Supporting Information

1. Pore size distribution and effective pore radii

- Calculation of pore radii distribution uses following assumptions: (i) pores are straight and cylindrical, (ii) all of the pores have identical length and (iii) pores in the membrane may have different radii.
- Pore radii are distributed within interval R_{min} < R < R_{max}. The smallest pore radii is defined as R_{min} = 2r_w while the biggest pore radii was R_{max} = 100 r_w, where r_w was the radii of a single water molecule, 0.083 nm respectively. Initially a grid of pores with *M* intervals is defined within interval R_{min} < R < R_{max}. Then the pore radii in the grid may be defined as R_i Δ/2 ≤ R ≤ R_i + Δ/2, where i = 0, 1, 2, ... M, Δ = (R_{max}-R_{min})/M and R_i = R_{min} + (i+1/2) Δ.
- Flux of the solution through the membrane is additive value meaning the total flux of the solution is the sum of the particular fluxes occurring through N_i pores of R_i radii. Using SFPF model particular flux $q_{p,i} \equiv q_p(R_i)$ through particular pore of pore radii R_i , may be calculated. Here $q_{p,i}$ has the dimension of kg m⁻² s⁻¹. Since the molar fraction of organic solutes in the feed solution (at the entrance of the pore) was negligible, below 0.0004, and 1 kg of pure deionized water occupies 1 dm³, $q_{p,i}$ may be expressed as particular volume flux through the particular pore of radius R_i , $J_{v p,i} = 0.001 q_{p,i}$ [m³ m⁻² s⁻¹]. Then the total volume flux of the solution may be represented as:

$$J_{v,\text{theor}} = \sum_{i} N_i J_{vp,i}$$
 A(1),

where N_i is the total number of pores.

• Using SFPF model the rejection of solute $f_i \equiv f(R_i)$ by a particular pore may be calculated. Rejection is not an additive value but the product of rejection and particular volume flux $J_{v p,i}$ is:

$$J_{\text{v,theor}} f_{\text{theor}} = \sum_{i} N_i J_{\text{v}p,i} f_i$$
 A(2)

• The values of total J_v and f may be determined experimentally. Their values will depend on the sizes of the solutes, i.e. their Stokes radius. It means that the corresponding microvalues of $J_{v p,i}$ and f_i will depend <u>on the type of the solutes</u> used. Therefore, new functions are defined, $J_{v p, i,J} \equiv J_{v p,J}(R_i)$ i $f_{i,J} \equiv f_J(R_i)$.

 $J_{v p, i,J}$ and $f_{i,J}$ in A(4) were calculated using SFPF model developed by Sourirajan and Matsuura. Six ($N_S = 6$) different organic solutes were used in this study, namely:

trimethylene oxide, 1-3-dioxolane, 1,4-dioxane, 12-crown-4, 15-crown-5 and 18crown-6. The algorithm was written in Fortran and may be described in steps.

1. Stokes radius was calculated from diffusivity of solute (D_{AW}) in water at infinite dilution using $r_{St} = k_B T/(6\pi\eta D_{AW})$ where T = 298 K, $\eta = 0.001$ Pa s and k_B is the Boltzmann constant. Diffusivities of solutes used in the procedure are summarized in (Emil Dražević, Krešimir Košutić, Vladimir Dananić, *Mass transfer of differently sized organic solutes at spacer covered and permeable nanofiltration wall*, Chem. Eng. J., **2014**, 244, 152-159).

2. Parameter B_J is a measure of solute – membrane interaction and it was taken $B_J = 0$, i.e. it was assumed that there are no Van der Waals forces between these polar solutes and the pore wall.

3. A grid of pore radii was defined, as explained above

$$R = R_i = R_{\min} + i \frac{R_{\max} - R_{\min}}{M} \quad i = 0, 1, ..., M$$
 A(3)

where M = 1000.

4. The procedure began with the solute having smallest Stokes radius using R_i to calculate each φ_i .

$$\varphi_i = \frac{R_{\rm s}[m]}{R_i + r_w[m]} \tag{4}$$

 φ_i was used to calculate $b(\varphi_i)$, frictional function for a grid of pores:

$$b(\varphi_{i}) = K_{c} = \frac{\left(1-\varphi_{i}\right)^{2} \left[2-\left(1-\varphi_{i}\right)^{2}\right] K_{s}}{2K_{t}}$$

$$K_{t} = \frac{9}{4} \pi^{2} \sqrt{2} \left(1-\varphi_{i}\right)^{-5/2} \left(1+\sum_{i=1}^{2} a_{n} \left(1-\varphi_{i}\right)^{n}\right) + \sum_{n=0}^{4} a_{n+3} \varphi_{i}^{n}$$

$$K_{s} = \frac{9}{4} \pi^{2} \sqrt{2} \left(1-\varphi_{i}\right)^{-5/2} \left(1+\sum_{n=1}^{2} b_{n} \left(1-\varphi_{i}\right)^{n}\right) + \sum_{n=0}^{4} b_{n+3} \varphi_{i}^{n} ,$$
where $a_{1} = -1.2167, a_{2} = 1.5336, a_{3} = -22.5083, a_{4} = -5.6117, a_{5} = -0.3363, a_{6} = -1.2167$

1.2160, $a_7 = 1.6470$, $b_1 = 0.1167$, $b_2 = -0.0442$, $b_3 = 4.018$, $b_4 = -3.9788$, $b_5 = -1.9215$, $b_6 = 4.392$ and $b_7 = 5.006$.

5. Value of $C_{p,i}$ was assumed in order to calculate $C_{m,i}$ from:

$$C_{\rm m} = C_{\rm p} + (C_{\rm f} - C_{\rm p}) \exp(J_{\rm v} / k)$$
 A(6)

where *k* was determined from Sherwood relation for non-permeable wall as explained in (Emil Dražević, Krešimir Košutić, Vladimir Dananić, *Mass transfer of differently sized organic solutes at spacer covered and permeable nanofiltration wall*, Chem. Eng. J., **2014**, 244, 152-159) and J_v is the experimental solution volume flux.

6. Using the data on operating pressure and C_m , dimensionless parameters $\beta_{1,i}$ and $\beta_{2,i}$ were calculated using following equations:

$$\beta_{1,i} = \eta / \left(X_{AW} R_i^2 C_m \right)$$
 A(7)

$$\beta_{2,i} = \Delta P / (R_{\rm g} T C_{\rm m})$$
 A(8)

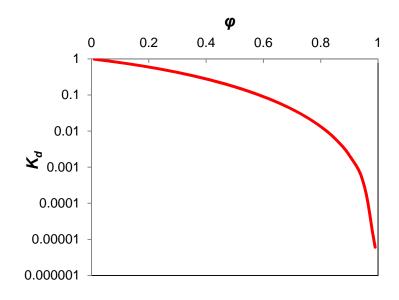
where $X_{AW} = R_g T / D_{AW}$ and R_g is the gas constant.

7. Data on $R_{S,J}$, $b_i(\varphi)$, $\beta_{1,i}$ and $\beta_{2,i}$ are loaded. Dimensionless radius $\rho = r/R_i$ and dimensionless concentration $C_A = C_p/C_m$ are used to calculate the solvent velocity profile in each pore R_i solving the equation:

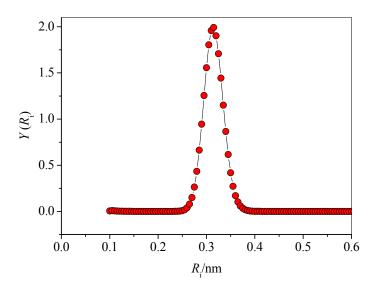
$$\frac{d^2\alpha(\rho)}{d\rho^2} + \frac{1}{\rho}\frac{d\alpha(\rho)}{d\rho} + \frac{\beta_2}{\beta_1} - \frac{(b(\varphi_i) - 1)\alpha(\rho)C_A(\rho)}{\beta_1} = 0 \qquad A(9)$$

Equation A(9) is solved with boundary conditions, $\rho = 0 \rightarrow d\alpha(\rho)/d(\rho) = 0$, and $\rho = 1 \rightarrow \alpha(\rho) = 0$.

8. $\alpha_i(\rho)$ from step 7. is used to calculate $f_{m,i}$ in the following equation.


$$f_{m,i} = 1 - \frac{\int_{0}^{1} \left\{ \exp(\alpha_i(\rho)) / \left[1 + b(\varphi_i) \left(\exp(\alpha_i(\rho)) - 1 \right) \right] \right\} \alpha_i(\rho) \rho d\rho}{\int_{0}^{1} \alpha_i(\rho) \rho d\rho}$$
 A(10)

9. C_p was then calculated from $f_m = 1 - C_p / C_m$ where $f_m A(10)$. If C_p agrees with the assumed C_p from the Step 5. then the algorithm finishes, and if not, it returns to step 5. and repeats the procedure until this condition is satisfied.


10. Find the distribution $Y(R_i)$ for which *S* has the minimum value:

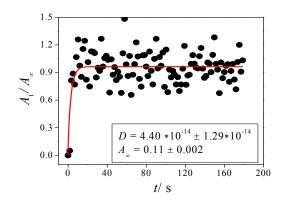
$$S = \sum_{J=1}^{N_{s}} \left(f_{J,\exp} - \frac{\sum_{i=1}^{M} f_{J}(R_{i}) J_{vp,i,J}(R_{i}) Y(R_{i})}{\sum_{i=1}^{M} J_{vp,i,J}(R_{i}) Y(R_{i})} \right)^{2}$$
(A11)

A(11) has *M* fitting parameters. The $f_{(J)exp}$ is the measured rejection of marker *J*. Minimum of A(11) is found using the gradient method under constraint $N(Ri) \ge 0$ and $Y(R_i) > 0$, for each *i*. $Y(R_i)$ in A(11) is defined as $Y(R_i) = N_i/N_{total}/\Delta R_i$. The procedure assumes no pore size distribution, it find most probable Y_i of pore radii R_i which give the minimum of *S* for all solutes involved.

Figure S1. Diffusion hindrance, K_d , represented by Eq. (5). It is valid in range $0 < \varphi < 1$.

Figure S2. Log normal like pore size distribution of SWC4+ membrane calculated from rejection of 6 model solutes using above described numerical procedure.

Table S1. Bulk diffusion coefficients and Stokes radii of the organic solutes tested


Organic solute	$M/ \operatorname{g} \operatorname{mol}^{-1}$	$R_{\rm S}/{\rm nm}^*$	D_{∞} / 10 ⁻¹⁰ m ² s ⁻¹ *	<i>v</i> /cm ⁻¹ **	Interval/cm ⁻¹ ***
Ethylene glycol	62.07	0.198	11.02	1043	1000-1060
Glycerol	92.09	0.217	10.05	1044	1010-1080
1 - butanol	74.12	0.239	9.128	1070	1050-1090
1 - pentanol	88.15	0.261	8.359	1053	1040-1070
Benzyl alcohol	108.14	0.273	7.992	1006	960-1060

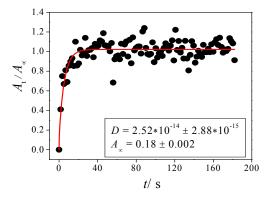
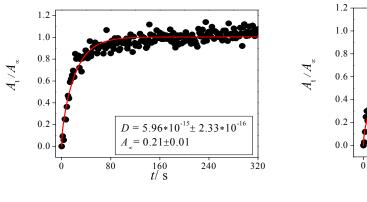
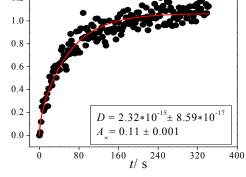

* Data on Stokes radii, R_s , and bulk diffusivities, D_{∞} , are taken From Ben-David *et al.*⁴⁵ ** IR band of specific solute used to estimate diffusion coefficient. *** Integration interval and baseline of band area.

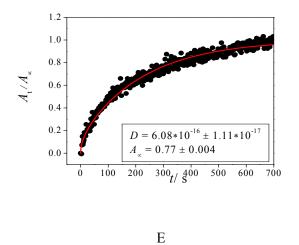
Table S2. The difference in experimental (f) and theoretical (f_{theor}) values of rejection. Theoretical values were found using pore size distribution in Fig. S2.

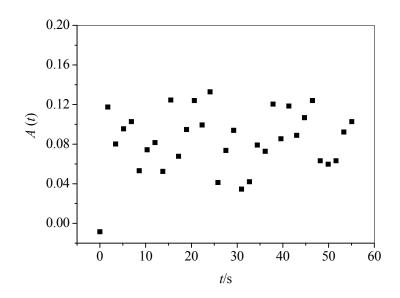
Organic solute	f	f_{theor}
trimethylene oxide	0.529	0.580
1,3-dioxolane	0.706	0.709
1,4-dioxane	0.951	0.785
12-crown-4	0.974	0.986
15-crown-5	0.974	0.986
18-crown-6	0.975	0.986


2. ATR-FTIR data and corresponding fitting examples



А




С

D

Figure S3. Experimental results on A(t) and t used to estimate diffusion coefficients using hydrated stack of five SWC4+ layers. Red lines represent curve obtained from the two parameter fit of Eq. (2) to the experimental data. Black points represent different solutes i.e. surfaces under targeted bands; A) ethylene glycol; B) glycerol; C) 1 – butanol; D) 1 – pentanol; E) benzyl alcohol.

Figure S4. Band area of benzyl alcohol measured with a bare (without a film) crystal exposed to the same solution as with the film. The band area of benzyl alcohol with a polyamide film was about seven times higher (Figure S3E).