Supporting Information

1. Pore size distribution and effective pore radii

- Calculation of pore radii distribution uses following assumptions: (i) pores are straight and cylindrical, (ii) all of the pores have identical length and (iii) pores in the membrane may have different radii.
- Pore radii are distributed within interval $R_{\min }<R<R_{\max }$. The smallest pore radii is defined as $R_{\min }=2 r_{\mathrm{w}}$ while the biggest pore radii was $R_{\max }=100 r_{\mathrm{w}}$, where r_{w} was the radii of a single water molecule, 0.083 nm respectively. Initially a grid of pores with M intervals is defined within interval $R_{\min }<R<R_{\max }$. Then the pore radii in the grid may be defined as $R_{\mathrm{i}}-\Delta / 2 \leq R \leq R_{\mathrm{i}}+\Delta / 2$, where $i=0,1,2, \ldots M, \Delta=\left(R_{\max }-R_{\min }\right) / M$ and $R_{\mathrm{i}}=R_{\text {min }}+(i+1 / 2) \Delta$.
- Flux of the solution through the membrane is additive value meaning the total flux of the solution is the sum of the particular fluxes occurring through N_{i} pores of R_{i} radii. Using SFPF model particular flux $q_{\mathrm{p}, \mathrm{i}} \equiv q_{\mathrm{p}}\left(R_{\mathrm{i}}\right)$ through particular pore of pore radii R_{i}, may be calculated. Here $q_{\mathrm{p}, \mathrm{i}}$ has the dimension of $\mathrm{kg} \mathrm{m}^{-2} \mathrm{~s}^{-1}$. Since the molar fraction of organic solutes in the feed solution (at the entrance of the pore) was negligible, below 0.0004 , and 1 kg of pure deionized water occupies $1 \mathrm{dm}^{3}, q_{\mathrm{p}, \mathrm{i}}$ may be expressed as particular volume flux through the particular pore of radius $R_{\mathrm{i}}, J_{\mathrm{v}, \mathrm{i}}=0.001 q_{\mathrm{p}, \mathrm{i}}\left[\mathrm{m}^{3}\right.$ $\left.\mathrm{m}^{-2} \mathrm{~s}^{-1}\right]$. Then the total volume flux of the solution may be represented as:
$J_{\mathrm{v}, \text { theor }}=\sum_{i} N_{i} J_{\mathrm{v} p, i}$
A(1),
where N_{i} is the total number of pores.
- Using SFPF model the rejection of solute $f_{\mathrm{i}} \equiv f\left(R_{\mathrm{i}}\right)$ by a particular pore may be calculated. Rejection is not an additive value but the product of rejection and particular volume flux $J_{\mathrm{vp}, \mathrm{i}}$ is:
$J_{\mathrm{v}, \text { theor }} f_{\text {theor }}=\sum_{i} N_{i} J_{\mathrm{v} p, i} f_{i}$
- The values of total J_{v} and f may be determined experimentally. Their values will depend on the sizes of the solutes, i.e. their Stokes radius. It means that the corresponding microvalues of J_{v} p,i and f_{i} will depend on the type of the solutes used. Therefore, new functions are defined, $J_{\mathrm{vp}, \mathrm{i}, \mathrm{J}} \equiv J_{\mathrm{vp}, \mathrm{J}}\left(R_{\mathrm{i}}\right) \mathrm{i} f_{\mathrm{i}, \mathrm{J}} \equiv f_{\mathrm{J}}\left(R_{\mathrm{i}}\right)$. $J_{\mathrm{v} \text { p }, \mathrm{i}, \mathrm{J}}$ and $f_{\mathrm{i}, \mathrm{J}}$ in $\mathrm{A}(4)$ were calculated using SFPF model developed by Sourirajan and Matsuura. Six $\left(N_{\mathrm{S}}=6\right)$ different organic solutes were used in this study, namely:
trimethylene oxide, 1-3-dioxolane, 1,4-dioxane, 12-crown-4, 15-crown-5 and 18-crown-6. The algorithm was written in Fortran and may be described in steps.

1. Stokes radius was calculated from diffusivity of solute $\left(D_{\mathrm{AW}}\right)$ in water at infinite dilution using $r_{\mathrm{St}}=k_{\mathrm{B}} T /\left(6 \pi \eta D_{\mathrm{AW}}\right)$ where $T=298 \mathrm{~K}, \eta=0.001 \mathrm{~Pa} \mathrm{~s}$ and k_{B} is the Boltzmann constant. Diffusivities of solutes used in the procedure are summarized in (Emil Dražević, Krešimir Košutić, Vladimir Dananić, Mass transfer of differently sized organic solutes at spacer covered and permeable nanofiltration wall, Chem. Eng. J., 2014, 244, 152-159).
2. Parameter B_{J} is a measure of solute - membrane interaction and it was taken $B_{J}=0$, i.e. it was assumed that there are no Van der Waals forces between these polar solutes and the pore wall.
3. A grid of pore radii was defined, as explained above
$R \equiv R_{i}=R_{\min }+i \frac{R_{\max }-R_{\text {min }}}{M} \quad i=0,1, \ldots, M$
where $M=1000$.
4. The procedure began with the solute having smallest Stokes radius using R_{i} to calculate each φ_{i}.
$\varphi_{i}=\frac{R_{\mathrm{S}}[m]}{R_{i}+r_{w}[m]}$
φ_{i} was used to calculate $b\left(\varphi_{i}\right)$, frictional function for a grid of pores:
$b\left(\varphi_{i}\right) \equiv K_{\mathrm{c}}=\frac{\left(1-\varphi_{i}\right)^{2}\left[2-\left(1-\varphi_{i}\right)^{2}\right] K_{s}}{2 K_{\mathrm{t}}}$
$K_{\mathrm{t}}=\frac{9}{4} \pi^{2} \sqrt{2}\left(1-\varphi_{i}\right)^{-5 / 2}\left(1+\sum_{i=1}^{2} a_{n}\left(1-\varphi_{i}\right)^{n}\right)+\sum_{n=0}^{4} a_{n+3} \varphi_{i}{ }^{n}$
$K_{\mathrm{s}}=\frac{9}{4} \pi^{2} \sqrt{2}\left(1-\varphi_{i}\right)^{-5 / 2}\left(1+\sum_{n=1}^{2} b_{n}\left(1-\varphi_{i}\right)^{n}\right)+\sum_{n=0}^{4} b_{n+3} \varphi_{i}^{n}$,
where $a_{1}=-1.2167, a_{2}=1.5336, a_{3}=-22.5083, a_{4}=-5.6117, a_{5}=-0.3363, a_{6}=-$ $1.2160, a_{7}=1.6470, b_{1}=0.1167, b_{2}=-0.0442, b_{3}=4.018, b_{4}=-3.9788, b_{5}=-1.9215$, $b_{6}=4.392$ and $b_{7}=5.006$.
5. Value of $C_{\mathrm{p}, \mathrm{i}}$ was assumed in order to calculate $C_{\mathrm{m}, \mathrm{i}}$ from:
$C_{\mathrm{m}}=C_{\mathrm{p}}+\left(C_{\mathrm{f}}-C_{\mathrm{p}}\right) \exp \left(J_{\mathrm{v}} / k\right)$
where k was determined from Sherwood relation for non-permeable wall as explained in (Emil Dražević, Krešimir Košutić, Vladimir Dananić, Mass transfer of differently sized organic solutes at spacer covered and permeable nanofiltration wall, Chem. Eng. J., 2014, 244, 152-159) and J_{v} is the experimental solution volume flux.
6. Using the data on operating pressure and C_{m}, dimensionless parameters $\beta_{1, \mathrm{i}}$ and $\beta_{2, \mathrm{i}}$ were calculated using following equations:
$\beta_{1, i}=\eta /\left(\mathrm{X}_{\mathrm{AW}} R_{i}^{2} C_{\mathrm{m}}\right)$
$\beta_{2, i}=\Delta P /\left(R_{\mathrm{g}} T C_{\mathrm{m}}\right)$
where $X_{\mathrm{AW}}=R_{\mathrm{g}} T / D_{\mathrm{AW}}$ and R_{g} is the gas constant.
7. Data on $R_{\mathrm{S}, J}, b_{\mathrm{i}}(\varphi), \beta_{1, \mathrm{i}}$ and $\beta_{2, \mathrm{i}}$ are loaded. Dimensionless radius $\rho=r / R_{\mathrm{i}}$ and dimensionless concentration $C_{\mathrm{A}}=C_{\mathrm{p}} / C_{\mathrm{m}}$ are used to calculate the solvent velocity profile in each pore R_{i} solving the equation:

$$
\begin{equation*}
\frac{d^{2} \alpha(\rho)}{d \rho^{2}}+\frac{1}{\rho} \frac{d \alpha(\rho)}{d \rho}+\frac{\beta_{2}}{\beta_{1}}-\frac{\left(b\left(\varphi_{i}\right)-1\right) \alpha(\rho) C_{\mathrm{A}}(\rho)}{\beta_{1}}=0 \tag{9}
\end{equation*}
$$

Equation $\mathrm{A}(9)$ is solved with boundary conditions, $\rho=0 \rightarrow d \alpha(\rho) / d(\rho)=0$, and $\rho=$ $1 \rightarrow \alpha(\rho)=0$.
8. $\alpha_{\mathrm{i}}(\rho)$ from step 7. is used to calculate $f_{\mathrm{m}, \mathrm{i}}$ in the following equation.

$$
\begin{equation*}
f_{m, i}=1-\frac{\int_{0}^{1}\left\{\exp \left(\alpha_{i}(\rho)\right) /\left[1+b\left(\varphi_{i}\right)\left(\exp \left(\alpha_{i}(\rho)\right)-1\right)\right]\right\} \alpha_{i}(\rho) \rho d \rho}{\int_{0}^{1} \alpha_{i}(\rho) \rho d \rho} \tag{10}
\end{equation*}
$$

9. C_{p} was then calculated from $f_{\mathrm{m}}=1-C_{\mathrm{p}} / C_{\mathrm{m}}$ where $f_{\mathrm{m}} \mathrm{A}(10)$. If C_{p} agrees with the assumed C_{p} from the Step 5. then the algorithm finishes, and if not, it returns to step 5. and repeats the procedure until this condition is satisfied.
10. Find the distribution $Y\left(R_{i}\right)$ for which S has the minimum value:
$S=\sum_{J=1}^{N_{s}}\left(f_{J, \exp }-\frac{\sum_{i=1}^{M} f_{J}\left(R_{i}\right) J_{\mathrm{v} p,, j}\left(R_{i}\right) Y\left(R_{i}\right)}{\sum_{i=1}^{M} J_{\mathrm{v} p, i, J}\left(R_{i}\right) Y\left(R_{i}\right)}\right)^{2}$
$\mathrm{A}(11)$ has M fitting parameters. The $f_{(J) \exp }$ is the measured rejection of marker J. Minimum of $\mathrm{A}(11)$ is found using the gradient method under constraint $N(R i) \geq 0$ and $Y\left(R_{\mathrm{i}}\right)>0$, for each i. $Y\left(R_{\mathrm{i}}\right)$ in $\mathrm{A}(11)$ is defined as $Y\left(R_{\mathrm{i}}\right)=N_{\mathrm{i}} / N_{\text {total }} / \Delta R_{\mathrm{i}}$. The procedure assumes no pore size distribution, it find most probable Y_{i} of pore radii R_{i} which give the minimum of S for all solutes involved.

Figure S1. Diffusion hindrance, K_{d}, represented by Eq. (5). It is valid in range $0<\varphi<1$.

Figure S2. Log normal like pore size distribution of SWC4+ membrane calculated from rejection of 6 model solutes using above described numerical procedure.

Table S1. Bulk diffusion coefficients and Stokes radii of the organic solutes tested

Organic solute	$M / \mathrm{g} \mathrm{mol}^{-1}$	$R_{\mathrm{S}} / \mathrm{nm}^{*}$	$D_{\infty} / 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1 *}$	$\mathrm{v} / \mathrm{cm}^{-1 * *}$	Interval/ $/ \mathrm{cm}^{-1 * * *}$
Ethylene glycol	62.07	0.198	11.02	1043	$1000-1060$
Glycerol	92.09	0.217	10.05	1044	$1010-1080$
1 - butanol	74.12	0.239	9.128	1070	$1050-1090$
1 - pentanol	88.15	0.261	8.359	1053	$1040-1070$
Benzyl alcohol	108.14	0.273	7.992	1006	$960-1060$

* Data on Stokes radii, R_{S}, and bulk diffusivities, D_{∞}, are taken From Ben-David et al. ${ }^{45}$
** IR band of specific solute used to estimate diffusion coefficient. *** Integration interval and baseline of band area.

Table S2. The difference in experimental (f) and theoretical ($f_{\text {theor }}$) values of rejection. Theoretical values were found using pore size distribution in Fig. S2.

Organic solute	f	$f_{\text {theor }}$
trimethylene oxide	0.529	0.580
1,3-dioxolane	0.706	0.709
1,4-dioxane	0.951	0.785
12-crown-4	0.974	0.986
$15-$ crown-5	0.974	0.986
$18-$ crown-6	0.975	0.986

2. ATR-FTIR data and corresponding fitting examples

C

D

E

Figure S3. Experimental results on $A(t)$ and t used to estimate diffusion coefficients using hydrated stack of five SWC4+ layers. Red lines represent curve obtained from the two parameter fit of Eq. (2) to the experimental data. Black points represent different solutes i.e. surfaces under targeted bands; A) ethylene glycol; B) glycerol; C) 1 - butanol; D) 1 pentanol; E) benzyl alcohol.

Figure S4. Band area of benzyl alcohol measured with a bare (without a film) crystal exposed to the same solution as with the film. The band area of benzyl alcohol with a polyamide film was about seven times higher (Figure S3E).

