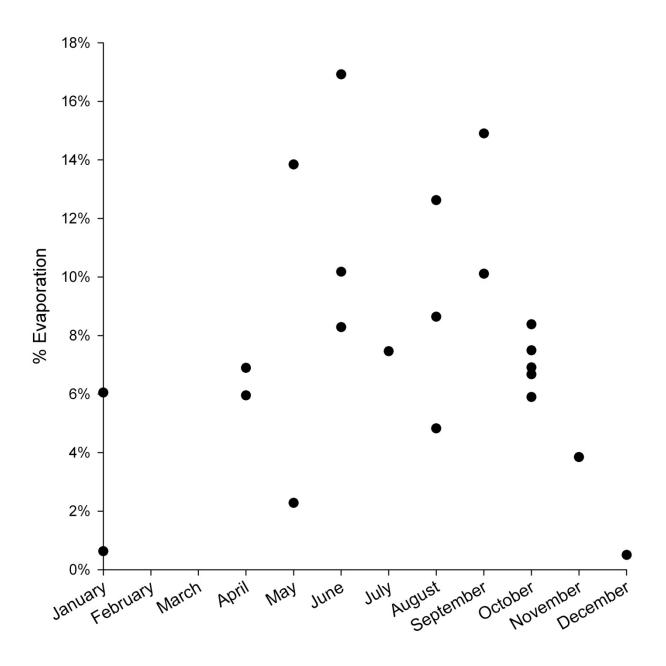
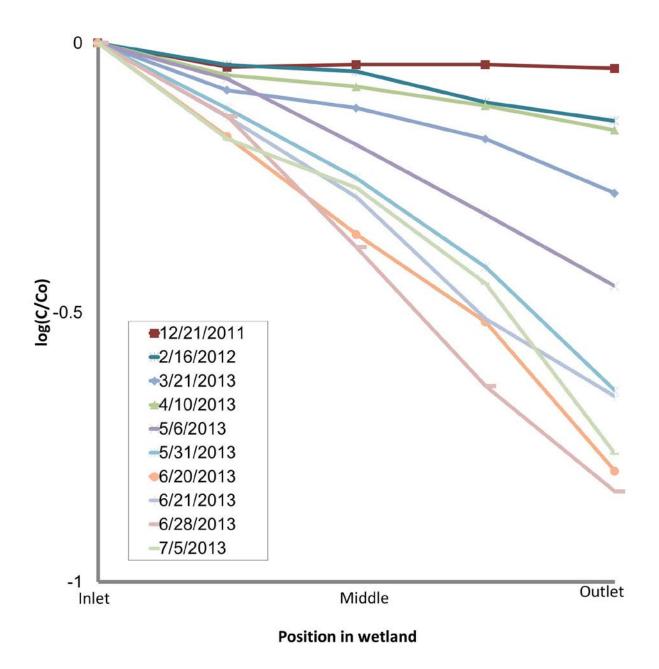
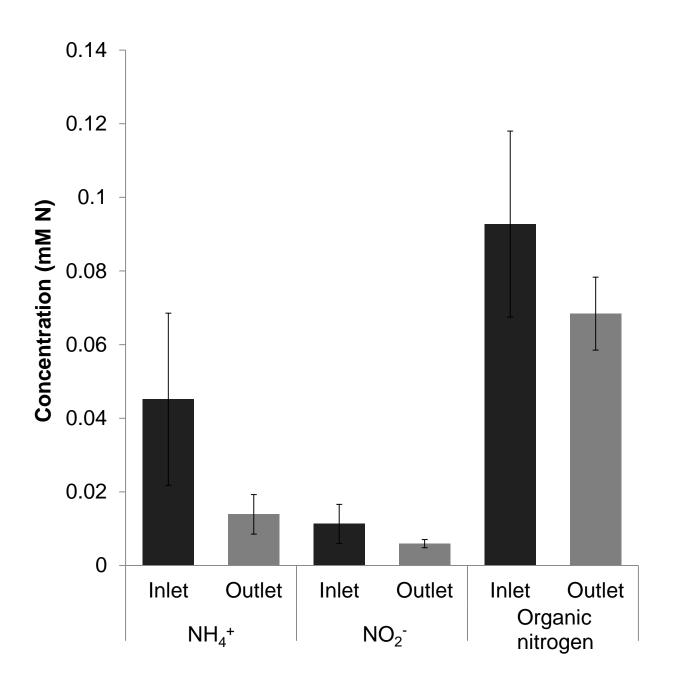

Month	Average Temperature (°C)			
January	8.6±0.4			
February	9.8±0.3			
March	11.9±0.3			
April	14.4±1.0			
May	16.8±0.7			
June	20.0±0.3			
July	22.0±0.2			
August	22.3±0.4			
September	21.7±0.5			
October	17.5±0.3			
November	12.4±0.5			
December	9.3±0.3			

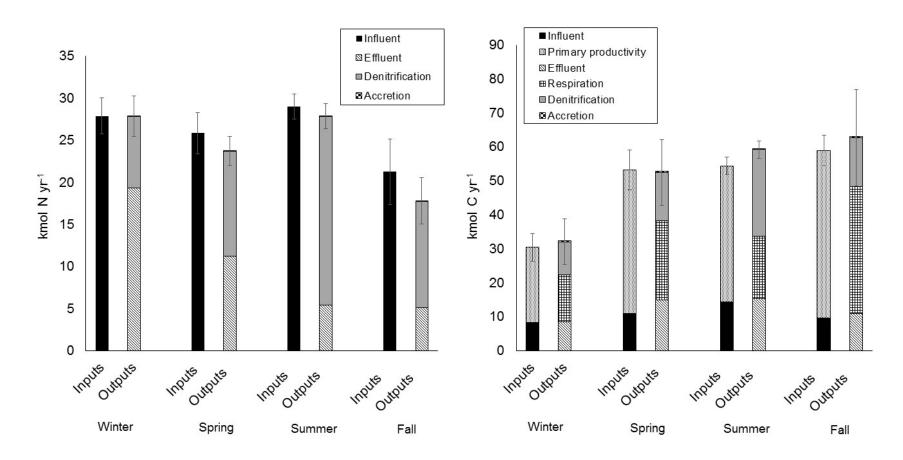
 Table SI 1.
 Wetland Temperatures^a


^{*a*} Average monthly temperatures reported in Livermore, CA from 2007-2012 \pm standard error of the mean.⁵

Primer Name	Primer Sequence 5'-3'	[Primer] (nM)	Amplicon Size	Target Gene	Thermal Profile	Reference
cd3aF	GTSAACGTSA AGGARACSGG	500	425	nirS	per cycle) 30 s, $72^{\circ}C$	Throbäck
R3cd	GASTTCGGRT GSGTCTTGA	500				et al., 2004 ¹
nirK876	ATYGGCGGVA YGGCGA	500	164	nirK	95°C 10 min, 6 touchdown cycles [95°C 15 s, 63–58°C (–1°C per cycle) 30 s, 72°C 30 s,] then 35 cycles (95°C 15 s, 58°C 30 s, 72°C 30 s)	Henry et al. 2004 ²
nirK1040	GCCTCGATCA GRTTRTGGTT	500				
hzsA1597 F	7 WTYGGKTATC ARTATGTAG	400	260	hzs	95°C 3min, 40 cycles (95°C 30 s, 55°C 30 s, 72°C 30 s)	Harhangi et al., 2011 ³
hzsA1857 R	7 AAABGGYGAA TCATARTGGC	400				
EUB338	ACTCCTACGG GAGGCAGCAG	1000	180	16S	95°C 3min, 40 cycles (95°C 60 s, 53°C 30 s, 72°C 60 s)	Fierer et al., 2005 ⁴
EUB518	ATTACCGCGG CTGCTGG	1000				


 Table SI 2.
 QPCR Primers and Thermal Profiles


Figure SI 1. Schematic of open-water wetland cell. X symbols represent sampling points. Black arrows show flow direction.


Figure SI 2. Percent evaporation between inlet and outlet of pilot-scale wetland cell throughout the year, calculated based on Cl⁻ concentrations.

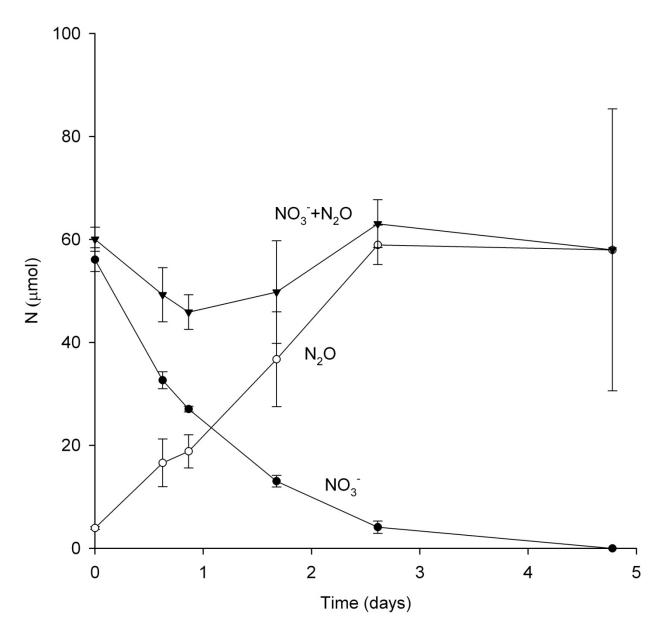

Figure SI 3. Semi-log plot of NO_3^- removal along flow-path in Discovery Bay pilot-scale openwater wetland cell. For clarity, a limited data set is plotted. Other data exhibited similar kinetics.

Figure SI 4. Average inlet and outlet concentrations of nitrogen species \pm standard error of the mean (n=3-5).

Figure SI 5. Nitrogen (left) and carbon (right) seasonal mass balances (average \pm standard error of the mean) for Discovery Bay open-water wetland during 2012-2013. Accretion fluxes are based on measured biomat elemental composition (32 \pm 1% organics) and measured accumulation rate. Primary productivity and aerobic respiration fluxes are based on diurnal oxygen profiles. Denitrification fluxes calculated using rates measured in acetylene-block microcosms, corrected and averaged by monthly average temperatures.

Figure SI 6. Conversion of NO_3^- to N_2O via partial denitrification in anoxic microcosms amended with acetylene gas (5 mL; ~10% v/v). Experiment conducted at 22°C. Error bars represent ± one standard deviation (n=3).

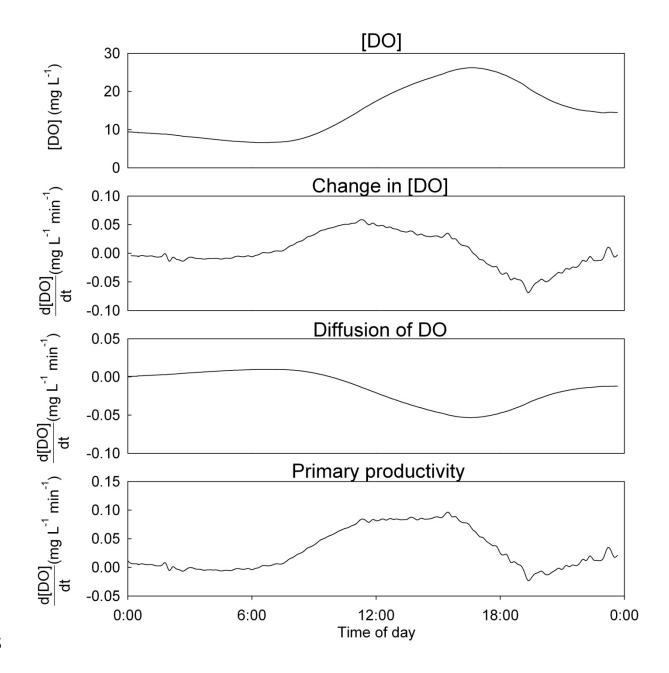
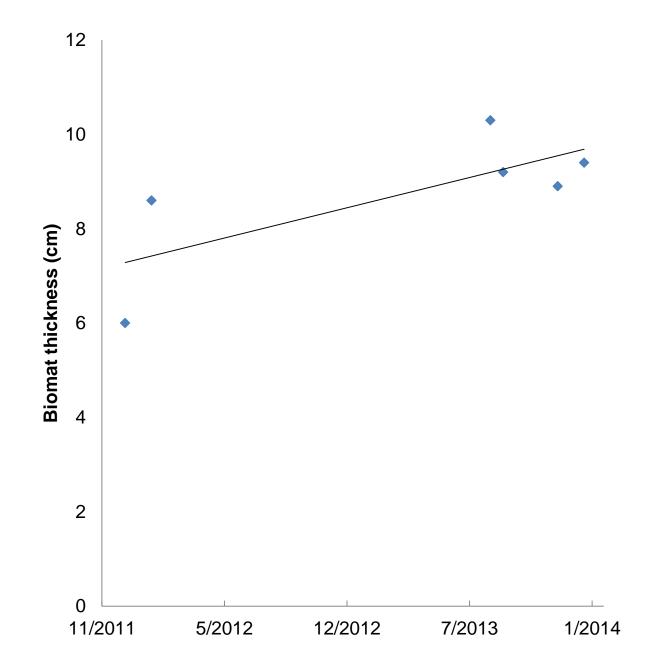



Figure SI 7. Example of dissolved oxygen (DO) profiles used to calculate annual primary
productivity and respiration rates. Data shown from April 8th, 2013 at outlet of pilot-scale
wetland (Manta MultiProbe, Eureka Environmental, Austin, TX). Diffusion was based on [DO]
before sunrise and after sunset; respiration was based on consumption of DO during night;
Primary productivity=Change in [DO]+Respiration-Diffusion of DO.⁶

22

Figure SI 8. Average biomat thickness measured throughout the pilot-scale open-water wetland throughout the study period. Slope= 1.2 ± 0.5 cm yr⁻¹. r²=0.55.

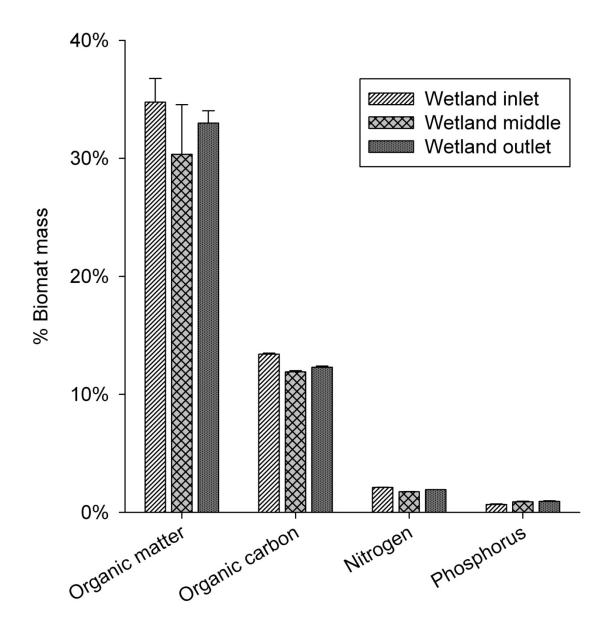


Figure SI 9. Percent phosphorous, nitrogen, organic carbon, and organic matter (i.e., volatile
solids) by mass in wetland biomat at the inlet, middle, and outlet of open-water wetland on a dry
weight basis. Remainder consisted of non-volatile organic matter (i.e., minerals).

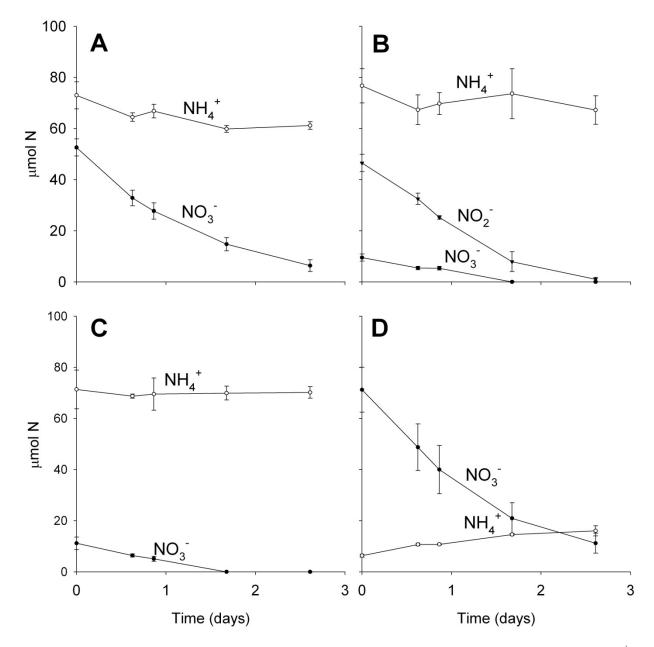


Figure SI 10. Concentrations of nitrogen species in anoxic microcosms amended with A: NH_4^+ and NO_3^- ; B: NH_4^+ and NO_2^- ; C: NH_4^+ ; D: NO_3^- . Experiment conducted at 22±2°C. Error bars represent ± one standard deviation (n=3).

31

37 **References**

38 (1) Throbäck, IN; Enwall, K; Jarvis, Å; Hallin, S. Reassessing PCR primers targeting nirS, nirK

and nosZ genes for community surveys of denitrifying bacteria with DGGE. *FEMS Microbiol*.

40 *Ecol.* **2004**, *49* (3), 401–417.

41 (2) Henry, S; Baudoin, E; López-Gutiérrez, JC; Martin-Laurent, F; Brauman, A; Philippot, L.

- Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J. Microbiol.
 Methods. 2004, 59 (3), 327–335.
- (3) Harhangi, HR; Roy, ML; Alen, T van; Hu, B; Groen, J; Kartal, B; Tringe, SG; Quan, Z-X;
 Jetten, MSM; Camp, HJMO den. Hydrazine synthase, a unique phylomarker with which to study
 the presence and biodiversity of anammox bacteria. *Appl. Environ. Microbiol.* 2012, 78 (3), 752–
 758.
- 48 (4) Fierer, N; Jackson, JA; Vilgalys, R; Jackson, RB. Assessment of soil microbial community
- 49 structure by use of taxon-specific quantitative PCR Assays. Appl. Environ. Microbiol. 2005, 71
- 50 (7), 4117–4120.
- 51 (5) Metar. Weather history for Livermore, CA. **2013**. Available at:
- 52 http://www.wunderground.com/history/airport/KLVK. Accessed December 17, 2013.
- 53 (6) Odum, HT. Primary production in flowing waters. *Limnol. Oceanogr.* **1956**, *1* (2), 102–117.
- 54