Supporting Information

Oxazolines as Dual Function Traceless Chromophores and Chiral Auxiliaries: Enantioselective Photoassisted Synthesis of Polyheterocyclic Ketones.

Olga A. Mukhina, Andrei G. Kutateladze*

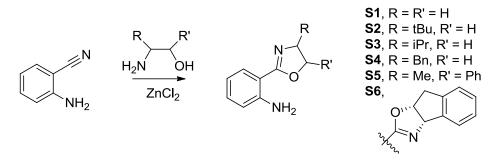
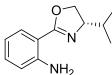

Department of Chemistry and Biochemistry, University of Denver, 2190 E. Iliff Ave. Denver, CO 80208-2436 (USA) Fax: (+1) 303-871-2254 E-mail: akutatel@du.edu

Table of contents

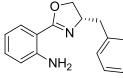
Synthesis of photoprecursors	S2
Irradiation of photoprecursors	S18
UV absorption spectra	S23
Low temperature experiments	S24
Chiral HPLC traces	S26
NMR spectra	\$28-\$100

Common solvents were purchased from Fisher Scientific and used as is, except for THF, which was refluxed over and distilled from potassium benzophenone ketyl prior to use. Common reagents were purchased from Aldrich, TCI America or AK Scientific and used without additional purification, unless indicated otherwise. NMR spectra were recorded at 25°C on a Bruker Avance III 500 MHz in CDCl₃ with TMS as an internal standard (unless noted otherwise). High resolution mass spectra were obtained on the *MDS SCIEX/Applied Biosystems API QSTARTM Pulsar i Hybrid LC/MS/MS System* mass spectrometer at CU-Boulder by Weston Umstead and Dmitry Kuznetsov. Flash column chromatography was performed using Teledyne Ultra Pure Silica Gel (230 – 400 mesh) on a Teledyne Isco Combiflash Rf using Hexanes/EtOAc as eluent.

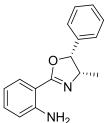
Synthesis of 2-(4-alkyl-4,5-dihydrooxazol-2-yl)anilines


General procedure 1a: 3.0 g of 2-aminobenzonitrile (25mmol, 1eq) was suspended in 40mL xylenes along with 83 mmol (3.3eq) of 2-aminoalcohol and 3.46 g ZnCl₂ (26 mmol) as a catalyst. The mixture was refluxed under nitrogen atmosphere for 36 h. The solvent was removed and the crude product was dissolved in dichloromethane. After washing with water, the organic layer was dried over anhydrous Na₂SO₄ and the solvent was removed *in vacuo*. The residue was purified by column chromatography on silica gel using 95:5 (v.v) hexanes:EtOAc as eluent affording the corresponding oxazoline.

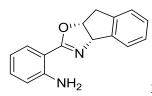
General procedure 1b¹: Under nitrogen atmosphere, 2-aminobenzonitrile (25 mmol) and 2aminoalcohol (75 mmol) were dissolved in anhydrous chlorobenzene (40 mL), $ZnCl_2$ (0.51 g, 3.75 mmol) was used as a catalyst. The mixture was refluxed for 36 h to give a red solution. The solvent was removed *in vacuo*, and the crude product was dissolved in dichloromethane. After washing with water, the organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel using 95:5 (v.v) hexanes:EtOAc as eluent affording the corresponding oxazoline.


General procedure 1c^2: To a solution of 2-aminobenzonitrile (25.4 mmol) in chlorobenzene (50 mL), ZnCl₂ (3.46 g, 25.4 mmol) and 2-aminoalcohol (25.6 mmol) were added. The mixture was heated to 130°C for 36 h. After cooling to room temperature, water (10 mL) was added, the organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3×10 mL), the combined organic extracts were washed with water, brine, dried over MgSO₄. After filtration, the solution was concentrated *in vacuo*, and then purified by flash chromatography on silica gel using 95:5 (v.v) hexanes:EtOAc as eluent affording the corresponding oxazoline.

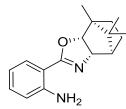
¹NH₂ **2-(4,5-dihydrooxazol-2-yl)aniline**¹ (**S1**) General procedure **1a** was followed. From 2.95 g (25 mmol) of 2-aminobenzonitrile, 5.06 g (83 mmol) of 2-aminoethanol and 3.46 g (26 mmol) of ZnCl₂ 2.90 g (72%) of the title compound was obtained ¹H NMR (500 MHz, DMSO) δ = 7.54 (d, *J* = 7.9 Hz, 1H), 7.16 (m, 1H), 6.96 (s, 2H), 6.76 (d, *J* = 8.3 Hz, 1H), 6.53 (m, 1H), 4.29 (t, *J* = 9.5 Hz, 2H), 4.02 (t, *J* = 9.3 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 164.8, 148.5, 132.0, 129.6, 116.0, 115.7, 109.2, 65.8, 55.0.


 \searrow NH₂ (*S*)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)aniline³ (S2) General procedure 1c was followed. From 2.95 g (25 mmol) of 2-aminobenzonitrile, 2.92 g (25 mmol) of L-*tert*leucinol and 3.46 g (26 mmol) of ZnCl₂ 2.20 g (40%) of the title compound was obtained ¹H NMR (500 MHz, CDCl₃) δ 7.71 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.23 (td, *J* = 8.0, 7.3, 1.6 Hz, 1H), 6.73 (m, 1H), 6.68 (m, 1H), 6.19 (s, 2H), 4.27 (m, 1H), 4.13 (m, 2H), 0.97 (m, 9H). ¹³C NMR (126 MHz, CDCl₃) δ = 163.5, 148.7, 131.9, 129.6, 115.9, 115.6, 109.2, 76.4, 66.9, 33.8, 25.9. HRMS (ESI) calcd for C₁₃H₁₉N₂O⁺ (MH⁺) 219.1492, found 219.1501

(S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)aniline¹ (S3) General procedure **1b** was followed. From 2.95 g (25 mmol) of 2-aminobenzonitrile, 7.72 g (75 mmol) of L-valinol and 0.5 g (3.75 mmol) of ZnCl₂ 2.50 g (49%) of the title compound was obtained ¹H NMR (500 MHz, DMSO) $\delta = 7.52$ (dd, J = 8.0, 1.6 Hz, 1H), 7.17 (ddd, J = 8.5, 7.1, 1.6 Hz, 1H), 6.99 (s, 2H), 6.76 (dd, J = 8.3, 0.9 Hz, 1H), 6.52 (ddd, J = 8.1, 7.1, 1.2 Hz, 1H), 4.32 (dd, J = 9.4, 8.2 Hz, 1H),4.08 (ddd, J = 9.3, 7.8, 6.6 Hz, 1H), 4.01 (t, J = 8.0 Hz, 1H), 1.72 (m, 1H), 0.96 (d, J = 6.7 Hz, 3H), 0.89 (d, J = 6.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 163.5, 148.6, 131.9, 129.6, 116.0, 115.6, 109.2, 72.9, 68.7, 33.2, 19.0, 18.6. HRMS (ESI) calcd for C₁₂H₁₇N₂O⁺ (MH⁺) 205.1335, found 205.1338.



(S)-2-(4-benzyl-4,5-dihydrooxazol-2-yl)aniline¹ (S4) General procedure 1b was followed. From 2.95 g (25 mmol) of 2-aminobenzonitrile, 11.3 g (75 mmol) of Lphenylalaninol and 0.51 g (3.75 mmol) of ZnCl₂ 3.10 g (49%) of the title compound was obtained ¹H NMR (500 MHz, DMSO) δ = 7.50 (dd, J = 8.0, 1.6 Hz, 1H), 7.31 (m, 4H), 7.23 (m, 1H), 7.17 (ddd, J = 8.5, 7.1, 1.6 Hz, 1H), 6.98 (s, 2H), 6.75 (dd, J = 8.3, 0.9 Hz, 1H), 6.51 (ddd, J = 8.1, 7.1, 1.6 Hz, 1H), 6.98 (s, 2H), 6.75 (dd, J = 8.1, 0.9 Hz, 1H), 6.98 (s, 2H), 6.981.1 Hz, 1H), 4.58 (dq, J = 9.2, 7.2 Hz, 1H), 4.31 (dd, J = 9.3, 8.3 Hz, 1H), 3.99 (m, 1H), 2.96 (dd, J = 13.5, 6.6 Hz, 1H), 2.82 (dd, J = 13.5, 7.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 164.1, 148.7, 138.4, 132.1, 129.6, 129.3, 128.5, 126.5, 116.0, 115.7, 109.0, 70.3, 68.1, 42.3. HRMS (ESI) calcd for C₁₆H₁₇N₂O⁺ (MH⁺) 253.1335, found 253.1337


2-((4S,5R)-4-methyl-5-phenyl-4,5-dihydrooxazol-2-yl)aniline (S5) General procedure 1c was followed. From 2.95g (25 mmol) of 2-aminobenzonitrile, 3.78 g (25 mmol) of 1R,2S-norephedrine and 3.46 g (26mmol) of ZnCl₂ 2.4g (58%) of the title compound was obtained ¹H NMR (500 MHz, CDCl₃) δ = 7.86 (dd, J = 7.9, 1.6 Hz, 1H), 7.39 (ddd, J = 7.5, 6.3, 1.3 Hz,

2H), 7.30 (m, 3H), 6.77 (dd, J = 8.2, 0.8 Hz, 1H), 6.73 (ddd, J = 8.2, 7.2, 1.1 Hz, 1H), 6.16 (s, 2H), 5.69 (d, J = 9.7 Hz, 1H), 4.73 (dq, J = 9.7, 7.0 Hz, 1H), 0.90 (d, J = 7.0 Hz, 3H). ¹³C NMR (126) MHz, CDCl₃) δ 163.2, 148.7, 137.3, 132.1, 129.8, 128.2, 127.8, 126.2, 116.1, 115.7, 109.0, 82.2, 65.6, 18.1. calcd for C₁₆H₁₆N₂OLi⁺ (MLi⁺) 259.1417, found 259.1424

2-((3aS,8aR)-8,8a-dihydro-3aH-indeno[1,2-d]oxazol-2-yl)aniline³ (S6)

General procedure 1c was followed. From 2.95 g (25 mmol) of 2-aminobenzonitrile, 5.0 g (33.5 mmol) of (1S,2R)-1-amino-2-indanol and 3.46 g (26 mmol) of ZnCl₂ 3.20 g (51 %) of the title compound was obtained ¹H NMR (500 MHz, CDCl₃) δ = 7.71 (dd, J = 8.0, 1.6 Hz, 1H), 7.53 (m, 1H), 7.28 (m, 3H), 7.20 (ddd, J = 8.5, 7.2, 1.6 Hz, 1H), 6.67 (m, 2H), 6.09 (s, 2H), 5.81 (d, J = 7.8Hz, 1H), 5.40 (ddd, J = 7.9, 6.8, 1.6 Hz, 1H), 3.52 (dd, J = 17.8, 6.8 Hz, 1H), 3.39 (dd, J = 17.8, 1.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 164.1, 148.5, 142.4, 139.8, 132.0, 129.7, 128.4, 127.4, 125.5, 125.3, 116.0, 115.6, 109.1, 81.2, 77.0, 39.8. HRMS (ESI) calcd for C₁₆H₁₅N₂O⁺ (MH⁺) 251.1179, found 251.1190

2-((3aS,7aR)-7,8,8-trimethyl-3a,4,5,6,7,7a-hexahydro-4,7-

methanobenzo[d]oxazol-2-yl)aniline⁴ (S7) Step 1. (3aS, 4R, 7S, 7aR)-7,8,8-trimethyl-2-(2*nitrophenyl*)-3*a*,4,5,6,7,7*a*-*hexahydro*-4,7-*methanobenzo*[*d*]*oxazole* To solution of a (1S,2R,3S,4R)-3-amino-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ol⁵ (2.40 g, 14.2 mmol) in 50 mL of CH₃CN was added 2-nitrobenzaldehyde (2.14 g, 14.2 mmol). After the mixture was stirred for 2 h at room temperature, NBS (2.51 g, 14.2 mmol) was added and the solution was stirred for 1.5 h. The solvents were removed under reduced pressure. The mixture was diluted in CH₂Cl₂ and washed with sat. aq. NaHCO₃ solution and brine. The organic layer was dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography with hexanes: EtOAc (85:15) to provide 1.71 g (44 %) of ¹H NMR (500 MHz,

 $CDCl_3$) $\delta = 7.86$ (dd, J = 7.5, 1.6, 1H), 7.79 (m, 1H), 7.62 (m, 2H), 4.47 (d, J = 8.6, 1H), 4.24 (d, J = 8.6, 1H), 2.20 (d, J = 4.5, 1H), 1.79 (tg, J = 13.8, 4.4, 1H), 1.54 (m, 2H), 1.10 (m, 1H), 1.04 (d, 1) J = 5.2, 3H, 0.99 (m, 3H), 0.90 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.9, 149.5, 132.1, 131.3, 130.6, 123.6, 123.1, 92.5, 76.7, 48.8, 48.7, 47.1, 32.0, 26.0, 23.4, 18.9, 11.3. HRMS (ESI) calcd for C₁₇H₂₀N₂O₃Li⁺ (MLi⁺) 307.1641, found 307.1634 Step 2. 2-((3aS,7aR)-7,8,8-trimethyl-3a,4,5,6,7,7a-hexahydro-4,7-methanobenzo[d]oxazol-2-yl)aniline 1.71 g (5.7 mmol) of the imine was dissolved in 150mL of EtOH and treated with 1.5 eq of Na_2S . The mixture was brought to reflux at which it was maintained for 3h, then 0.5mL of TEA was added and the mixture was concentrated in vacuo. The residue was redissolved in DCM, washed with water and brine, dried over Na₂SO₄, then concentrated 1.4 g (91 %) of the product upon purification via flash chromatography. ¹H NMR (500 MHz, CDCl₃) δ = 7.71 (dd, J = 7.9, 1.6 Hz, 1H), 7.21 (m, 1H), $6.68 \text{ (m, 2H)}, 6.11 \text{ (s, 2H)}, 4.31 \text{ (d, } J = 8.4 \text{ Hz, 1H)}, 4.26 \text{ (d, } J = 8.4 \text{ Hz, 1H)}, 2.12 \text{ (d, } J = 4.5 \text{ Hz}, 14.5 \text{ Hz$ 1H), 1.80 (m, 1H), 1.55 (m, 1H), 1.12 (m, 5H), 0.89 (s, 3H), 0.88 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) § 165.5, 148.6, 131.9, 129.8, 115.9, 115.6, 109.7, 89.4, 76.5, 49.2, 48.5, 46.9, 32.2, 26.0, 23.5, 18.7, 11.4. HRMS (ESI) calcd for C₁₇H₂₃N₂O⁺ (MH⁺) 271.1805, found 271.1822

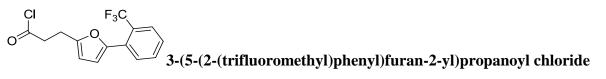
^{NH}₂ 2-(4,5-dihydrooxazol-2-yl)aniline⁶ (S8) <u>1. o-Chlorobenzoyl chloride</u> The onitrobenzoic acid (0.50 g, 2.99 mmol) was refluxed with SOCl₂ (3.0 mL) for 12 h, then the excess SOCl₂ was removed in vacuo. Benzene (5 mL) was added and removed again to dryness to remove the trace amount of SOCl₂ and afforded the acyl chloride. ¹H NMR (500 MHz, CDCl₃) $\delta = 8.13$ (m, 1H), 7.83 (m, 1H), 7.77 (m, 2H). 2. N-(2-hydroxyethyl)-2-nitrobenzamide The acyl chloride in CH₂Cl₂ (15 mL) was added dropwise to a solution of amino alcohol (3.10 mmol) and Et₃N (2 mL, 14.5 mmol) in CH₂Cl₂ (15 mL) at 0°C and stirred at room temperature for 4-6 h. The reaction mixture was evaporated to remove the solvent *in vacuo* to yield crude hydroxyl amide. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta = 8.11 \text{ (d, } J=8.1, 1\text{H}), 7.71 \text{ (t, } J=7.5, 1\text{H}), 7.61 \text{ (m, } 2\text{H}), 6.50 \text{ (s, } 1\text{H}), 3.91$ (m, 2H), 3.66 (m, 2H). 3. 2-(o-Nitrophenyl)-4,5-dihydrothiazoline⁷ Crude hydroxylamide was dissolved in toluene (20 mL), Et₃N (4 mL, 28.9 mmol) was added. Then, Lawesson's reagent (1.82 g, 4.5 mmol) was added under reflux in three portions within 1 h, and the suspension was refluxed for another 4-6 h. After cooling to room temperature, the solution was washed with H₂O,

dried over anhydrous Na₂SO₄, and concentrated *in vacuo* to give the crude product: 0.42 g (64% over three steps) of 2-(*o*-nitrophenyl)-4,5dihydrothiazoline. ¹H NMR (500 MHz, CDCl₃) δ 7.90 (m, 1H), 7.66 (m, 2H), 7.60 (ddd, *J* = 8.0, 6.6, 2.4 Hz, 1H), 4.47 (t, *J* = 8.4 Hz, 2H), 3.55 (t, *J* = 8.4 Hz, 2H). <u>4. 2-(4,5-dihydrooxazol-2-yl)aniline</u> 0.8 g of the imine was dissolved in 10mL of EtOH and treated with 0.23 g of Na₂S. The mixture was brought to reflux at which it was maintained for 3h, then 0.5mL of TEA was added and the mixture was concentrated *in vacuo*. The residue was redissolved in DCM, washed with water and brine, dried over anhydrous Na₂SO₄, then concentrated and purified via flash chromatography to give 0.22 of amine (32%) ¹H NMR (500 MHz, CDCl₃) δ = 7.50 (d, *J*=8.0, 1H), 7.20 (m, 1H), 6.71 (m, 2H), 6.22 (s, 2H), 4.52 (t, *J* = 8.2, 2H), 3.30 (t, *J* = 8.2, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 169.4, 147.6, 132.5, 131.5, 116.2, 116.0, 114.9, 65.3, 31.9.

Coupling of amines with acids

General procedure 2 A carboxylic acid was dissolved in DCM, 10mL, 10 eq of SOCl₂ was added, the mixture was refluxed for 5h, then concentrated to give the corresponding acid chloride used in the following steps without purification

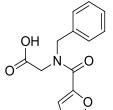
Synthesis of chloranhydrides


^{Cl} 2-(Cyclopent-2-enyl)acetyl chloride (S9):⁸ General procedure 2 was followed at a 15.85 mmol scale. Reaction was complete in 5 hours, providing 2.22 g of yellow-brown oil (97%). ¹H NMR (500 MHz, CDCl₃) δ 5.88 (dq, J = 4.5, 2.2, 1H), 5.70 (dq, J = 5.7, 2.2, 1H), 3.31-3.15 (m, 1H), 3.01 (dd, J = 16.7, 6.7, 1H), 2.92 (dd, J = 16.7, 7.9, 1H), 2.53-2.32 (m, 2H), 2.23 (dtd, J = 13.7, 8.6, 5.2, 1H), 1.62-1.41 (m, 1H).

Cl 3-(2-Furyl)-propanoic acid chloride (S10): General procedure 2 was followed at a 4.6 mmol scale. CH₂Cl₂ was used as a solvent. Reaction mixture was refluxed for 3 hours and

concentrated, furnishing 0.65 g (89%) of yellow-brown oil. ¹H NMR (500 MHz, CDCl₃) δ 7.35 (br s, 1H), 6.32 (br s, 1H), 6.10 (br s, 1H), 3.27 (t, *J* = 7.1, 2H), 3.06 (t, *J* = 7.1, 2H).

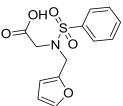
2-(furan-2-yl)benzoyl chloride (S11) General procedure **2** was followed at a 1.06 mmol scale. CH₂Cl₂ was used as a solvent. Reaction mixture was refluxed for 3 hours and concentrated, furnishing 0.21 g of brown oil (96%)¹H NMR (500 MHz, CDCl₃) δ = 7.84 (dd, *J* = 7.9, 1.0 Hz, 1H), 7.67 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.61 (td, *J* = 7.6, 1.3 Hz, 1H), 7.58 (d, *J* = 1.3 Hz, 1H), 7.45 (td, *J* = 7.7, 1.3 Hz, 1H), 6.71 (d, *J* = 3.2 Hz, 1H), 6.55 (dd, *J* = 3.4, 1.8 Hz, 1H).


(S12) General procedure 2 was followed at a 1.5 mmol scale. CH_2Cl_2 was used as a solvent. Reaction mixture was refluxed for 3 hours and concentrated, furnishing 0.43 g (95%) of brown oil. ¹H NMR (500 MHz, CDCl₃) δ = 7.77 (d, *J* = 7.9 Hz, 1H), 7.72 (d, *J* = 7.9 Hz, 1H), 7.60 (t, *J* = 7.7 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 1H), 6.63 (d, *J* = 3.3 Hz, 1H), 6.23 (m, 1H), 3.34 (t, *J* = 7.3 Hz, 2H), 3.13 (t, *J* = 7.3 Hz, 2H).

Substituted glycines

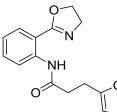
 $R \cap H_{2} \xrightarrow{O}, TEA$ 2. R'CI, TEA $R \cap R' = 2- furoyl R' = Piv R = 2- furoyl R' = SO_{2}Ph$

General procedure: <u>Step 1</u>: Alkyl amine, 1 eq, 10 mmol, was dissolved in 20mL of DCM, 1 eq of TEA was added, 1.01 g, 10 mmol, the mixture was treated with 1 eq of methyl bromoacetate 1.51 g (10 mmol) and left stirring overnight. <u>Step 2</u>: The mixture from the first step was treated with additional 1 eq of TEA, 1.01 g, 10mmol, and then sulfuryl or acyl chloride was added, 1eq,

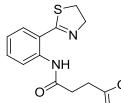

10mmol. The mixture was left stirring for 8h, then quenched with water, extracted with EtOAc, dried, concentrated and purified by chromatography. <u>Step 3</u>: Product of step 2 was dissolvwed in 50mL of MeOH, 5mL of H₂O was added followed by 0.24 g of LiOH. The mixture was stirred for 12 h, concentrated *in vacuo*, diluted with water, acidified and extracted with EtOAc. Combined organic layers were dried over Na_2SO_4 and concentrated to afford crude acid. If needed the crude acid can be purified by flash chromatography.

2-(N-benzylfuran-2-carboxamido)acetic acid From 0.97 g (10mmol) of 2furylamine, 1.01 g of furoyl chloride following steps 1-3 of the general procedure, 0.54 g (21% over three steps) of the acid was obtained. ¹H NMR (500 MHz, CDCl₃) δ = 7.40 (m, 5H), 7.17 (m, 1H), 6.52 (m, 2H), 4.93 (m, 2H), 4.24 (m, 2H).

2-(N-(furan-2-ylmethyl)pivalamido)acetic acid From 0.97 g (10mmol) of 2furylamine, 1.20 g of pivaloyl chloride following steps 1-3 of the general procedure, 0.94 g (39% over three steps) of the acid was obtained. ¹H NMR (500 MHz, CDCl₃) δ = 7.42 (m, 1H), 6.38 (dd, *J* = 3.2, 1.9 Hz, 1H), 6.31 (d, *J* = 3.2 Hz, 1H), 4.77 (s, 2H), 4.04 (s, 2H), 1.39 (s, 9H).

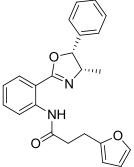

2-(N-(furan-2-ylmethyl)phenylsulfonamido)acetic acid From 0.97 g (10mmol) of 2-furylamine, 1.75 g of phenyl sulfuryl chloride following steps 1-3 of the general

procedure, 0.82 g (28% over three steps) of the acid was obtained. ¹H NMR (500 MHz, CDCl₃) δ 7.86 (m, 2H), 7.61 (m, 1H), 7.53 (m, 2H), 7.32 (dd, *J* = 1.8, 0.7 Hz, 1H), 6.30 (dd, *J* = 3.2, 1.9 Hz, 1H), 6.22 (d, *J* = 3.2 Hz, 1H), 4.58 (s, 2H), 4.04 (s, 2H).

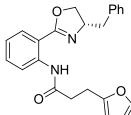

Furanpropanoic acid-based photoprecursors

General procedure 3: A freshly prepared acid chloride (from 1.2 eq of the corresponding acid) was dissolved in DCM and added dropwise to a solution of an aniline (1 eq) and TEA (1.2 eq) in DCM, the mixture was allowed to stir for 12 h, then quenched with water, organic layer was separated, aqueous – extracted with DCM, combined organic fractions were dried over Na₂SO₄, then concentrated *in vacuo*. Crude product was purified by falsh chromatography using hexanesethyl acetate 100:0-60:40 gradient.

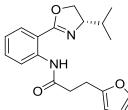
General procedure 4: 0.16 g of the amine was mixed with 0.38 g of HATU, 0.13 g of HOAt and 1 eq 1.0 mmol of the corresponding acid in DCM. The mixture was treated with 0.4 g of TEA and left stirring overnight, then concentrated and purified via flash chromatography.



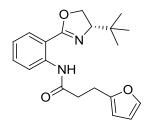
3-(furan-2-yl)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)propanamide (1a) General procedure **3** was followed. From 0.16 g (1.0 mmol) of 2-(**4,5-dihydrooxazol-2-yl)aniline S1** and chloranhydride prepared from 0.20 g (1.4 mmol) of 2-furanpropanoic acid 0.25 g (88 %) of the title compound was obtained ¹H NMR (500 MHz, DMSO) δ = 12.21 (s, 1H), 8.63 (m, 1H), 7.83 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.52 (m, 2H), 7.15 (m, 1H), 6.35 (dd, *J* = 3.0, 1.9 Hz, 1H), 6.14 (m, 1H), 4.42 (t, *J* = 9.5 Hz, 2H), 4.13 (t, *J* = 9.6 Hz, 2H), 2.99 (t, *J* = 7.4 Hz 2H), 2.72 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (126 MHz, DMSO) δ 170.6, 164.0, 154.6, 141.9, 139.8, 132.9, 129.5, 122.8, 119.4, 113.1, 110.8, 105.8, 66.8, 54.8, 36.3, 23.6. HRMS (ESI) calcd for C₁₆H₁₇N₂O₃⁺ (MH⁺) 285.1234, found 285.1248


3-(furan-2-yl)-N-(2-(4,5-dihydrothiazol-2-yl)phenyl)propanamide (2)

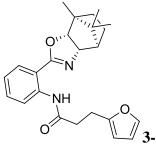
General procedure 3 was followed. From 0.18 g (1.0 mmol) of 2-(4,5-dihydrothiazol-2-yl)aniline **S8** 0.22 g (73 %) of the title compound was obtained ¹H NMR (500 MHz, CDCl₃) δ = 12.39 (s, 1H), 8.78 (dd, J = 8.4, 0.9 Hz, 1H), 7.66 (dd, J = 7.9, 1.4 Hz, 1H), 7.46 (m, 1H), 7.34 (d, J = 1.1 Hz, 1H), 7.11 (td, J = 7.8, 1.2 Hz, 1H), 6.31 (dd, J = 3.1, 1.9 Hz, 1H), 6.09 (m, 1H), 4.57 (t, J =8.3 Hz, 2H), 3.37 (t, J = 8.3 Hz, 2H), 3.12 (m, 2H), 2.77 (dd, J = 8.6, 6.9 Hz, 2H). ¹³C NMR (126) MHz, CDCl₃) δ 170.8, 166.7, 154.5, 141.1, 138.8, 132.1, 132.0, 122.5, 120.0, 118.4, 110.3, 105.3, 65.0, 36.7, 31.9, 23.8. HRMS (ESI) calcd for C₁₆H₁₇N₂O₂S⁺ (MH⁺) 301.1005, found 301.1004


3-(furan-2-yl)-N-(2-((4S,5R)-4-methyl-5-phenyl-4,5-dihydrooxazol-2-

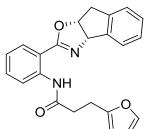
vl)phenvl)propanamide (1e) General procedure 4 was followed. From 0.25 (1.0 mmol) of 2-((4S,5R)-4-methyl-5-phenyl-4,5-dihydrooxazol-2-yl)aniline and 0.14 g of 2-furanpropanoic acid 0.17 g (45%) of the title compound was obtained ¹H NMR (500 MHz, CDCl₃) δ = 12.35 (s, 1H), 8.81 (dd, J = 8.5, 0.9 Hz, 1H), 8.01 (dd, J = 7.9, 1.6 Hz, 1H), 7.53 (m, 1H), 7.39 (m, 3H), 7.33 (dd, J = 1.8, 0.8 Hz, 1H), 7.28 (m, 2H), 7.14 (td, J = 7.9, 1.2 Hz, 1H), 6.29 (dd, J = 3.1, 1.9 Hz, 1H), 6.10 (m, 1H), 5.75 (d, J = 9.8 Hz, 1H), 4.77 (dq, J = 9.8, 7.0 Hz, 1H), 3.14 (m, 2H), 2.81 (m, 2H), 0.93 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.8, 163.1, 154.5, 141.1, 140.1, 136.5, 132.7, 129.3, 128.4, 128.1, 126.1, 122.3, 119.8, 112.9, 110.2, 105.3, 82.7, 65.4, 36.7, 23.8, 17.9. HRMS (ESI) calcd for C₂₃H₂₃N₂O₃⁺ (MH⁺) 375.1703, found 375.1708


(S)-3-(furan-2-vl)-N-(2-(4-benzyl-4.5-dihydrooxazol-2-

vl)phenvl)propanamide (1d) General procedure **3** was followed. From 0.50 g (2 mmol) of (**S**)-2-(4-benzyl-4,5-dihydrooxazol-2-yl)aniline 0.61 g (81 %) of the title compound was obtained ¹H NMR (500 MHz, CDCl₃) δ = 12.26 (s, 1H), 8.78 (m, 1H), 7.86 (dd, J = 7.9, 1.6 Hz, 1H), 7.49 (m, 1H), 7.36 (m, 1H), 7.29 (m, 5H), 7.19 (m, 1H), 7.09 (m, 1H), 6.32 (dd, J = 3.1, 1.9 Hz, 1H), 6.05 (m, 1H), 4.70 (m, 1H), 4.46 (dd, J = 9.3, 8.6 Hz, 1H), 4.12 (m, 1H), 3.00 (m, 4H), 2.59 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ = 170.9, 163.9, 154.6, 141.0, 140.1, 137.9, 132.7, 129.1, 129.0, 128.6, 126.6, 122.1, 119.7, 112.8, 110.2, 105.3, 70.9, 67.9, 42.2, 36.4, 23.6. HRMS (ESI) calcd for C₂₃H₂₃N₂O₃⁺ (MH⁺) 375.1703, found 375.1723

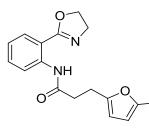

(S)-3-(furan-2-yl)-N-(2-(4-isopropyl-4,5-dihydrooxazol-2-

yl)phenyl)propanamide (1c) General procedure 3 was followed. From 0.41 g (2.0 mmol) of (S)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)aniline 0.49 g (75%) of the title compound was obtained ¹H NMR (500 MHz, CDCl₃) δ = 12.50 (s, 1H), 8.77 (dd, J = 8.5, 1.0 Hz, 1H), 7.86 (dd, J = 7.9, 1.6 Hz, 1H), 7.48 (m, 1H), 7.33 (dd, J = 1.8, 0.8 Hz, 1H), 7.10 (td, J = 7.9, 1.2 Hz, 1H), 6.30 (dd, *J* = 3.1, 1.9 Hz, 1H), 6.08 (m, 1H), 4.43 (dd, *J* = 9.5, 8.2 Hz, 1H), 4.18 (ddd, *J* = 9.4, 8.2, 6.9 Hz, 1H), 4.09 (t, J = 8.2 Hz, 1H), 3.13 (t, J = 7.6 Hz, 2H), 2.80 (m, 2H), 1.83 (m, J = 6.8 Hz, 1H), 1.08 (d, J = 6.7 Hz, 3H), 1.00 (d, J = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.7, 163.5, 154.5, 141.1, 140.0, 132.5, 129.1, 122.2, 119.7, 113.0, 110.2, 105.2, 72.8, 69.4, 36.7, 33.2, 23.9, 18.9, 18.8. HRMS (ESI) calcd for C₁₉H₂₃N₂O₃⁺ (MH⁺) 327.1703, found 327.1699

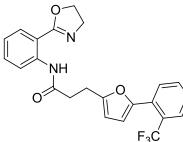

(S)-3-(furan-2-yl)-N-(2-(4-tert-butyl-4,5-dihydrooxazol-2-

yl)phenyl)propanamide (1b) General procedure 3 was followed. From 0.22 g (1.0 mmol) of (S)-2-(4-tert-butyl-4,5-dihydrooxazol-2-yl)aniline 0.12 g (35 %) of the title compound was obtained $(^{1}\text{H NMR} (500 \text{ MHz}, \text{CDCl}_{3}) \delta = 8.78 \text{ (dd, } J = 8.5, 1.0 \text{ Hz}, 1\text{H}), 7.86 \text{ (dd, } J = 7.9, 1.6 \text{ Hz}, 1\text{H}),$ 7.49 (ddd, J = 8.7, 7.5, 1.6 Hz, 1H), 7.10 (td, J = 7.9, 1.2 Hz, 1H), 6.29 (dd, J = 3.1, 1.9 Hz, 1H), 6.08 (m, 1H), 4.34 (m, 1H), 4.19 (m, 2H), 3.13 (t, J = 7.6 Hz, 2H), 2.79 (m, 2H), 0.99 (s, 9H).NMR (126 MHz, CDCl₃) δ 170.7, 163.5, 154.5, 141.1, 140.1, 132.5, 129.1, 122.2, 119.6, 112.9, 110.2, 105.2, 76.2, 67.4, 36.7, 33.8, 25.9, 24.0. HRMS (ESI) calcd for C₂₀H₂₅N₂O₃⁺ (MH⁺) 341.1860, found 341.1862

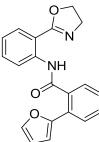
3-(furan-2-vl)-N-(2-((3aS,7aR)-7,8,8-trimethyl-3a,4,5,6,7,7a-


hexahydro-4,7-methanobenzo[d]oxazol-2-yl)phenyl)propanamide (1g) General procedure 4 was followed. From 0.09 g (0.33 mmol) 2-((3aS,7aR)-7,8,8-trimethyl-3a,4,5,6,7,7a-hexahydro-4,7-methanobenzo[d]oxazol-2-yl)aniline (S7), 0.05 g (39%) of the title compound was obtained ¹H NMR (500 MHz, CDCl₃) δ = 12.47 (s, 1H), 8.75 (d, J = 7.8 Hz, 1H), 7.86 (dd, J = 7.9, 1.5 Hz, 1H), 7.47 (m, 1H), 7.35 (m, 1H), 7.09 (m, 1H), 6.31 (dd, *J* = 3.0, 1.9 Hz, 1H), 6.11 (m, 1H), 4.38 (d, J = 8.4 Hz, 1H), 4.28 (d, J = 8.4 Hz, 1H), 3.14 (m, 2H), 2.82 (dd, J = 8.2, 6.8 Hz, 2H), 2.15 (d, J = 8.2, 6.8 Hz, 2Hz), 2.15 (d, J = 8.2, 6.8 Hz), 2.15 (d, J =J = 4.5 Hz, 1H), 1.82 (m, 1H), 1.58 (m, 1H), 1.13 (m, 4H), 0.90 (s, 3H), 0.85 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.8, 165.4, 154.6, 141.1, 139.9, 132.5, 129.3, 122.2, 119.7, 113.5, 110.2, 105.3, 90.0, 76.1, 49.1, 48.6, 47.0, 36.6, 32.1, 25.9, 23.8, 23.5, 18.7, 11.4. HRMS (ESI) calcd for C₂₄H₂₉N₂O₃⁺ (MH⁺) 393.2173, found 393.2171

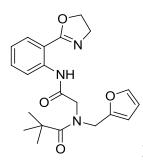
N-(2-((3aS,8aR)-8,8a-dihvdro-3aH-indeno[1,2-d]oxazol-2-vl)phenvl)-


3-(furan-2-yl)propanamide (1f) Following the general procedure 4 from 0.25 g (1.0 mmol) of 2-(8,8a-dihydro-3aH-indeno[1,2-d]oxazol-2-yl)aniline 0.14 g (38 %) of the title compound was obtained ¹H NMR (500 MHz, CDCl₃) δ = 12.32 (s, 1H), 8.70 (d, J = 8.4 Hz, 1H), 7.86 (dd, J = 7.9, 1.6 Hz, 1H), 7.52 (m, 1H), 7.45 (m, 1H), 7.36 (m, 1H), 7.31 (s, 2H), 7.06 (m, 1H), 6.32 (m, 1H), 6.12 (d, J = 2.9 Hz, 1H), 5.85 (d, J = 7.9 Hz, 1H), 5.47 (m, 1H), 3.56 (dd, J = 18.0, 6.8 Hz, 1H), 3.41 (d, J = 18.4 Hz, 1H), 3.15 (t, J = 7.8 Hz, 2H), 2.83 (td, J = 7.4, 1.8 Hz, 2H). ¹³C NMR (126) MHz, CDCl₃) δ 170.7, 164.0, 154.5, 141.7, 141.2, 139.8, 139.6, 132.6, 129.2, 128.8, 127.7, 125.5, 125.2, 122.2, 119.7, 113.1, 110.3, 105.3, 81.8, 76.6, 39.7, 36.8, 24.0. HRMS (ESI) calcd for C₂₃H₂₁N₂O₃⁺ (MH⁺) 373.1547, found 373.1548

Variations in the unsaturated pendant and the linker

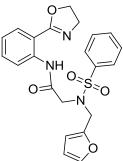

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-3-(5-methylfuran-2-

yl)propanamide (5) Following general procedure 4, from 0.16 g (1.0 mmol) 2-(4,5dihydrooxazol-2-yl)aniline S1 and 0.32 g (2.07 mmol) of 5-methyl-2-furanpropanoic acid 0.14 g (47 %) of the title compound was obtained ¹H NMR (500 MHz, CDCl₃) δ 12.27 (s, 1H), 8.78 (dd, J = 8.5, 0.9 Hz, 1H), 7.88 (dd, J = 7.9, 1.6 Hz, 1H), 7.48 (td, J = 8.7, 8.1, 1.6 Hz, 1H), 7.09(td, J = 7.9, 1.2 Hz, 1H), 5.96 (d, J = 2.9 Hz, 1H), 5.87 (dd, J = 2.9, 1.0 Hz, 1H), 4.41 (m, 2H),4.17 (m, 2H), 3.07 (m, 2H), 2.79 (m, 2H), 2.27 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 171.0, 164.7, 152.8, 150.6, 139.9, 132.5, 129.1, 122.2, 119.7, 113.0, 105.9, 105.9, 66.2, 54.7, 36.8, 23.9, 13.5. HRMS (ESI) calcd for $C_{17}H_{19}N_2O_3^+$ (MH⁺) 299.1390, found 299.1391

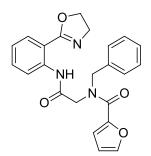


N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-3-(5-(2-

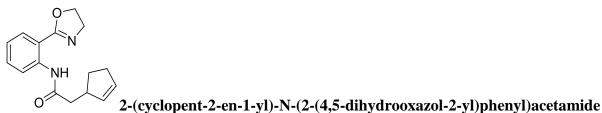
(trifluoromethyl)phenyl)furan-2-yl)propanamide (6) Following the general procedure 3 from 0.16 g (1.0 mmol) of 2-(4,5-dihydrooxazol-2-yl)aniline S1, chloranhydride of the 5-[(2trifluoromethyl)-phenyl)-2-furanpropanoic cid (from 0.50 g of the acid, 1.75 mmol), 0.23 g (54 %) of the title compound was obtained ¹H NMR (500 MHz, CDCl₃) δ = 12.36 (s, 1H), 8.79 (dd, J = 8.5, 0.9 Hz, 1H), 7.88 (dd, J = 7.9, 1.6 Hz, 1H), 7.74 (m, 2H), 7.50 (m, 2H), 7.39 (t, J = 7.7 Hz, 1H), 7.10 (td, J = 7.9, 1.2 Hz, 1H), 6.64 (d, J = 3.2 Hz, 1H), 6.23 (d, J = 3.3 Hz, 1H), 4.38 (m, 2H), 4.13 (t, J = 9.6 Hz, 2H), 3.20 (t, J = 7.6 Hz, 2H), 2.87 (dd, J = 8.4, 6.9 Hz, 2H). ¹³C NMR (126) MHz, CDCl₃) δ 170.8, 164.6, 155.4, 149.1, 139.8, 132.5, 131.6, 129.8 (q, *J* = 2.2 Hz, 1C), 129.4, 129.1, 127.2, 126.6 (q, J = 6.4 Hz, 1c), 125.9 (q, J = 272.5 Hz, 1C), 125.9 (q, J = 31.4 Hz, 1C), 122.2, 119.7, 113.1, 110.9, 107.7, 66.2, 54.6, 36.6, 24.0. HRMS (ESI) calcd for C₂₃H₂₀F₃N₂O₃⁺ (MH⁺) 429.1421, found 429.1429



N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-(furan-2-yl)benzamide Following the general procedure 3 from 0.16 g (1.0 mmol) of 2-(4,5-dihydrooxazol-2-yl)aniline) S1, chloranhydride of 2-(2-furanyl)-benzoic acid (from 0.20 g of the acid, 1.06 mmol) 0.22 g (66 %) of the title compound was obtained ¹H NMR (500 MHz, CDCl₃) δ = 12.48 (s, 1H), 8.94 (d, J = 8.4, 1H), 7.87 (dd, J = 7.9, 1.6 Hz, 1H), 7.76 (m, 1H), 7.65 (m, 1H), 7.53 (m, 2H), 7.43 (dd, J = 1.9, 0.6 Hz, 1H), 7.40 (td, J = 7.6, 1.2 Hz, 1H), 7.15 (td, J = 7.8, 1.0 Hz, 1H), 6.65 (d, J=3.4 Hz, 1H), 6.41 (dd, J=3.4, 1.8 Hz, 1H), 4.31 (t, J=9.6, Hz 2H), 3.93 (t, J=9.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 168.9, 164.2, 152.0, 142.5, 139.9, 135.1, 132.5, 129.9, 129.1, 128.3, 128.3, 127.6, 127.3, 122.6, 120.0, 113.6, 111.7, 108.5, 66.1, 54.6. HRMS (ESI) calcd for $C_{20}H_{17}N_2O_3^+$ (MH⁺) 333.1234, found 333.1233


N-(2-((2-(4,5-dihydrooxazol-2-yl)phenyl)amino)-2-oxoethyl)-N-(furan-

2-ylmethyl)pivalamide Following general procedure 4, from 0.16 g (1.0 mmol) of 2-(4,5dihydrooxazol-2-yl)aniline S1 and 0.24 g (1.0 mmol) of the corresponding acid 0.23 g (60 %) of the title compound was obtained ¹H NMR (500 MHz, CDCl₃) δ = 12.84 (s, 1H), 8.79 (d, J = 8.3 Hz, 1H), 7.89 (dd, J = 7.9, 1.5 Hz, 1H), 7.50 (m, 1H), 7.37 (m, 1H), 7.13 (t, J = 7.4 Hz, 1H), 6.34 (dd, J = 3.0, 1.9 Hz, 1H), 6.27 (d, J = 3.1 Hz, 1H), 4.74 (s, 2H), 4.41 (t, J = 9.6 Hz, 2H), 4.28 (s, 2H), 4.282H), 4.13 (t, J = 9.5 Hz, 2H), 1.36 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 177.6, 168.3, 164.5, 150.6, 142.4, 139.2, 132.5, 129.1, 122.8, 119.7, 113.5, 110.3, 108.7, 66.4, 54.6, 52.4, 45.5, 39.1, 28.5. HRMS (ESI) calcd for C₂₁H₂₆N₃O₄⁺ (MH⁺) 384.1918, found 384.1935

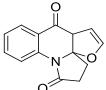

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-(N-(furan-2-

vlmethyl)phenylsulfonamido)acetamide Following general procedure 4, from 0.32 g (2.0 mmol) 2-(4,5-dihydrooxazol-2-yl)aniline S1 and 0.60 g (2.0 mmol) of the corresponding acid 0.41 g (46 %) of the title compound was obtained ¹H NMR (500 MHz, CDCl₃) δ = 13.11 (s, 1H), 8.72 (d, J = 8.2 Hz, 1H), 7.89 (dd, J = 7.9, 1.4 Hz, 1H), 7.82 (d, J = 7.5 Hz, 2H), 7.60 (t, J = 7.5 Hz, 1H), 7.49 (m, 2H), 7.14 (m, 2H), 6.18 (m, 2H), 4.62 (s, 2H), 4.47 (m, 2H), 4.32 (t, *J* = 9.1 Hz, 2H), 3.99 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) & 167.3, 164.1, 148.2, 143.0, 139.1, 132.8, 132.3, 129.0, 129.0, 127.4, 122.8, 119.6, 114.0, 110.6, 110.3, 66.5, 54.8, 51.5, 45.3. HRMS (ESI) calcd for C₂₂H₂₁N₃O₅Li⁺ (MLi⁺) 446.1357, found 446.1355

N-benzyl-N-(2-((2-(4,5-dihydrooxazol-2-yl)phenyl)amino)-2-

oxoethyl)furan-2-carboxamide Following general procedure 4, from 0.32 g (2.0 mmol) 2-(4,5dihydrooxazol-2-yl)aniline S1 and 0.51 g (2.0 mmol) of the corresponding acid 0.34 g (42 %) of the title compound was obtained ¹H NMR (500 MHz, CDCl₃) $\delta = 12.92$ (m, 1H), 8.84 (m, 1H), 7.87 (d, J = 7.4 Hz, 1H), 7.43 (m, 7H), 7.18 (m, 2H), 6.51 (m, 1H), 5.01 (m, 2H), 4.35 (m, 4H), 3.96 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 168.4, 167.5, 164.6, 164.4, 160.5, 160.4, 147.6, 144.7, 144.4, 139.4, 139.3, 136.3, 132.6, 129.1, 128.9, 128.7, 127.8, 127.0, 122.9, 122.7, 119.7, 119.6, 117.8, 117.6, 113.7, 113.5, 111.7, 111.5, 66.5, 66.1, 54.4, 54.2, 52.9, 52.5, 51.1, 50.8. HRMS (ESI) calcd for C₂₃H₂₂N₃O₄⁺ (MH⁺) 404.1605, found 404.1609

Following the general procedure **3** from 0.16 g (2.0 mmol) **2-(4,5-dihydrooxazol-2-yl)aniline S1**, chloranhydride from 0.26 g (2.0 mmol) of the 2-cyclopenetene-1-acetic acid, 0.45 g (83 %) of the title compound was obtained ¹H NMR (500 MHz, CDCl₃) δ 12.19 (s, 1H), 8.79 (dd, J = 8.5, 1.0 Hz, 1H), 7.88 (dd, J = 7.9, 1.6 Hz, 1H), 7.49 (m, 1H), 7.09 (m, 1H), 5.81 (dq, J = 6.1, 2.0 Hz, 1H), 5.78 (dq, J = 5.7, 1.9 Hz, 1H), 4.42 (m, 2H), 4.17 (m, 2H), 3.28 (dddt, J = 10.5, 6.2, 4.2, 2.2 Hz, 1H), 2.56 (dd, J = 14.3, 6.7 Hz, 1H), 2.39 (m, 3H), 2.21 (m, 1H), 1.61 (m, 1H). ¹³C NMR (126) MHz, CDCl₃) δ 171.5, 164.7, 140.0, 134.2, 132.5, 131.2, 129.1, 122.1, 119.7, 113.0, 66.1, 54.8, 44.8, 42.5, 31.9, 29.7. HRMS (ESI) calcd for C₁₆H₁₉N₂O₂⁺ (MH⁺) 271.1441, found 271.1447

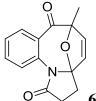

Irradiation of photoprecursors

General procedure 5: The photoprecursor was dissolved in anhydrous DCM, the solution was thoroughly degassed by bubbling nitrogen for 30 min, then irradiated with RPR-3000 until complete disappearance of the starting material as monitored by NMR. The solution was then concentrated, the residue was redissolved in methanol (50mL), and 1 eq of PPTS or 1 eq of Bu₄NHSO₄ was added, together with 5 mL of water. When hydrolysis was complete as determined by NMR, the solution was concentrated in vacuo and crude material was purified by flash chromatography (hexanes-ethyl acetate 90:10-40:60).

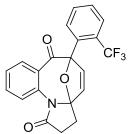
Model studies:

Following general procedure 5 and using n-Bu₄NHSO₄ for the hydrolysis from 0.110 g (0.39) mmol) of photoprecursor **1a** 12 mg (13%) of the compound **3** and 57 mg (61%) of the compound **4** was obtained upon the purification with flash chromatography

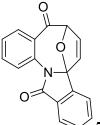
Following general procedure 5 and using n-Bu₄NHSO₄ for the hydrolysis from 0.100 g (0.33) mmol) of photoprecursor 2 27 mg (34 %) of the compound 4 was obtained after purification with flash chromatography



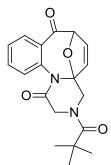
2,3-dihydro-1H-furo[2,3-b]pyrrolo[1,2-a]quinoline-1,7(6aH)-dione (3) ¹H NMR (500 MHz, CDCl₃) δ = 8.38 (dd, J = 8.6, 1.0 Hz, 1H), 7.95 (dd, J = 7.8, 1.6 Hz, 1H), 7.67 (ddd, J = 8.3, 7.3, 1.7 Hz, 1H), 7.29 (m, 1H), 6.46 (m, 1H), 5.11 (t, J = 3.0 Hz, 1H), 3.88 (dd, J = 3.1, 2.3 Hz, 1H), 2.94 (m, 1H), 2.62 (m, 2H), 2.25 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 190.1, 173.7, 147.3, 138.4. 135.4, 128.1, 125.2, 123.6, 121.2, 101.8, 100.2, 58.4, 34.6, 29.4. HRMS (ESI) calcd for C₁₄H₁₂NO₃⁺ (MH⁺) 242.0812, found 242.0806


2,3-dihydro-1H-3a,6-epoxybenzo[g]pyrrolo[1,2-a]azocine-1,7(6H)-dione (4) ¹H NMR (500 MHz, CDCl₃) δ = 7.89 (dd, J = 8.0, 1.7 Hz, 1H), 7.57 (dd, J = 8.1, 1.3 Hz, 1H), 7.50 (ddd, J = 8.2, 7.2, 1.7 Hz, 1H), 7.23 (ddd, J = 8.0, 7.2, 1.3 Hz, 1H), 6.33 (dd, J = 5.8, 2.0 Hz, 1H),5.83 (dd, J = 5.7, 1.3 Hz, 1H), 5.08 (dd, J = 2.0, 1.3 Hz, 1H), 2.84 (dt, J = 17.4, 9.7 Hz, 1H), 2.66 (ddd, J = 17.4, 10.0, 2.0 Hz, 1H), 2.56 (m, 1H), 2.43 (ddd, J = 14.0, 9.7, 2.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 196.5, 173.2, 133.8, 133.6, 133.1, 131.5, 130.6, 127.9, 127.0, 126.1, 105.0, 87.4, 30.0, 29.0. HRMS (ESI) calcd for C₁₄H₁₂NO₃⁺ (MH⁺) 242.0812, found 256.0815

Irradiation of photoprecursors 5-10:

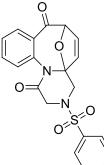

6-methyl-2,3-dihydro-1H-3a,6-epoxybenzo[g]pyrrolo[1,2-a]azocine-1,7(6H)-

dione (11) Following general procedure 5 using n-Bu₄NHSO₄ for the hydrolysis from 170 mg mmol of photoprecursor 5 74 mg (51 %) of the title compound was obtained after purification via flash chromatography ¹H NMR (500 MHz, CDCl₃) δ = 7.92 (dd, J = 8.0, 1.6 Hz, 1H), 7.65 (dd, J = 8.1, 1.1 Hz, 1H), 7.57 (ddd, J = 8.2, 7.3, 1.7 Hz, 1H), 7.31 (m, 1H), 6.22 (d, J = 5.6 Hz, 1H), 5.82 (d, J = 5.6 Hz, 1H), 2.92 (dt, J = 17.3, 9.7 Hz, 1H), 2.73 (ddd, J = 17.3, 10.0, 2.0 Hz, 1H), 2.63 (dt, J = 14.0, 9.8 Hz, 1H), 2.52 (ddd, J = 14.0, 9.7, 2.0 Hz, 1H), 1.62 (s, 3H). ¹³C NMR (126) MHz, CDCl₃) δ 196.9, 173.0, 138.5, 133.0, 132.7, 131.9, 130.1, 129.1, 126.5, 126.0, 105.5, 90.1, 30.0, 29.7, 18.6. HRMS (ESI) calcd for C₁₅H₁₄NO₃⁺ (MH⁺) 256.0968, found 256.0962

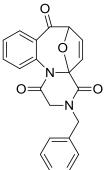


6-(2-(trifluoromethyl)phenyl)-2,3-dihydro-1H-3a,6-

epoxybenzo[g]pyrrolo[1,2-a]azocine-1,7(6H)-dione (12) Following general procedure 5 110 mg mmol of photoprecursor **6** using *n*-Bu₄NHSO₄ for the hydrolysis from 41 mg (42 %) of the title compound was obtained after purification via flash chromatography. ¹H NMR (500 MHz, CDCl₃) $\delta = 7.92$ (d, J = 8.0 Hz, 1H), 7.78 (dd, J = 7.7, 1.1 Hz, 1H), 7.71 (dd, J = 7.8, 1.5 Hz, 1H), 7.64 (m, 2H), 7.58 (m, 2H), 7.35 (ddd, J = 7.8, 7.3, 1.3 Hz, 1H), 6.70 (dq, J = 5.6, 1.8 Hz, 1H), 5.95 (d, J = 5.8 Hz, 1H), 3.04 (m, 1H), 2.80 (ddd, J = 16.8, 9.3, 2.6 Hz, 1H), 2.73 (m, 1H), 2.68 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 194.7, 172.8, 137.8, 132.2, 132.0, 131.6, 131.3, 130.6, 130.6, 128.7, 127.8, 127.8, 127.4, 126.6, 126.1, 105.0, 93.2, 30.0, 29.6. HRMS (ESI) calcd for C₂₁H₁₄F₃NO₃Li⁺ (MLi⁺) 392.1082, found 392.1076 Oam44512

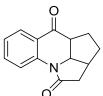


5H-6,8a-epoxybenzo[7,8]azocino[2,1-a]isoindole-5,13(6H)-dione Following general procedure 5 from 160 mg (0.48 mmol) of the photoprecursor 7 using n-Bu₄NHSO₄ for the hydrolysis 63 mg (45%) of the title compound was obtained after purification with flash chromatography ¹H NMR (500 MHz, CDCl₃) δ = 8.30 (dd, J = 8.4, 1.0 Hz, 1H), 8.15 (dd, J = 8.0, 1.7 Hz, 1H), 8.01 (dt, J = 7.5, 0.9 Hz, 1H), 7.76 (td, J = 7.5, 1.1 Hz, 1H), 7.70 (td, J = 7.5, 1.1 Hz, 1H), 7.66 (ddd, J = 8.5, 7.2, 1.8 Hz, 1H), 7.63 (dt, J = 7.3, 0.8 Hz, 1H), 7.33 (ddd, J = 8.2, 7.3, 1.2Hz, 1H), 6.64 (dd, J = 5.8, 2.0 Hz, 1H), 6.00 (dd, J = 5.8, 1.3 Hz, 1H), 5.44 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 195.8, 165.3, 141.7, 134.3, 134.1, 133.6, 133.5, 131.9, 131.5, 131.1, 129.1, 126.3, 125.2, 124.9, 124.3, 123.4, 103.0, 88.2. HRMS (ESI) calcd for C₁₈H₁₁NO₃Li⁺ (MLi⁺) 296.0893, found 296.0901

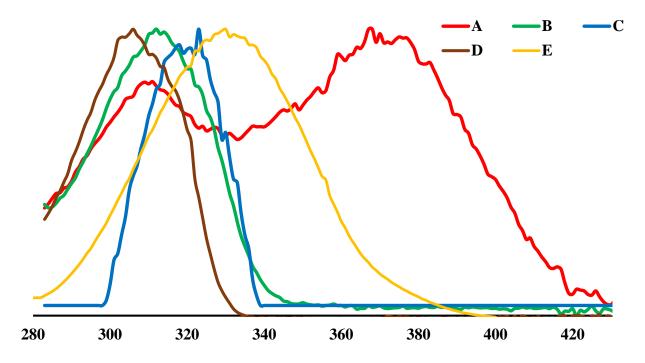


3-pivaloyl-3,4-dihydro-4a,7-epoxybenzo[g]pvrazino[1,2-a]azocine-

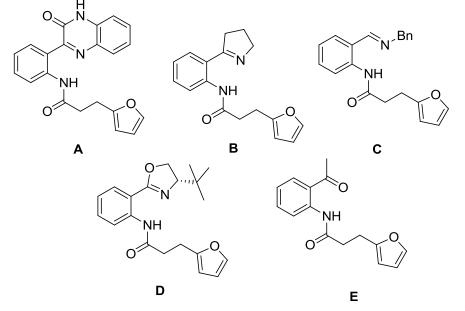
1,8(2H,7H)-dione (14) Following general procedure 5 from 140 mg (0.37 mmol) of photoprecursor 8 using 1 eq of n-Bu₄NHSO₄ for the hydrolysis 42 mg (34%) of the title compound was obtained after purification via flash chromatography ¹H NMR (500 MHz, CDCl₃) $\delta = 7.74$ (dd, J = 7.8, 1.6 Hz, 1H), 7.52 (td, J = 7.9, 1.7 Hz, 1H), 7.38 (td, J = 7.7, 1.1 Hz, 1H), 7.33 (dd, J = 8.0, 1.0 Hz, 1H), 6.38 (dd, J = 5.9, 1.9 Hz, 1H), 6.01 (dd, J = 5.9, 1.0 Hz, 1H), 5.17 (dd, J = 1.8, 1.0 Hz, 1H), 5.17 (dd, J = 1.0, 1.0 Hz 1.1 Hz, 1H), 4.85 (dd, J = 18.2, 1.4 Hz, 1H), 4.65 (dd, J = 14.0, 1.5 Hz, 1H), 4.36 (d, J = 18.2 Hz, 1H), 4.07 (d, J = 14.0 Hz, 1H), 1.37 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 196.4, 176.7, 166.2, 135.0, 133.9, 132.1, 131.1, 130.1, 129.8, 129.7, 127.7, 98.8, 87.5, 50.6, 49.8, 38.9, 28.2. HRMS (ESI) calcd for C₁₉H₂₁N₂O₄⁺ (MH⁺) 341.1496, found 341.1497



3-(phenylsulfonyl)-3,4-dihydro-4a,7-epoxybenzo[g]pyrazino[1,2-a]azocine-1,8(2H,7H)-dione (15) Following general procedure 5 from 350 mg (0.79 mmol) of photoprecursor 9 using 1eq of n-Bu₄NHSO₄ for the hydrolysis 150 mg (48%) of the title compound was obtained after purification via flash chromatography ¹H NMR (500 MHz, CDCl₃) δ = 7.90 (m, 2H), 7.72 (m, 2H), 7.64 (t, J = 7.6 Hz, 2H), 7.49 (td, J=8.0, 1.7 Hz, 1H), 7.36 (td, J = 7.7, 1.2 Hz, 1H), 7.24 (dd, J=8.1, 1.0 Hz, 1H), 6.39 (dd, J=5.8, 1.9 Hz, 1H), 5.98 (dd, J=5.8, 1.1 Hz, 1H), 5.18 (m, 1H), 4.16 (dd, J=16.7, 1.4 Hz, 1H), 3.98 (dd, J=12.9, 1.4 Hz, 1H), 3.91 (dd, J=16.7, 0.9, 1H), 3.69 (d, J=12.9, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 195.9, 165.0, 135.5, 135.1, 133.7, 132.1, 131.2, 129.8, 129.7, 129.5, 129.5, 127.9, 127.7, 98.8, 87.6, 51.2, 49.8. HRMS (ESI) calcd for C₂₀H₁₇N₂O₅S⁺ (MH⁺) 397.0853, found 397.0855



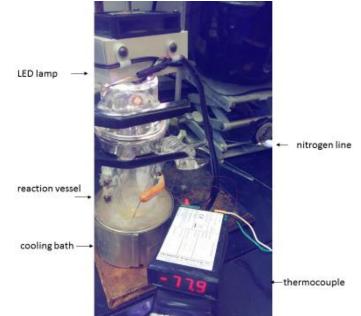
3-benzyl-2,3-dihydro-4a,7-epoxybenzo[g]pyrazino[1,2-a]azocine-1,4,8(7H)-


trione (16) Following general procedure 5 from 210 mg (0.52 mmol) of photoprecursor 10 using 1 eq of *n*-Bu₄NHSO₄ for the hydrolysis 89 mg (47 %) of the title compound was obtained after purification via flash chromatography. ¹H NMR (500 MHz, CDCl₃) $\delta = 7.75$ (dd, J = 7.8, 1.6 Hz, 1H), 7.55 (td, *J* = 7.7, 1.6 Hz, 1H), 7.41 (m, 5H), 7.26 (dd, *J* = 7.9, 1.0 Hz, 1H), 6.47 (dd, *J* = 5.9, 1.9 Hz, 1H), 6.23 (dd, J = 5.9, 0.9 Hz, 1H), 5.31 (dd, J = 1.8, 0.9 Hz, 1H), 4.90 (d, J = 14.5 Hz, 1H), 4.62 (d, J = 14.5 Hz, 1H), 4.28 (d, J = 18.3 Hz, 1H), 4.10 (d, J = 18.3 Hz, 1H). ¹³C NMR (126) MHz, CDCl₃) δ 196.4, 166.1, 162.0, 134.6, 134.4, 133.6, 132.4, 131.5, 130.3, 130.1, 129.8, 129.4, 129.2, 128.5, 128.5, 98.6, 88.8, 50.0, 49.6. HRMS (ESI) calcd for C₂₁H₁₇N₂O_{4⁺} (MH⁺) 361.1182, found 361.1178

9,10-Benzo-1-azatricyclo[5.3.1.0^{4,11}]undec-9-ene-2,8-dione (18): Following general procedure 5 from 220 mg (0.81 mmol) of photoprecursor 17 upon hydrolysis with 1 eq of TsOH 82 mg (44%) of the title compound was obtained after purification via flash chromatography. ¹H NMR (500 MHz, CDCl₃) δ 8.28 (d, J = 7.8 Hz, 1H), 8.04 (dd, J = 7.9, 1.6 Hz, 1H), 7.63 (ddd, J = 8.6, 7.4, 1.7 Hz, 1H), 7.25 (m, 1H), 4.76 (t, J = 5.3 Hz, 1H), 3.03 (dd, J = 17.5, 8.9 Hz, 1H), 2.93 (m, 2H), 2.45 (d, J = 17.5 Hz, 1H), 2.20 (m, 2H), 1.97 (m, 1H), 1.76 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 194.4, 173.2, 139.5, 135.2, 127.7, 124.7, 122.3, 121.1, 66.8, 53.0, 40.0, 35.0, 33.7, 27.5. HRMS (ESI) calcd for C₁₄H₁₃NNaO₂⁺ (MNa⁺) 250.0839, found 250.0830.

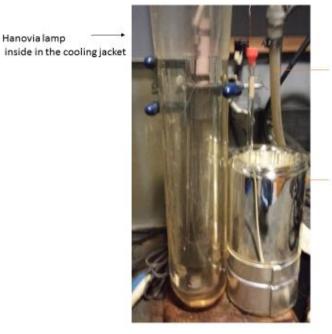
UV-vis absorption Spectra of Selected Azaxylylene Photoprecursors

Compounds A-C and E were described in previous publications⁹


Description of a typical low temperature experiment:

40 mg of a photoprecursor was dissolved in 0.6 mL of the deuterated solvent, the solution was thoroughly degassed by bubbling nitrogen for 5-7 min, cooled to the desired temperature in acetone-dry ice bath or (methanol-water-dry ice baths depending on the temperature) and irradiated with Hanovia medium pressure lamp until complete disappearance of the starting material as monitored by NMR. The solution was then concentrated, the residue was redissolved in CD₃OD (1 mL), and 1 eq of Bu₄NHSO₄ was added, together with 2 drops of water. When hydrolysis was complete as determined by NMR, the solution was concentrated in vacuo and crude material was purified by flash chromatography (hexanes-ethyl acetate 90:10-40:60). HPLC with Chiracel AD column was used to determine the *ee* values of the product (eluent hexanes-ethanol 70:30)

Description of a large-scale low temperature experiment with a sensitizer:

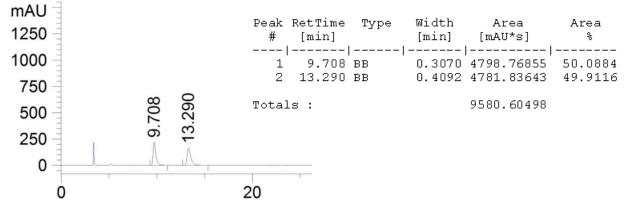

Experiment 1: 100 mg of the photoprecursor **1b** (0.29 mmol) was dissolved in 80 mL of DCM, dimethoxybenzophenone was added as a sensitizer, the mixture was thoroughly degassed by bubbling nitrogen for 20 min, cooled to -78°C and irradiated with LED-365 lamp until complete disappearance of the starting material as monitored by NMR. The solution was then concentrated, the residue was redissolved in MeOH (10 mL), and 1 eq of TsOH was added, together with 0.2 mL of water. When hydrolysis was complete as determined by NMR, the solution was concentrated *in vacuo* and crude material was purified by flash chromatography (hexanes-ethyl acetate 90:10-40:60), yielding 38 mg (53%) of compound 4. HPLC with Chiracel AD column was used to determine the ee values of the product (eluent hexanes-ethanol 70:30) to be 91%.

Experiment 2: 85 mg of the photoprecursor 1b (0.25 mmol) was dissolved in 80 mL of DCM, dimethoxybenzophenone was added as a sensitizer, the mixture was thoroughly degassed by bubbling nitrogen for 20 min, cooled to -78°C and irradiated with LED-365 lamp until complete disappearance of the starting material as monitored by NMR. The solution was then concentrated, the residue was redissolved in MeOH (10 mL), and 1 eq of TsOH was added, together with 0.2 mL of water. When hydrolysis was complete as determined by NMR, the solution was concentrated *in vacuo* and crude material was purified by flash chromatography (hexanes-ethyl acetate 90:10-40:60), yielding 29 mg (48%) of compound **4**. HPLC with Chiracel AD column was used to determine the *ee* values of the product (eluent hexanes-ethanol 70:30) to be 90%.

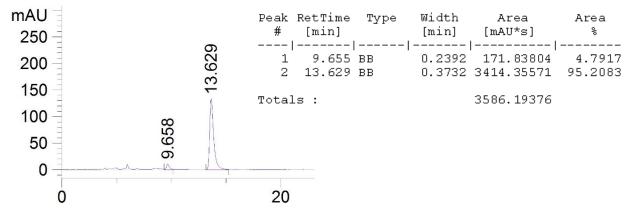
Set-up for low temperature irradiation with LED lamp (365 nm)

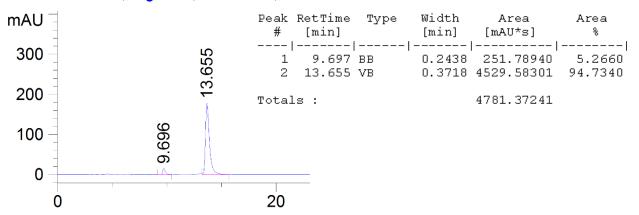
Set-up for low temperature irradiation with Hanovia lamp (temperature is controlled with thermocouple not shown)

NMR tube with the reaction mixture


Dewar vessel with a non-silvered window

Selected HPLC traces:


Compound 4 (racemic):


Large-scale experiment 1 (p. S24):

DAD1 A, Sig=254,4 Ref=360,100

Large-scale experiment 2 (p. S24):

DAD1 A, Sig=254,4 Ref=360,100

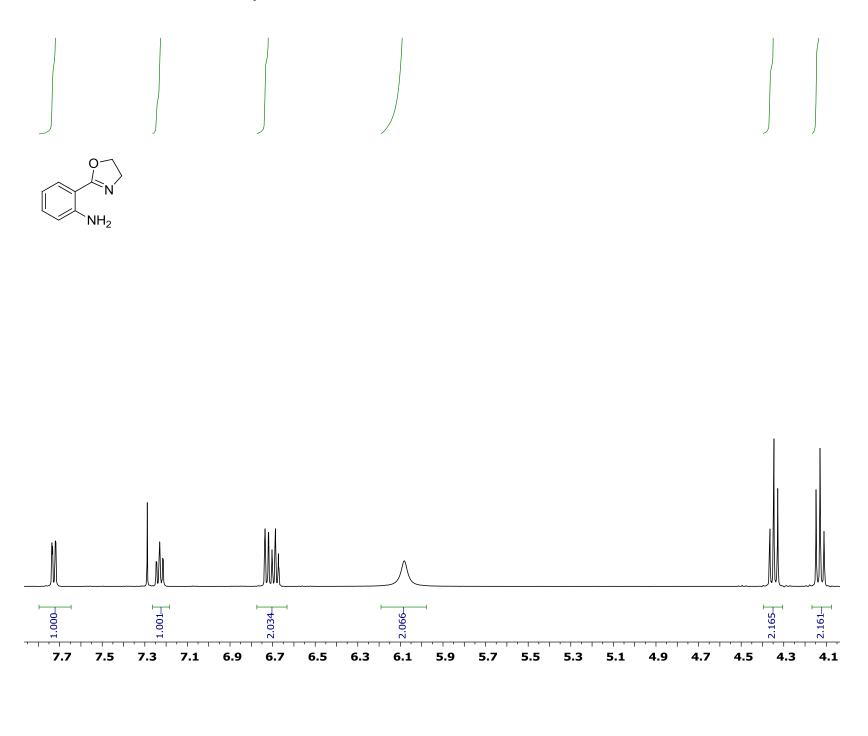
References

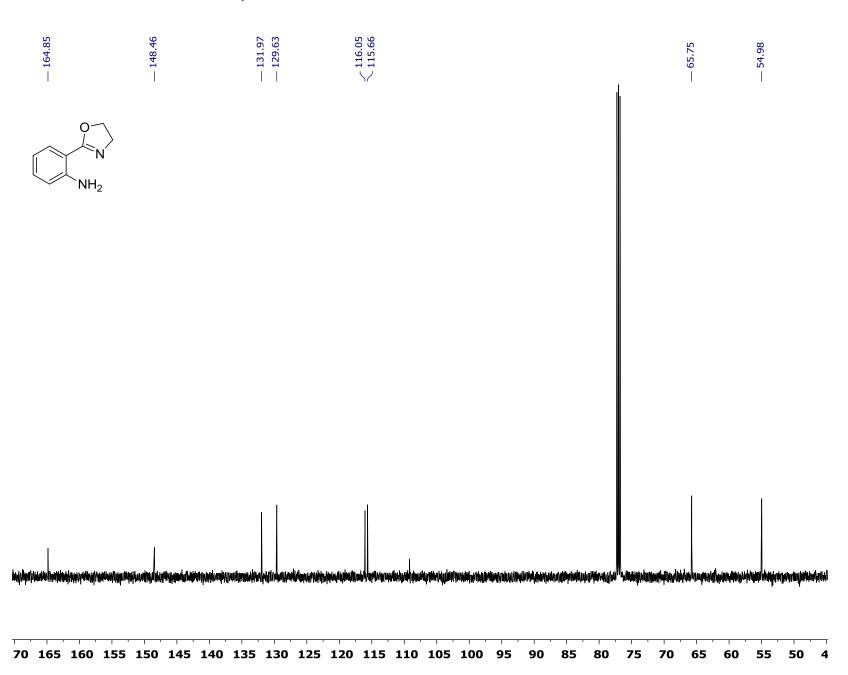
¹ Procedure adapted from Zhang, Z.; Lippert, K. M.; Hausmann, H.; Kotke, M.; Schreiner, P. R. J. Org. Chem. 2011, 76, 9764

²Procedure adapted from Yu, J.; RajanBabu, T. V.; Parquette, J. R. J. Am. Chem. Soc. 2008, 130, 7845.

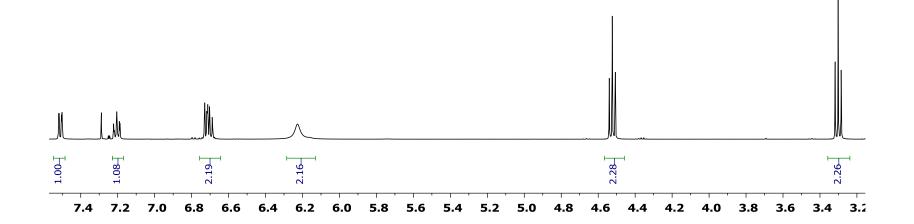
³ Wolińska, E. Tetrahedron: Asymmetry, 2014, 25, 1478

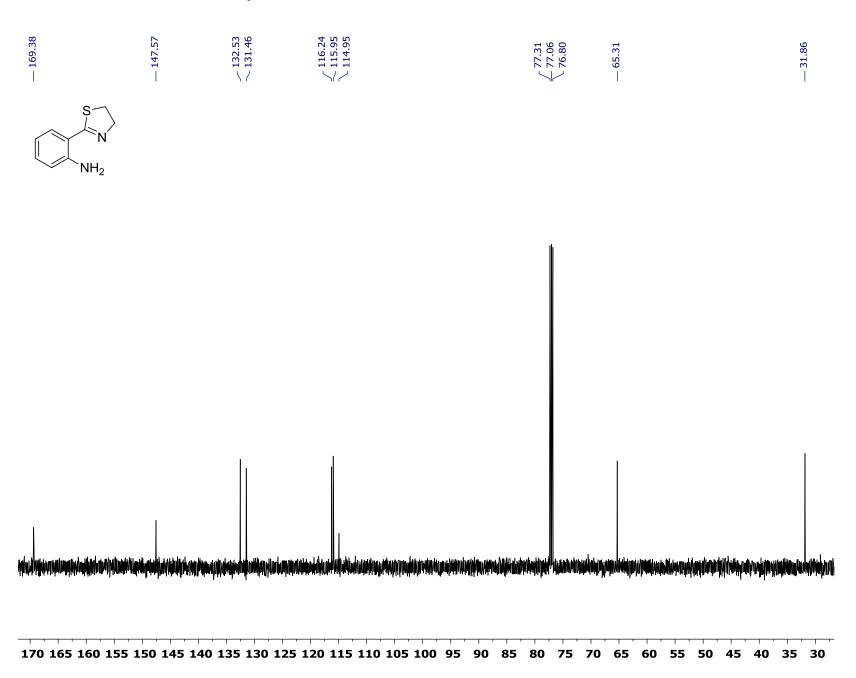
⁴ Synthesized analogously to Thérien, M.-É.; Guilbault, A.-A.; Legault, C.Y. Tetrahedron: Asymmetry, 2013, 24, 1193

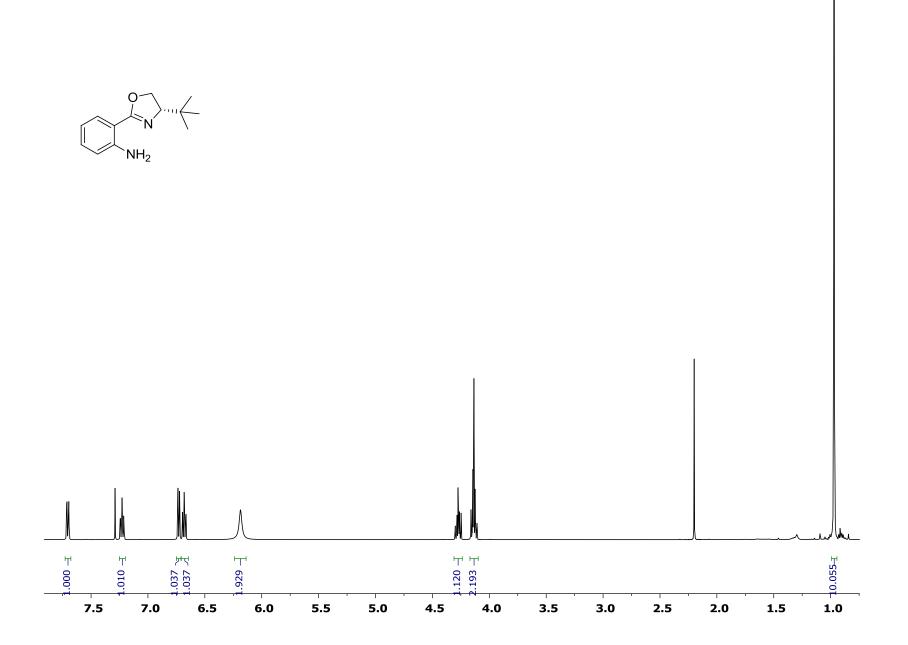

⁵ Boobalan, R.; Chen, C.; Lee, G.-H. Org. Biomol. Chem., 2012, 10, 1638. Detailed procedure is described for the synthesis starting from *R*-camphorquinone: White, J.D.; Wardrop, D.J.; Sundermann, K.F. Org. Synth. 2002, 79, 125 White, J.D.; Wardrop, D.J.; Sundermann, K.F. Org. Synth. 2002, 79, 130. Bosiak, M.J.; Krzemiński, M.P.; Jaisamkar, P.; Zaidlewicz, M. Tetrahedron: Asymmetry, 2008, 19, 956.

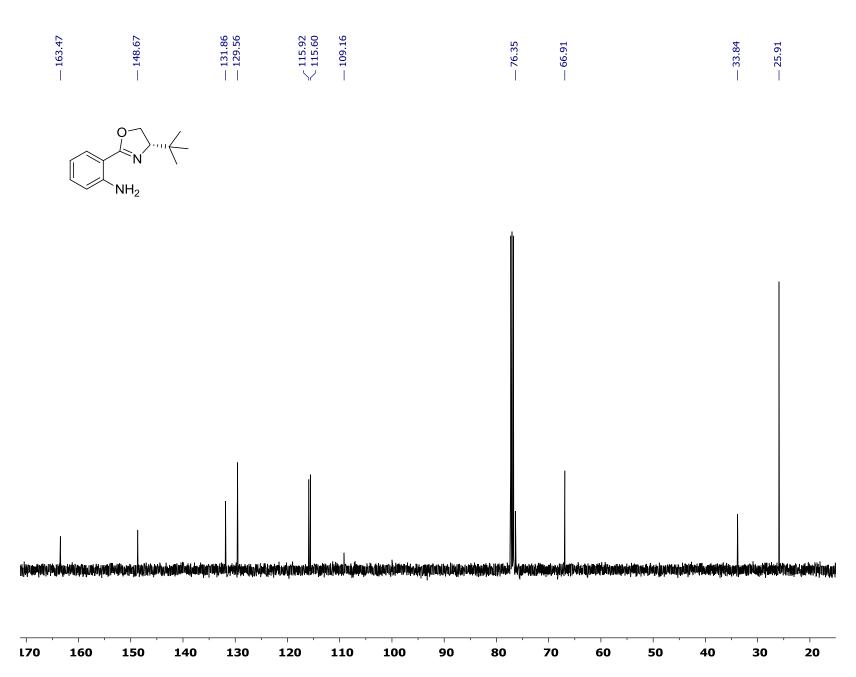

⁶ Li, X.; Zhou, B.; Zhang, J.; She, M.; An, S.; Ge, H.; Li, C.; Yin, B.; Li, J.; Shi, Z. Solvent-Free Tandem Synthesis of 2-Thiazolines and 2-Oxazolines Eur. J. Org. Chem. 2012, 1626

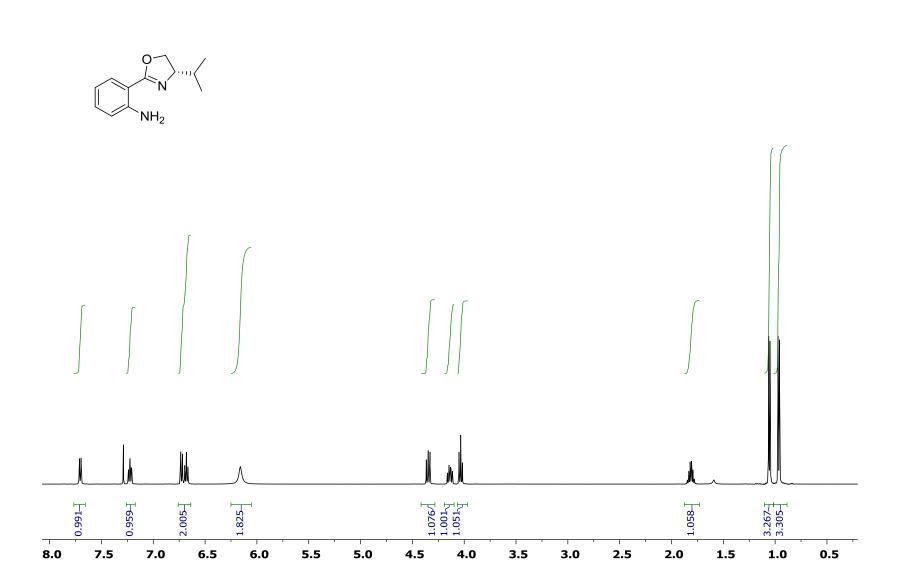
⁷ Procedure adapted from Zhao, Q.; Li, J.; Yan, X.; Yuan, H.; Qin, Z.; Fu, B. J. Heterocyclic Chem., 2011, 48, 729.

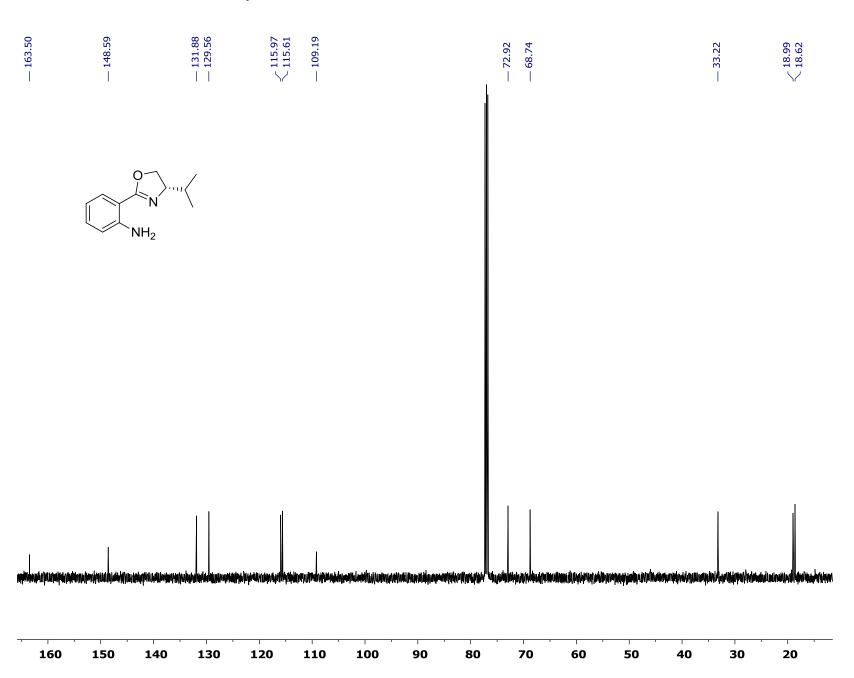

⁸ Callier-Dublanchet, A.-C.; Quiclet-Sire, B.; Zard, S. Z. Tetrahedron Lett., 36, 1995, 8791.

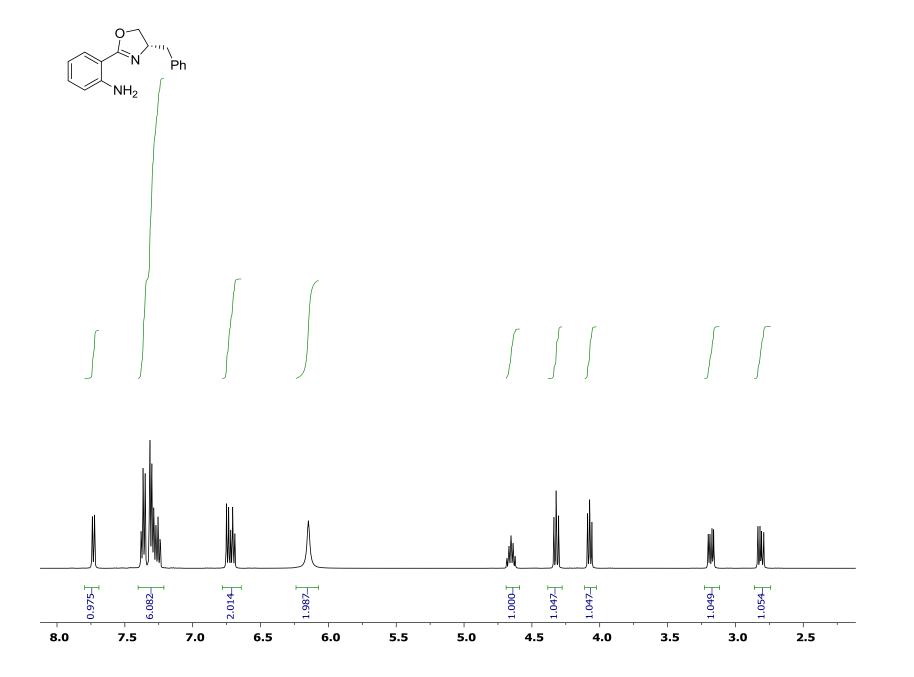

⁹ (a) Mukhina, O. A.; Kumar, N. N. B.; Arisco, T. M.; Valiulin, R. A.; Metzel, G. A.; Kutateladze, A. G. Angew. Chem., Int. Ed. 2011, 50, 9423. (b) Mukhina, O.A.; Kuznetsov, D.M.; Cowger, T.M.; Kutateladze, A.G. Angew. Chem. Int. Ed., 2015, 39, 11516.

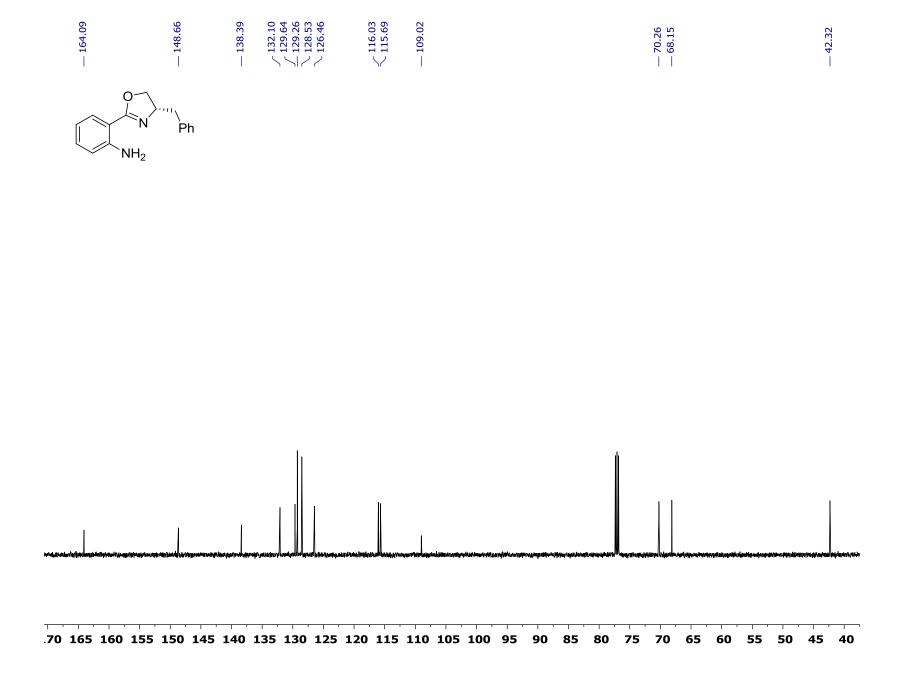


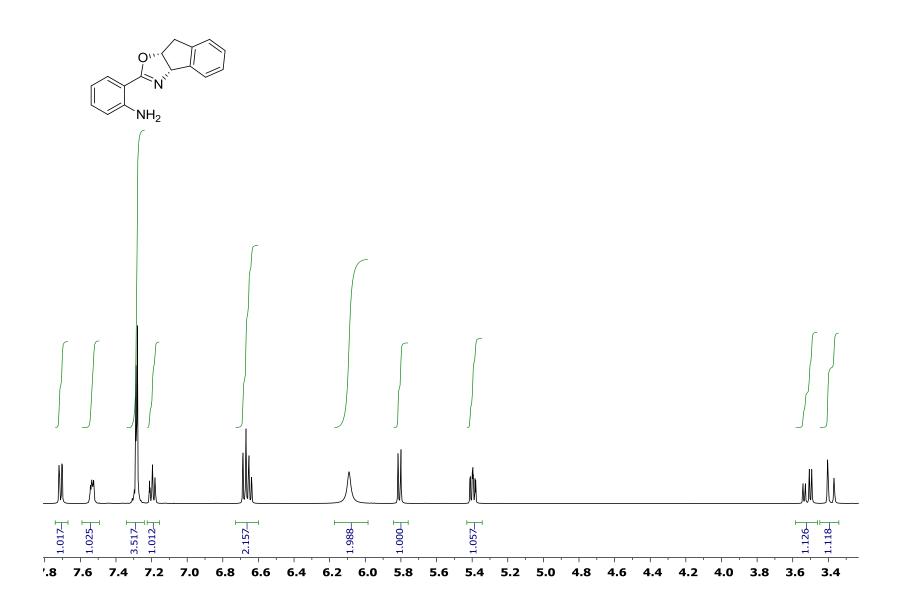


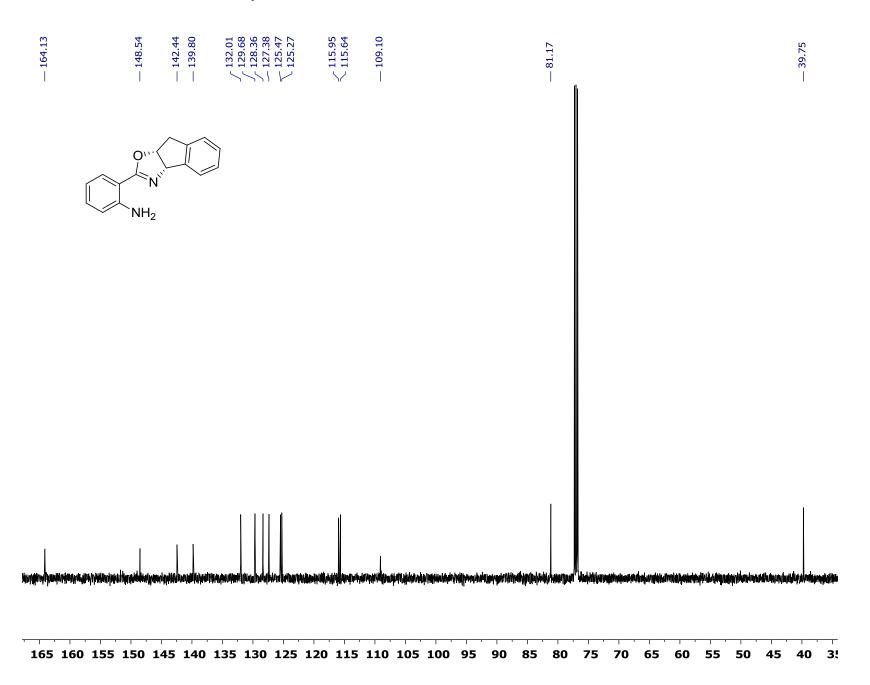


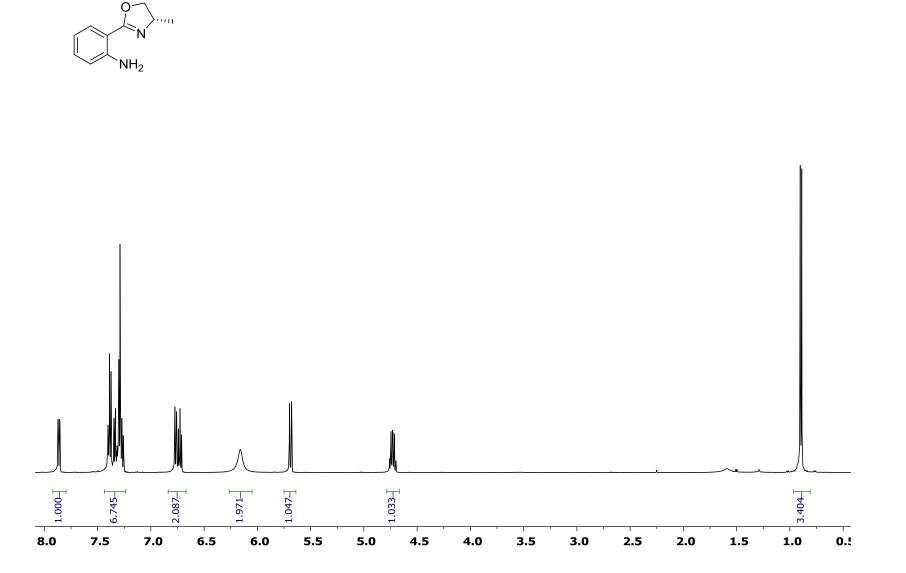


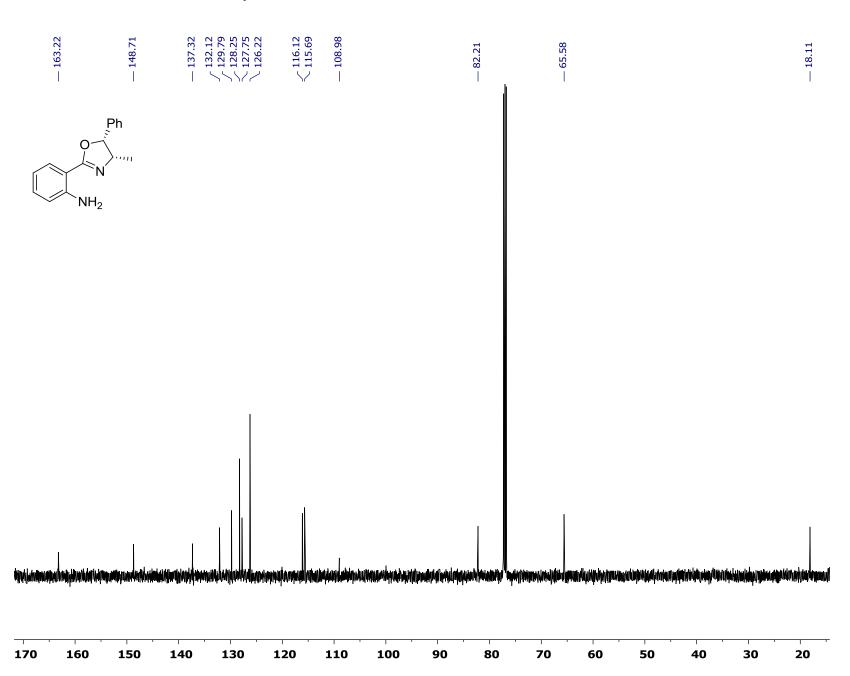


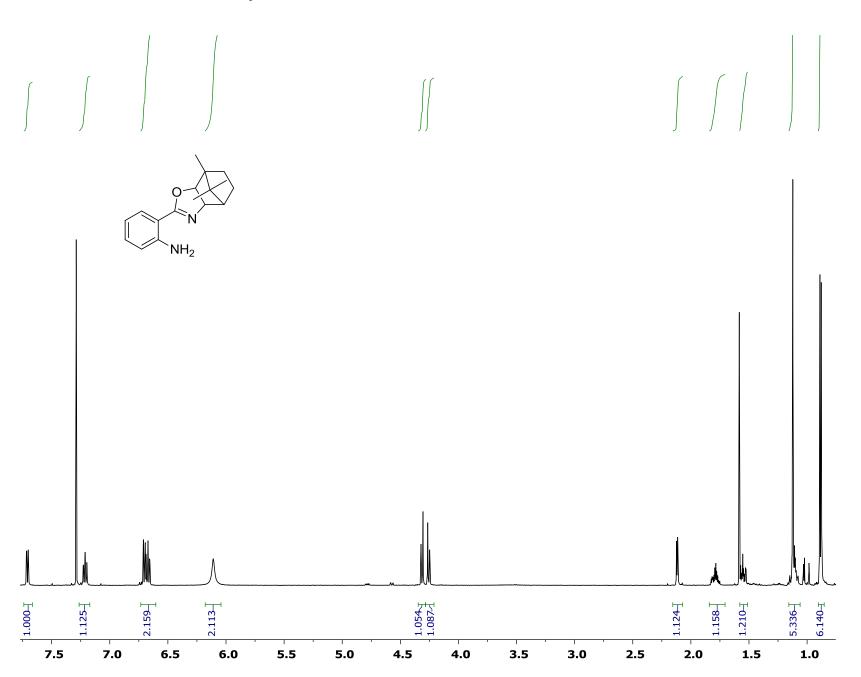


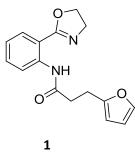


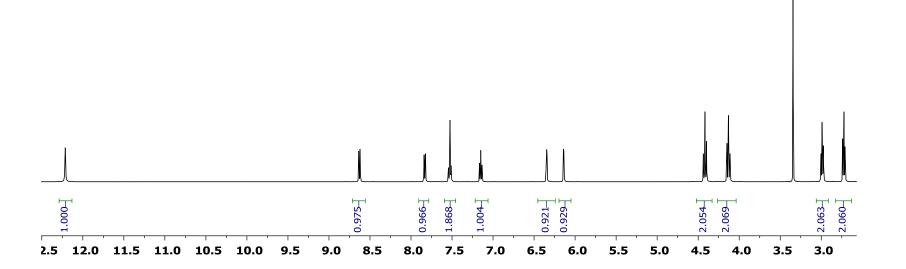


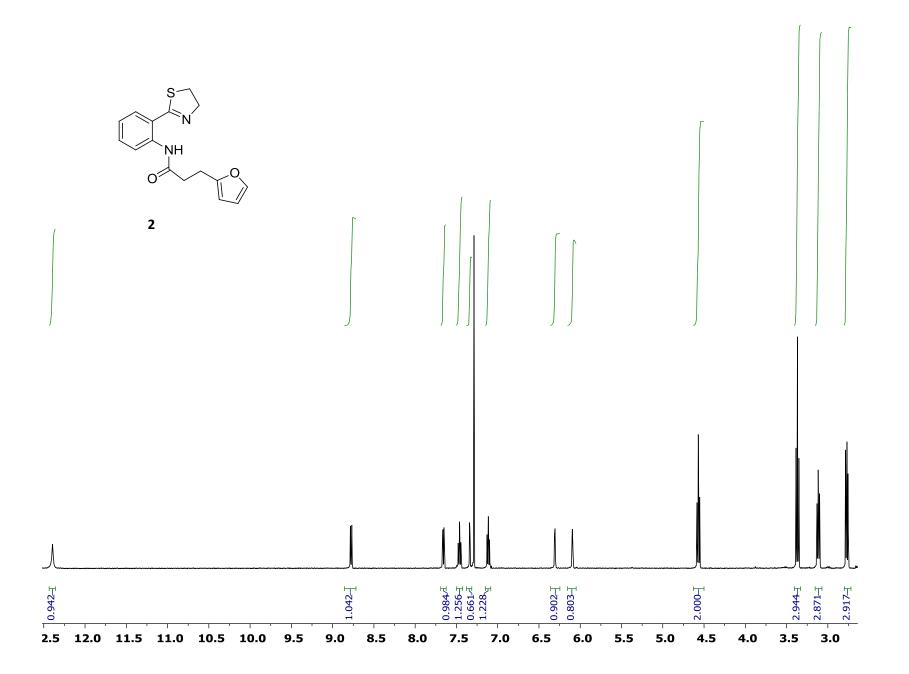


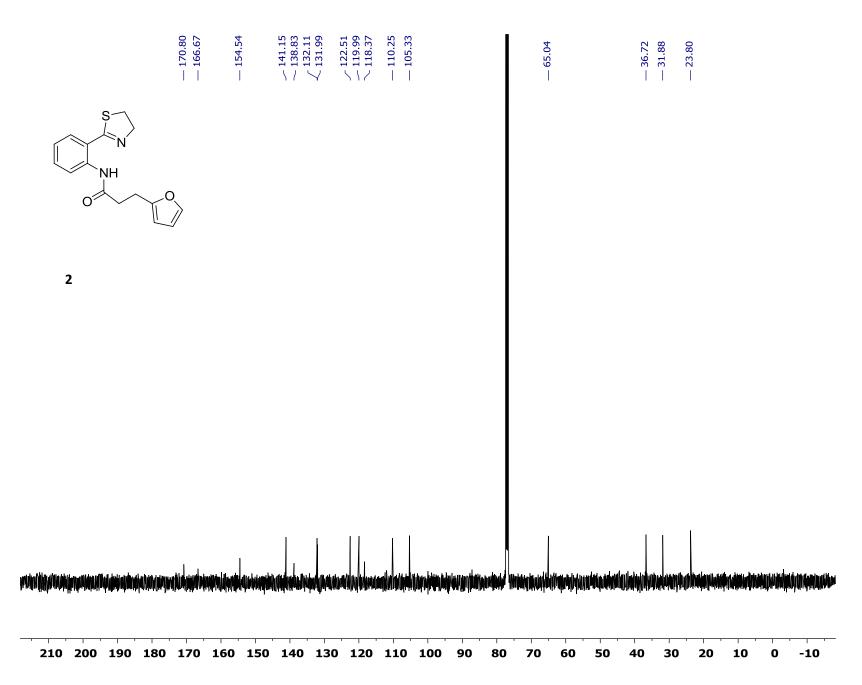


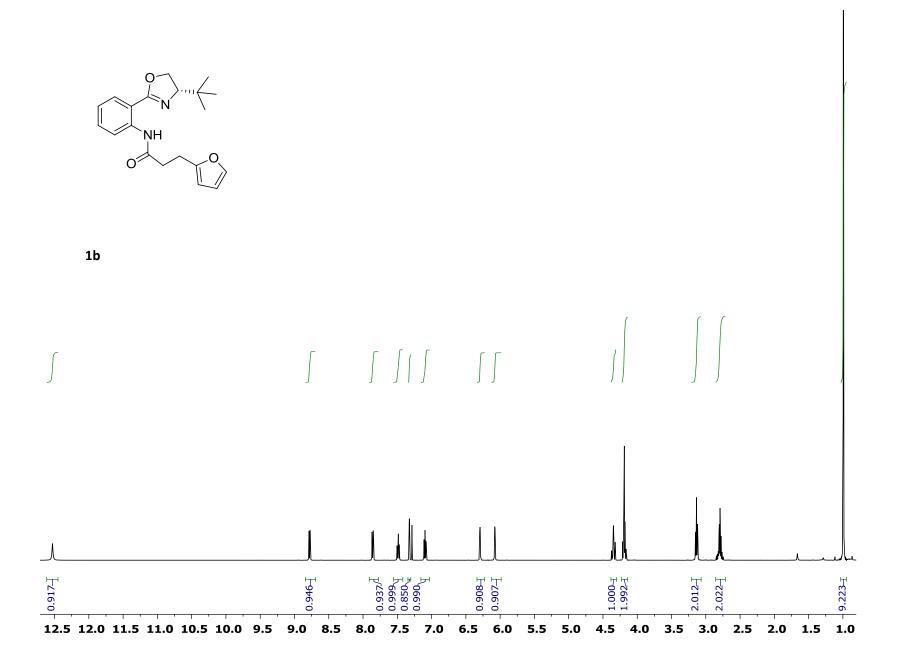


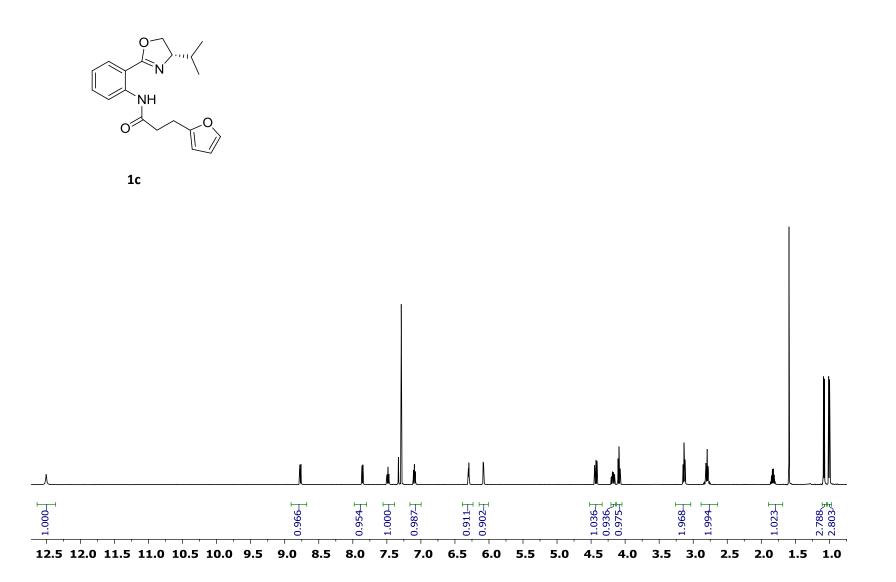

Ph

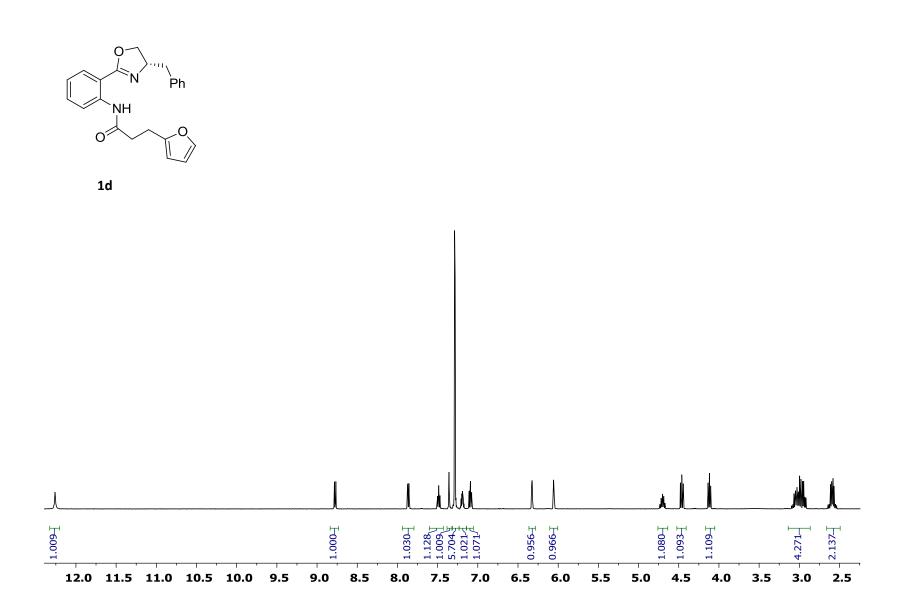


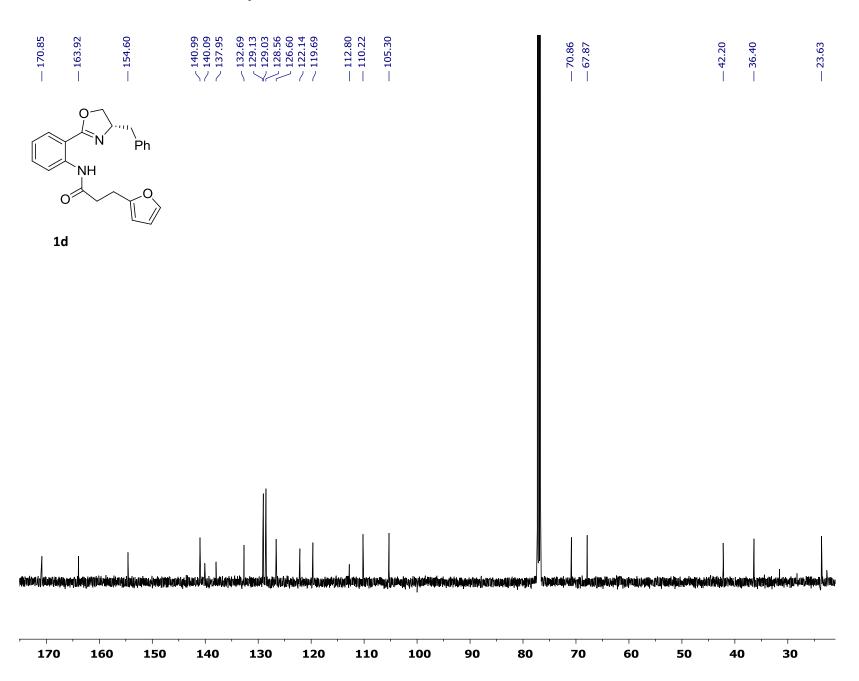


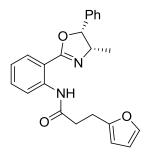

165.49		— 148.56		— 131.92 — 129.83	ر 115.95 115 56	— 109.68		— 89.37	77.27 77.01 76.76	L 76.50		<a>49.17<a>48.55<a>46.94		— 32.18	\sqrspace 26.02 \sqrspace 23.52 \sqrspace 18.70	— 11.44
		0														
		NH ₂														
								I								
kalahidadali dala	laijaijuniiiidoponia	n linnin la latarita	n Marailaidh (an thirmeo)	lieren der	lik bahan nim ting a distang	ininuinininininini	ilindigi bilaninganyi	n an think an the state of the	ayyahuyulaybaha	upilortolounipletin	hadaya yilaya da araya ku	is jungs of the state of the	(*******	nalaya karana	Hantory beidalions fills for	dayariy arthropolytic
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

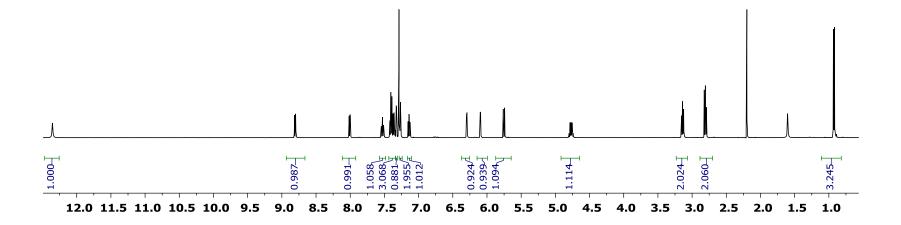


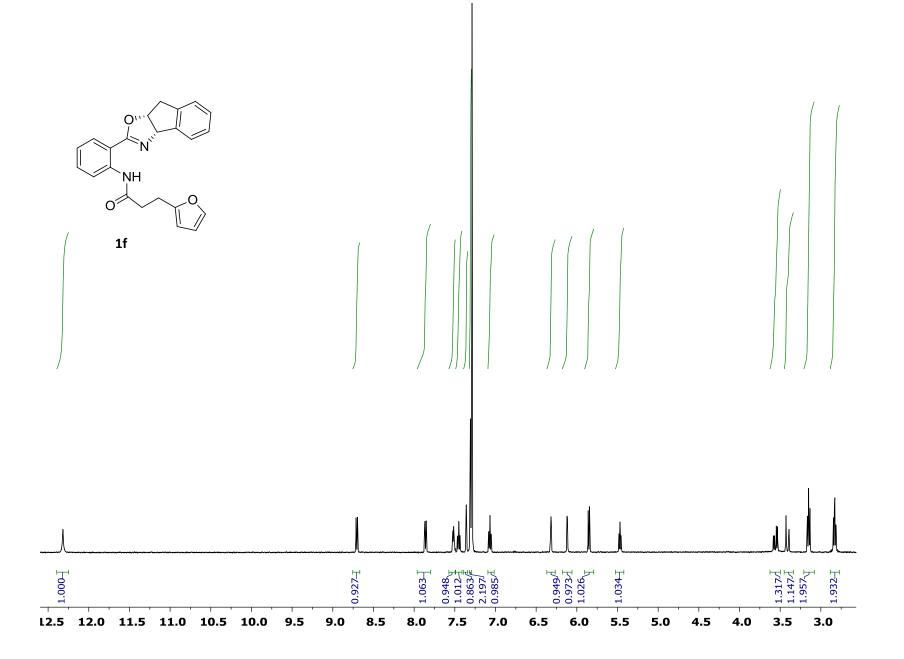

	-	/	— 141.94 — 139.77	— 132.95 — 129.45	— 122.85 — 119.41	— 113.10 — 110.85	— 105.82			— 66.78	— 54.78		— 36.31		— 23.58
	NH O														
antication of the state of the	han din politika di kata di kat	n sant (n f af sant sant)	niki syakatiki katikat	direllariteiretrateiletre		up a faith a fa	۱۹۹۹ (۱۹۹۹) و اور اور اور اور اور اور اور اور اور ا	Managaran Managaran	New Part (Mart) Mart 10	nil for hilling and the state of the state o	induntation	is not with the first state of the	har Anaratanan	(/kajar)/atanakya	ul virainat
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	2(

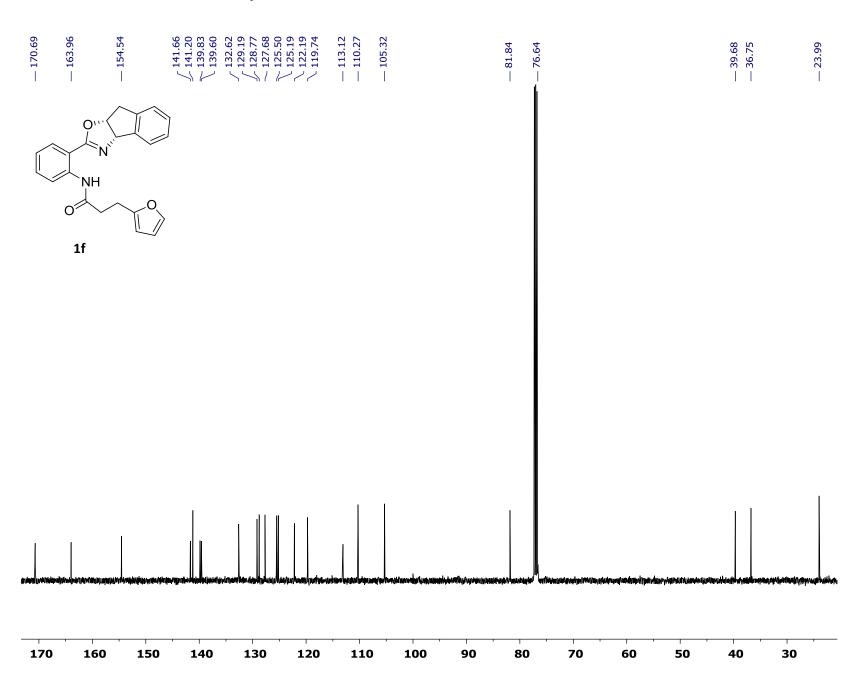


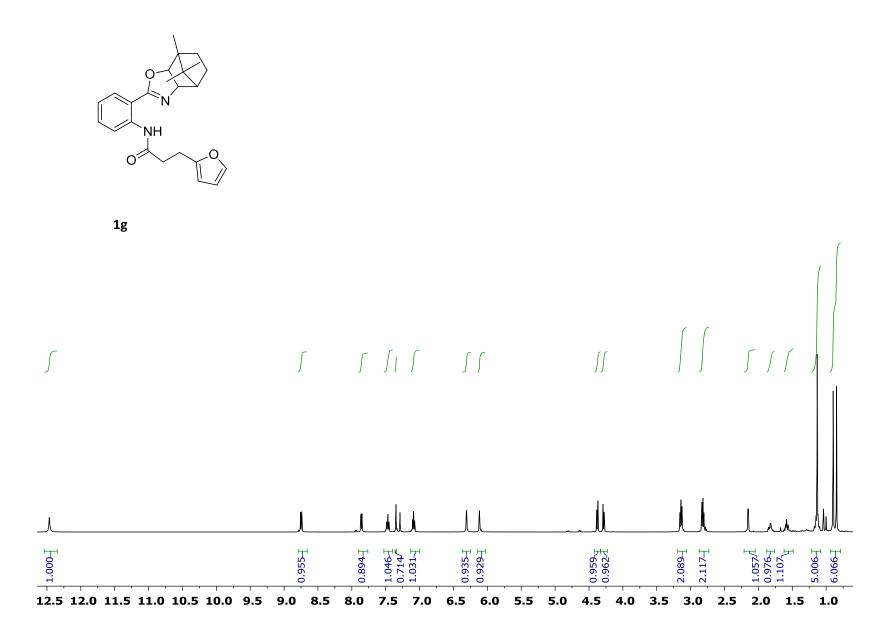


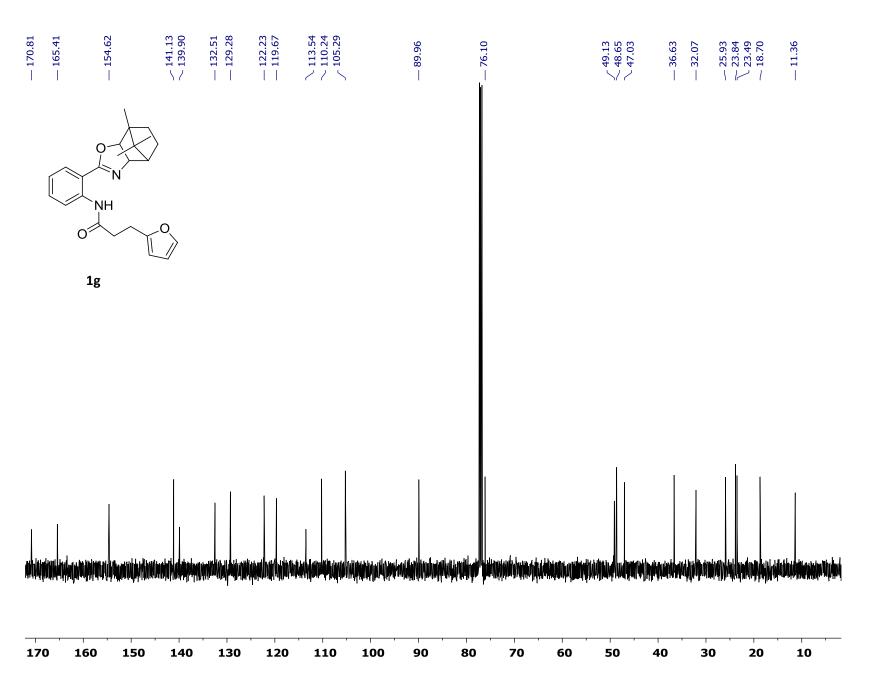

— 170.72	— 163.50	10.401	✓ 141.13 	— 132.54 — 129.09	— 122.18 — 119.63	— 112.92 — 110.18	— 105.24		77.29 77.03 76.13	— 67.41		— 36.74 — 33.86	
			>										
1b													
Lancet-scotteragespaceture						urständeter vor betoge		~~gefigt=25~24~44~44~44~44			ni jaka nja stranje st		
170	160	150	140	130	120	110	100	90	80	70	60 50	40 3	0 20

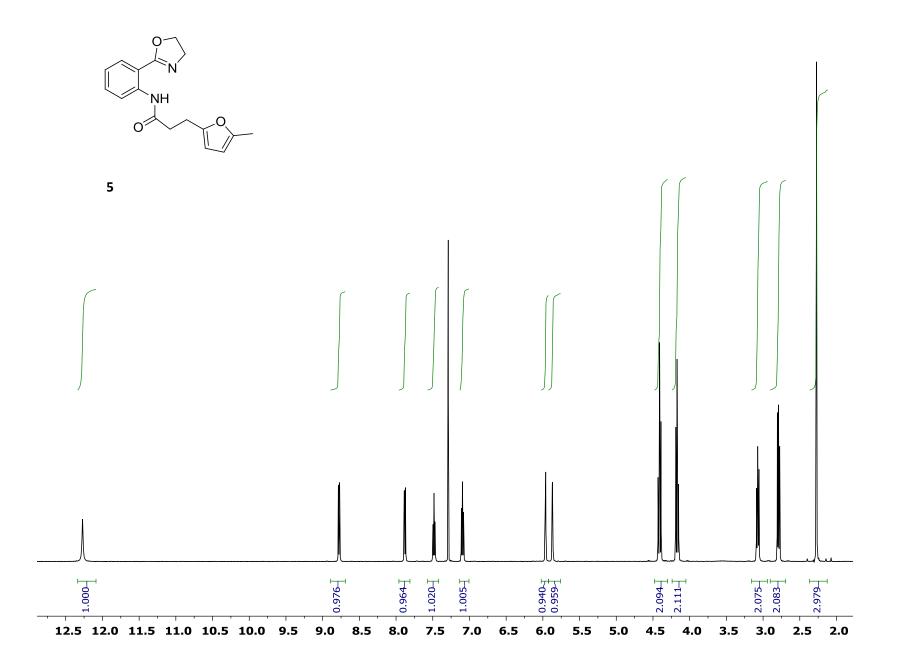

— 170.72	— 163.52		✓ 141.11✓ 140.02	— 132.52 — 129.07	— 122.17 — 119.67	- 113.00 - 110.17	— 105.22			— 72.76 — 69.40			— 36.71 33_21		- 23.93 $< \frac{18.85}{18.80}$
)													
	0														
	1c														
			I	1 1	1	I	1			1.1				l	1 1
مان الغانية. من الغانية ال	un e meriada de la se da s	a serie, havid held to be a sec	والمستقبل المعارية المنافر	in the summer	un and the last last last		a di kata da sa da sa	ild.allock.co.handaar	المنابق	the sector is a sector in the sector is the	anda amatad da mila da mi	andhar Malikensan	المداور المراور ومراو	فاجار والمعانية والمراور	g.al.his.dis/lice/it.e.it
		Vitri tuli i i i i i i i i i i i i i i i i i i		h. u. h	·····	YWWWWWWW	····			itilahiyinidadir.					
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20

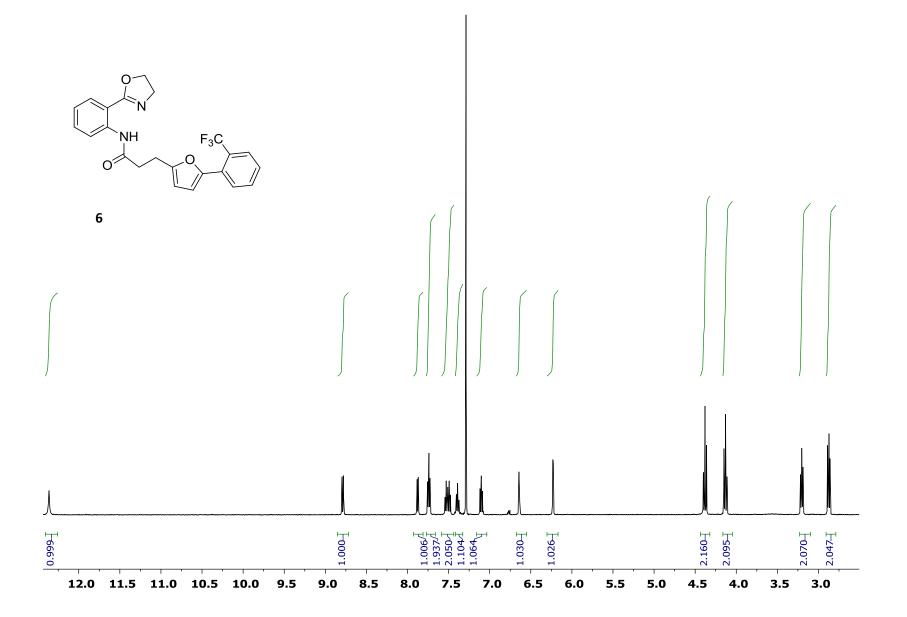


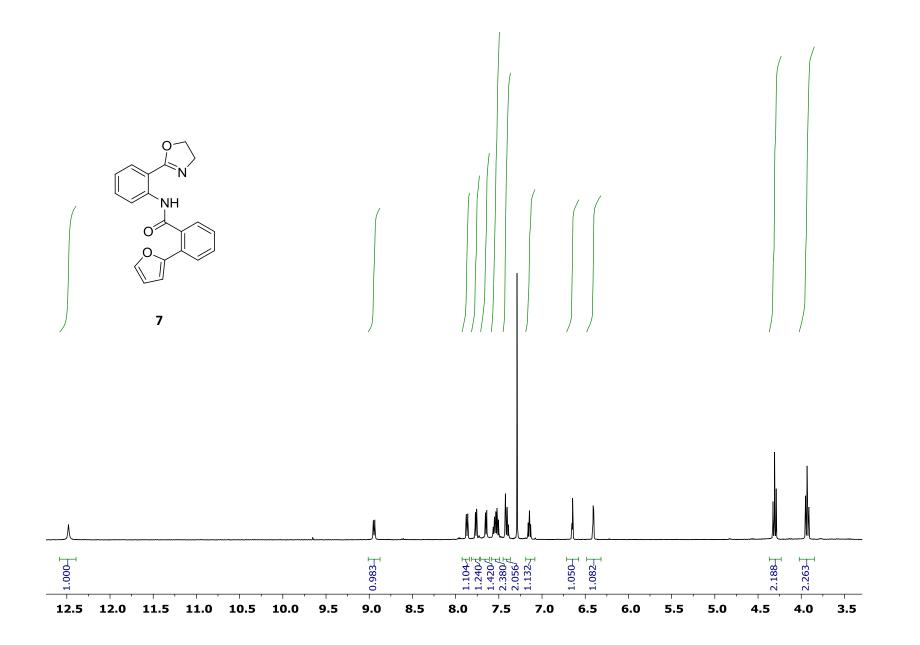


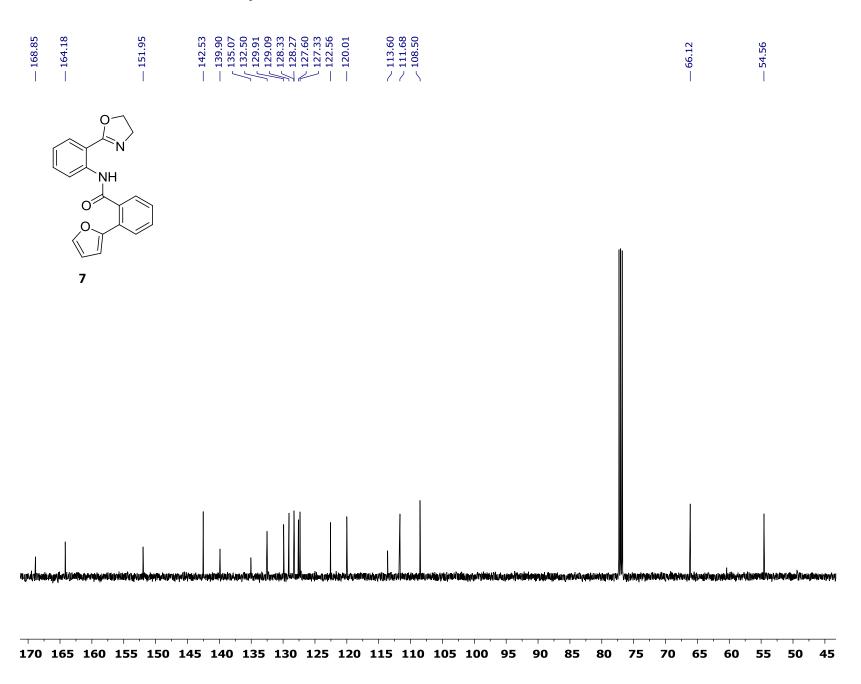


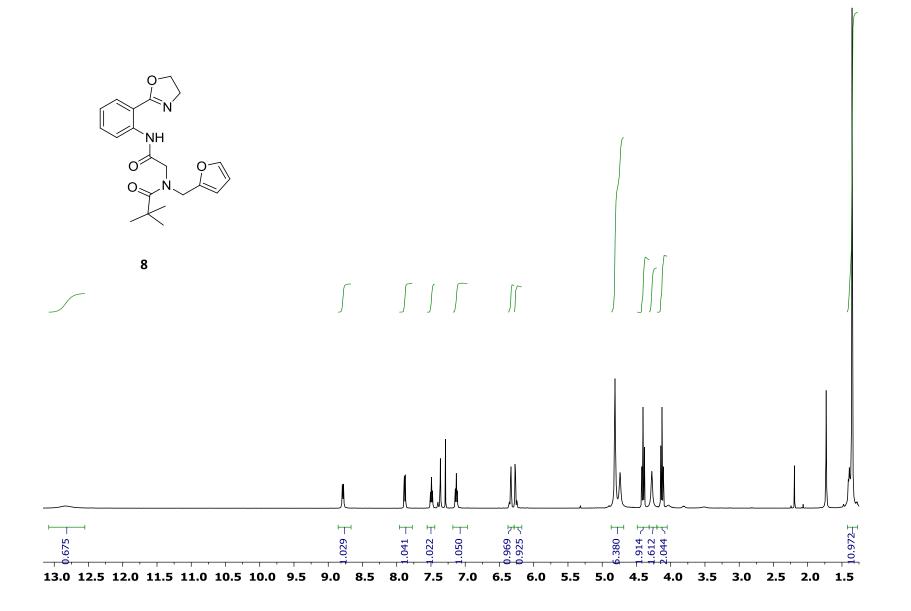



— 170.79	— 163.11		-141.12 -140.10 -136.46 132.71 129.26 128.40 128.40	\sim 128.09 \sim 126.14 - 122.32 - 119.85	— 112.91 — 110.19 — 105.27	99.98 —		— 82.70	65.43			80-00 	— 23.84 — 17.91
Í		Ph											
	NH O 1e		>										
	10												
pagnial pyreficier	i dagi kati da da gana da da	nadioper his investigations	individual publicity of the second	in	glagaroon of long (stable) as	numuhan	ommunununuuu	harter, einigent	unite/no/ortini.crutini.orgi	n di kapali pana nakanak	un vulistadigenetasysta	n yele ya aya aya aya aya aya aya aya aya aya	Virainidania (m. 1991) Virainidania (m. 1991)
170	160	0 150	140 130	120	110	100	90	80	70	60 5	50 40	30	20

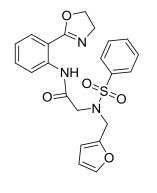


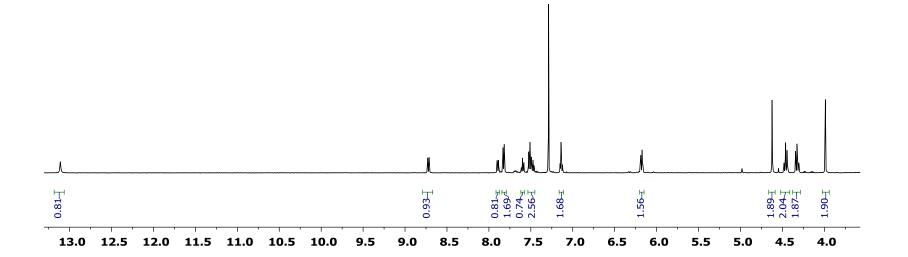


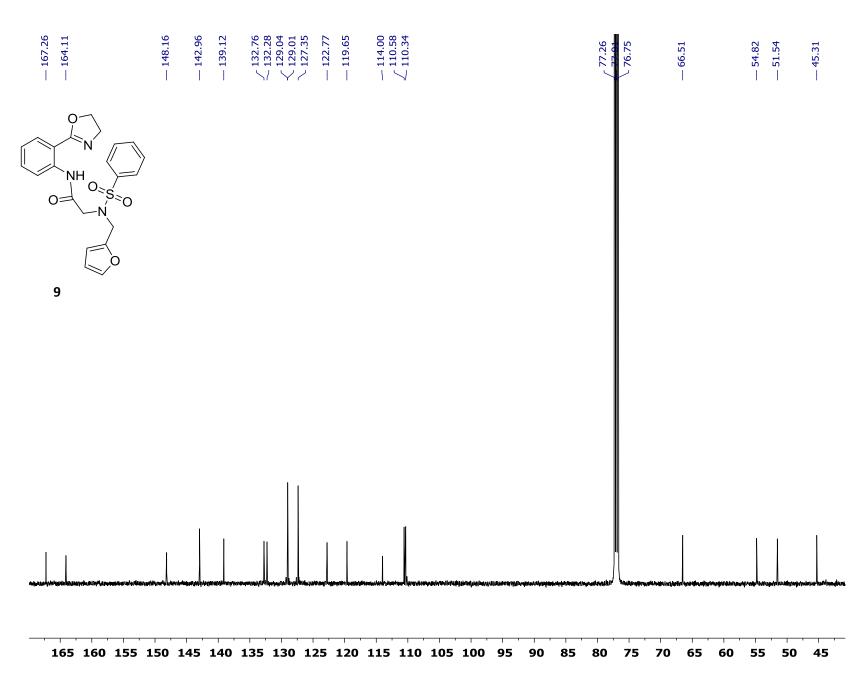


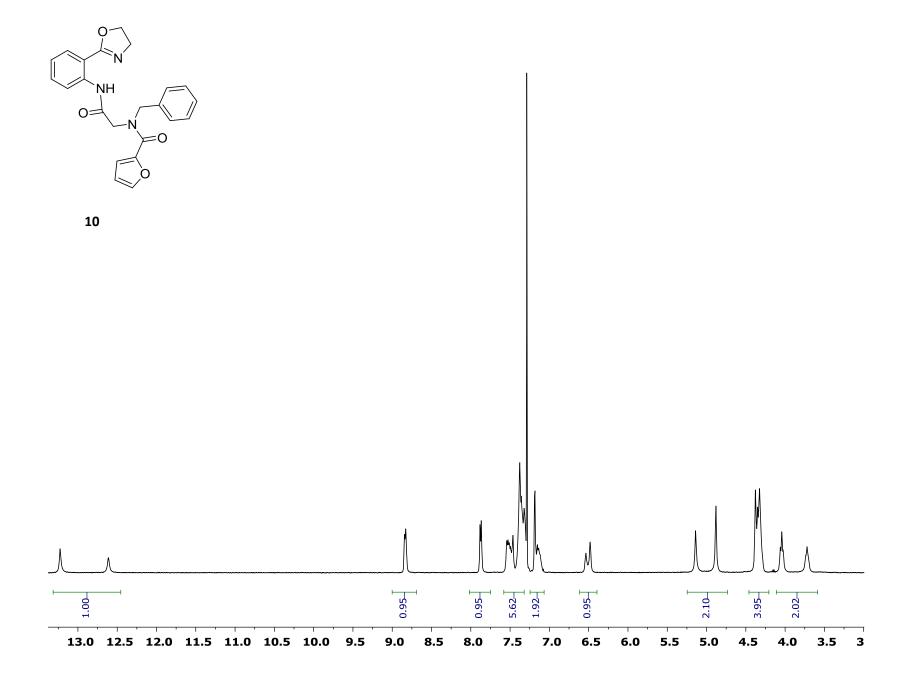

— 170.98 — 164.68		152.75 150.58	— 139.89	— 132.54 — 129.13	— 122.17 — 119.72	-113.01	✓ 105.86			— 66.16	— 54.75	— 36.84		— 23.90	— 13.51
0 5		L _o	-												
						I								1	
Nu va vera da se	hilingaya ki ki ka ki ka	(rikiterperfestation)	nadiju krujevali	işçil iştirler yek başı	unipart (the stateme	nit (lautanit (lati	ilijati minininininini	(jaholumanika)inin anakanaka	iladorpointer lindu	landruikinnalleid halituile	alogita, talquid (talquid)	fortigen generation and the state of the	goriality and the state	h (low in the low of t	lulu analan
170	160	150	140	130	120	110	100	90	80	70	60	50 40	30	20	10

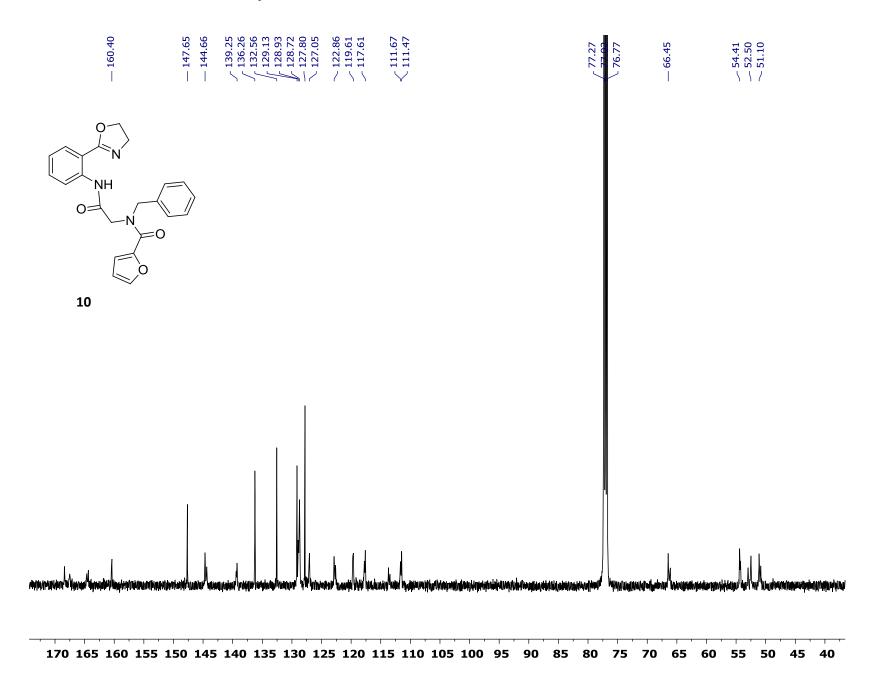
— 170.77 — 164.64	— 155.37 — 149.08	- 139.85 - 132.53 - 131.62 - 129.42 129.13 127.18 126.44	\ 122.23 \ 119.71 \ 113.07 \ 110.91 \ 10.772		(77.26 77.01 76.76	66.16	 — 36.59	— 31.94 — 24.03
O NI	N H F ₃	,C						
6								
						1		
	150	140 130	120 110 10	0 90	80 7	70 60	 40	

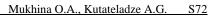


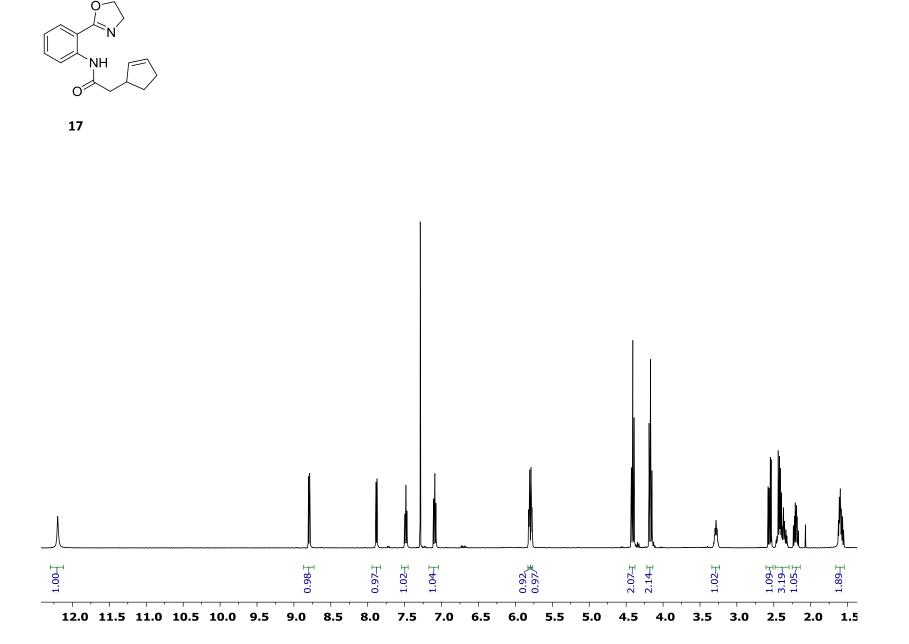


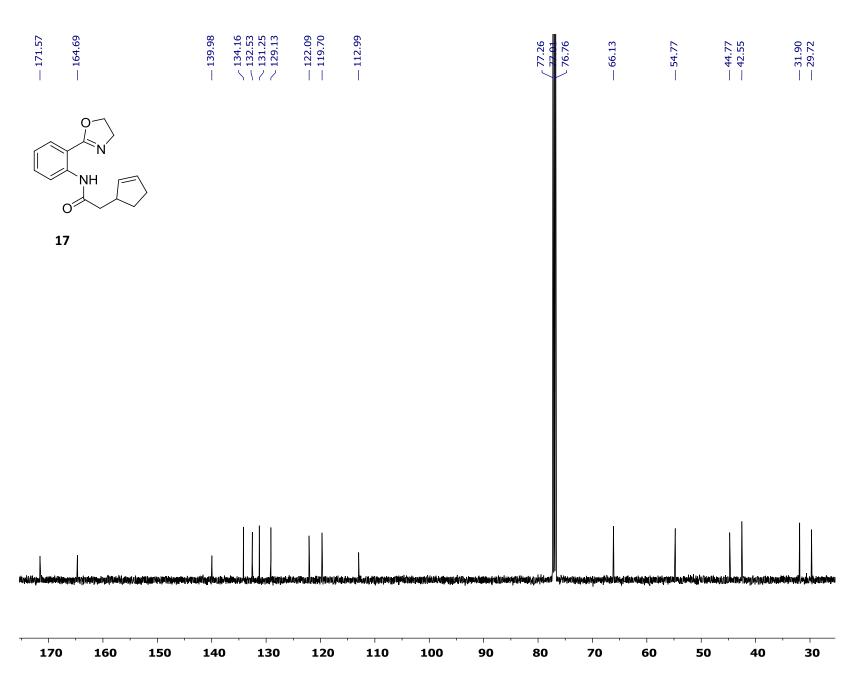

		-, <u>,</u>		· · ·	120	110	100	90	80	70	60	50	40	30
in the second second	เลทียาเลยุนี้ (ครามเมืองสุดที่สุดทุกของ	ang		un and an and an	and a second second		ะประหว่างการเขาจาก	Minus de antes de activita	utionskildsport Mittaniserie		alian and a low for the second	ningt for the state of the stat	anguna kenangunan	
						I								
	8													
		0												
	O N NH													
	— 168.27 — 164.49	— 150.59	— 142.41 — 139.23	— 132.54 — 129.13	— 122.76 — 119.70				$\frac{77.28}{77.02}$	— 66.40		45.52	— 39.14	$< \frac{28.72}{28.46}$
	\sim +													

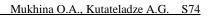


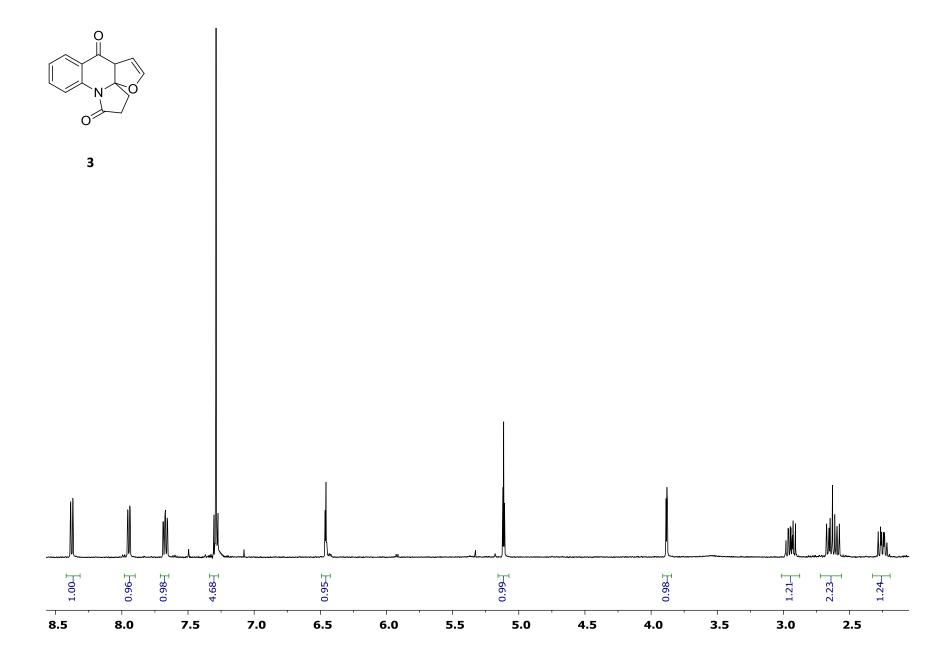


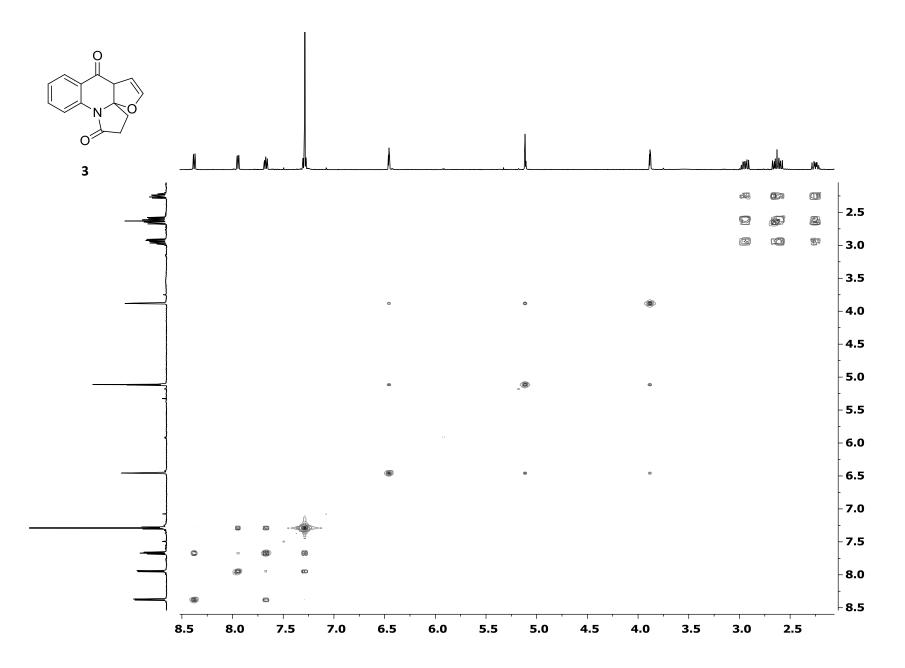

9

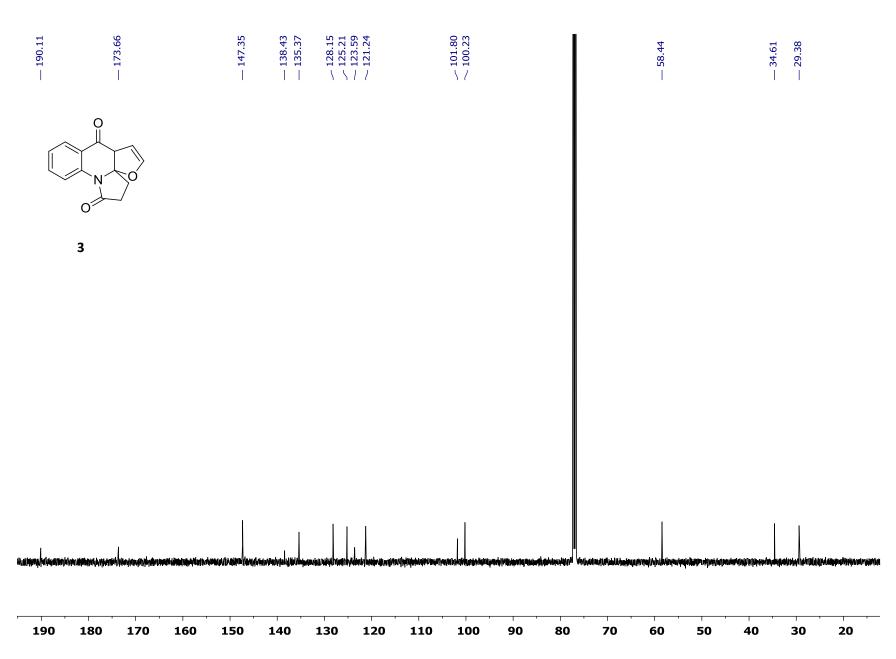


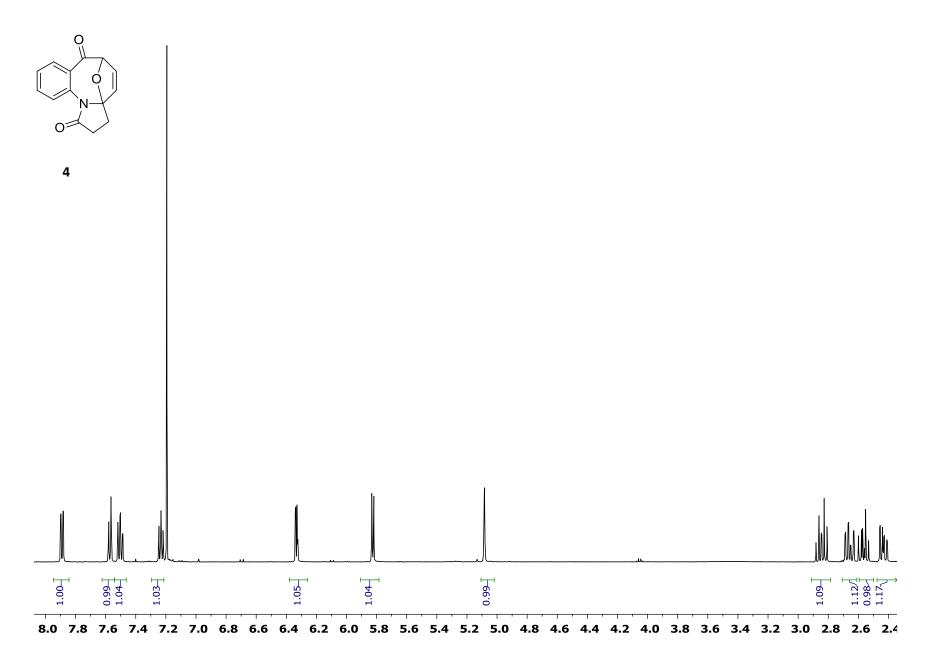


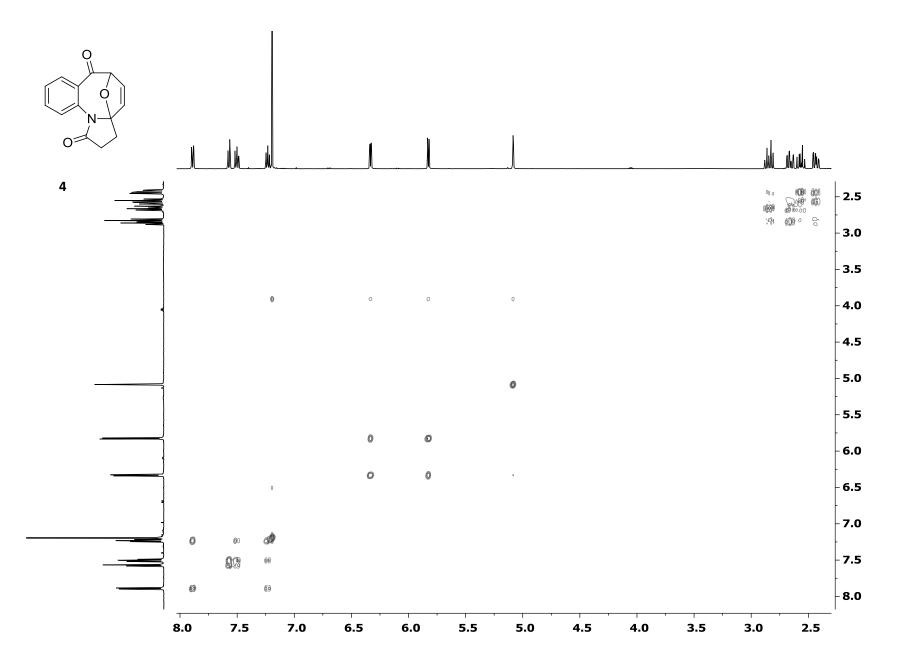


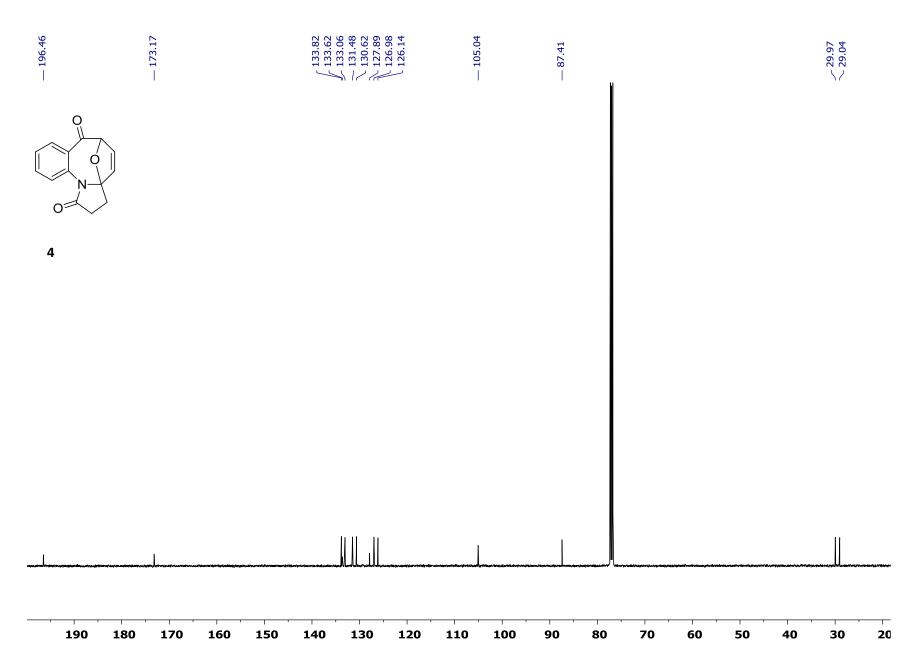


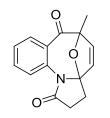


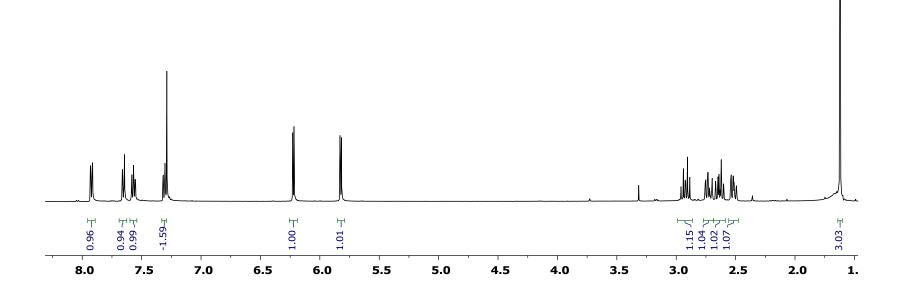


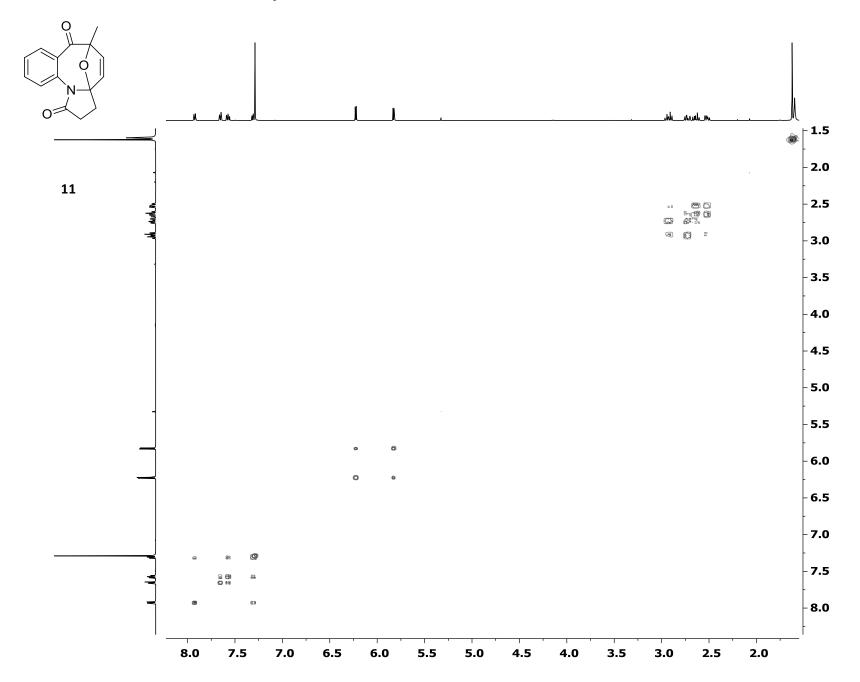


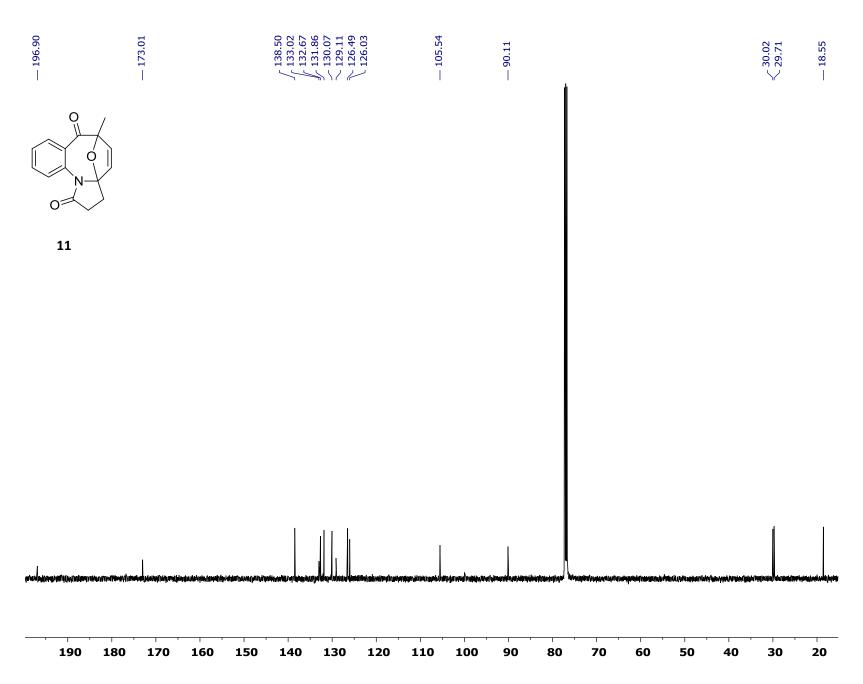




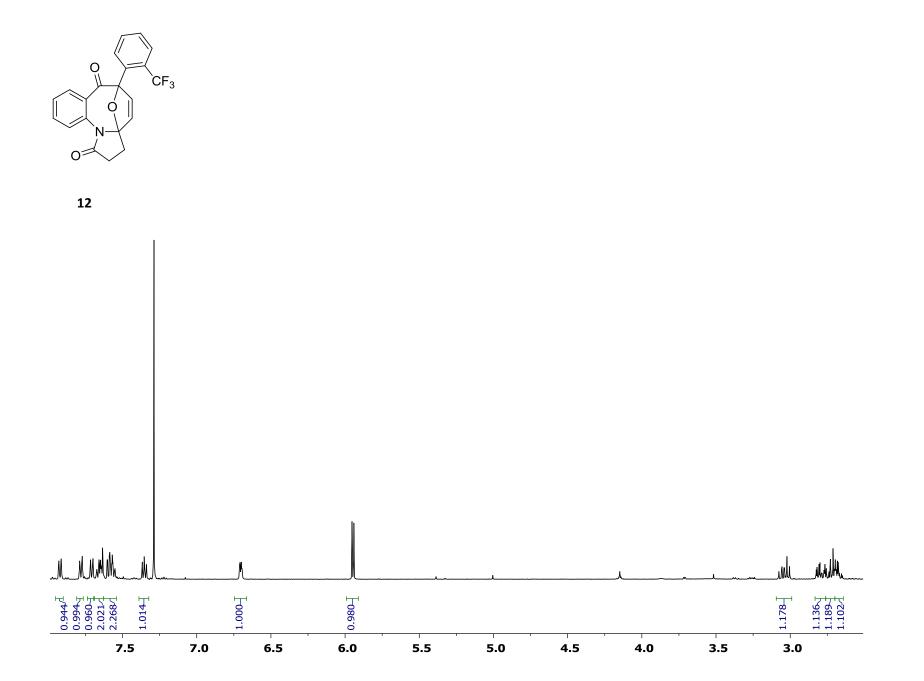


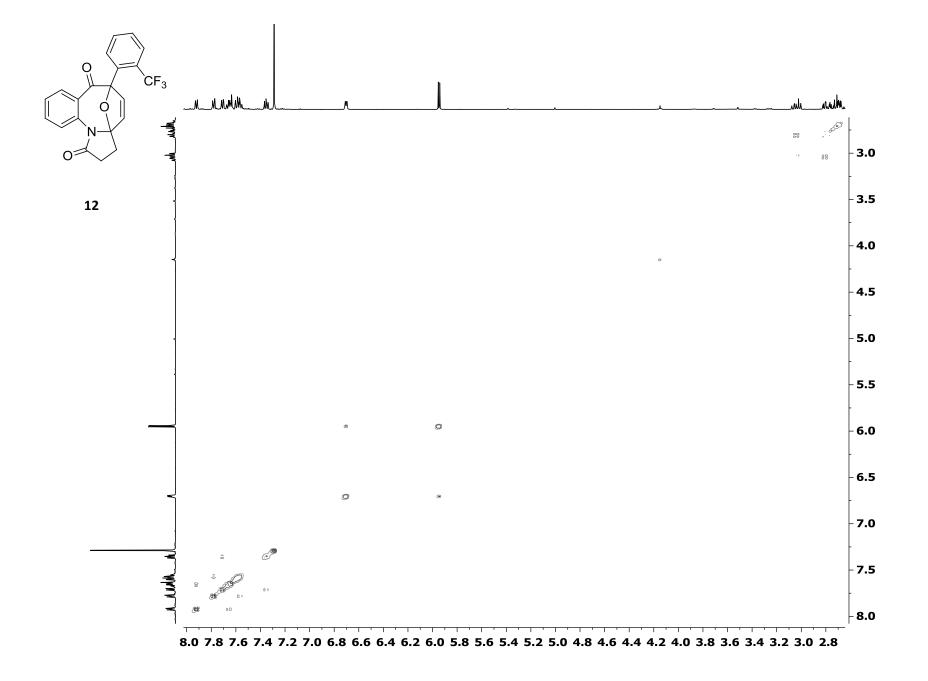


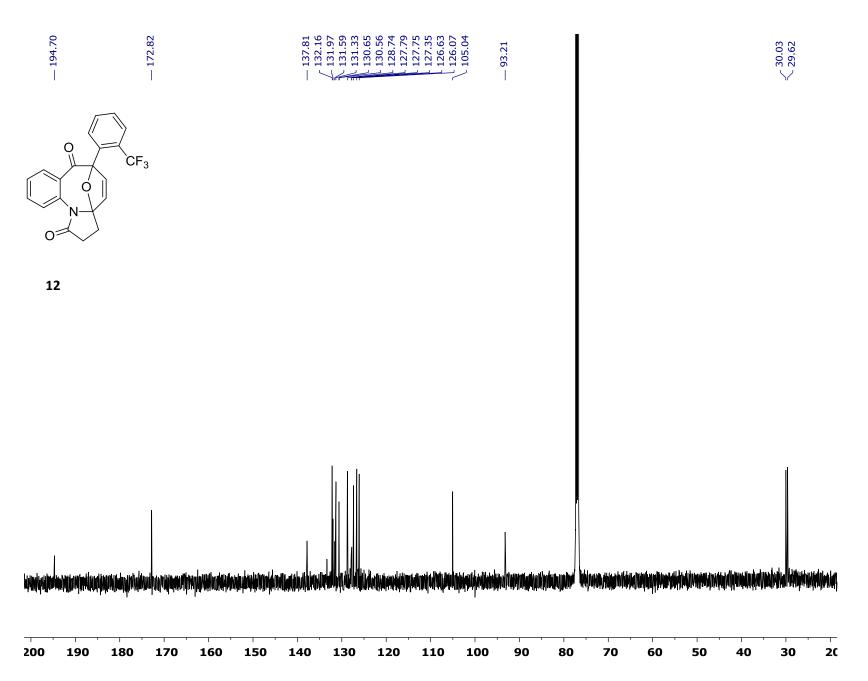


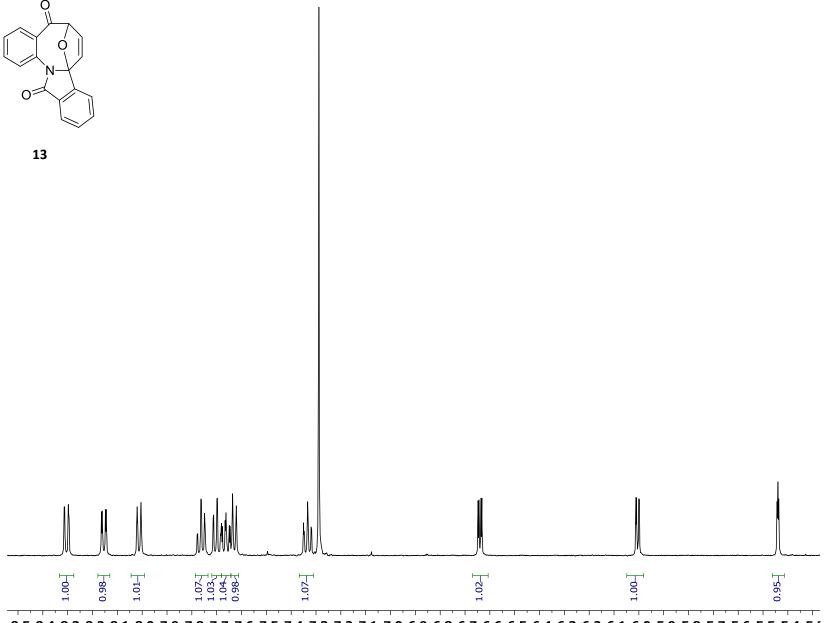


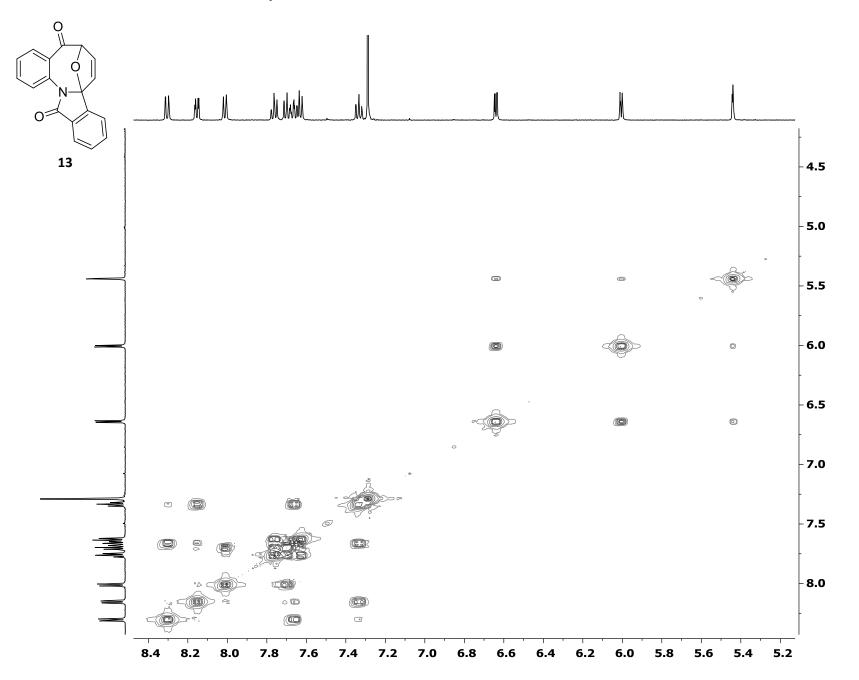


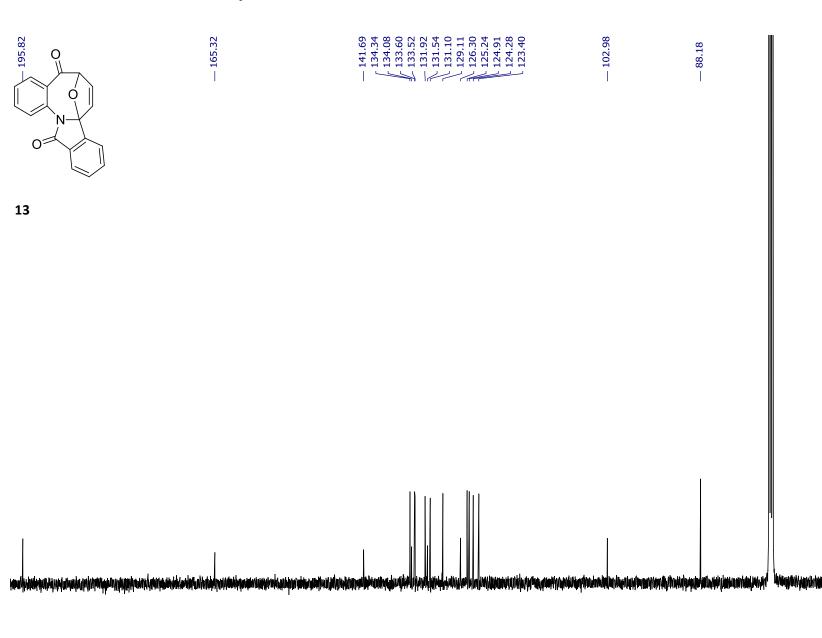


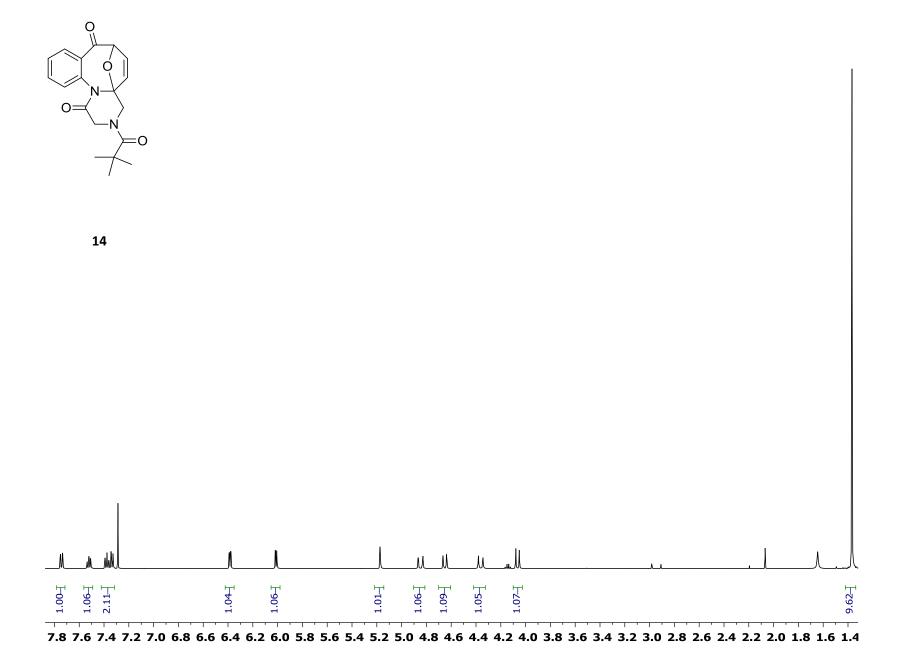


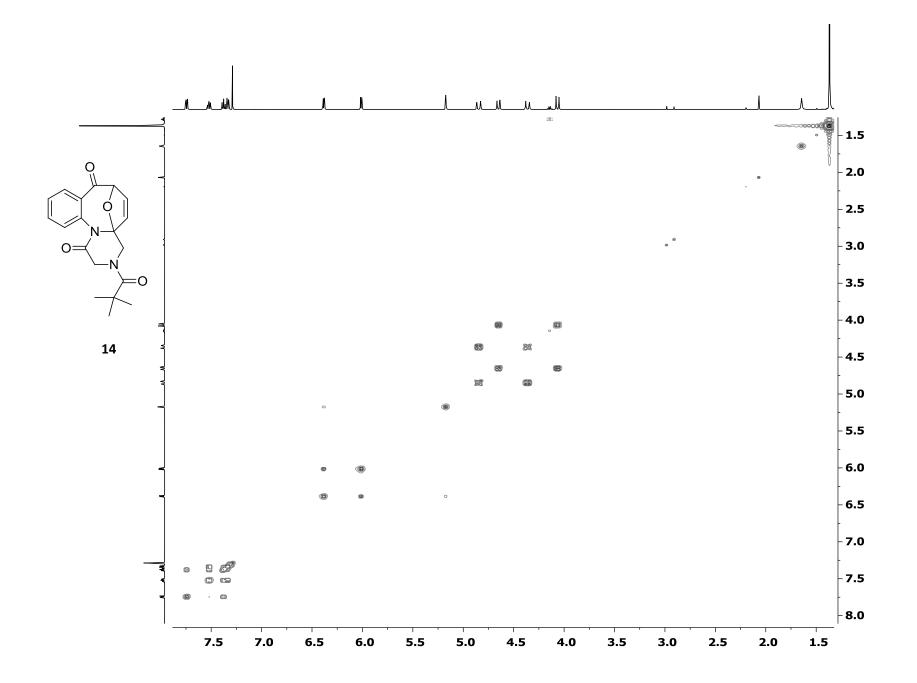


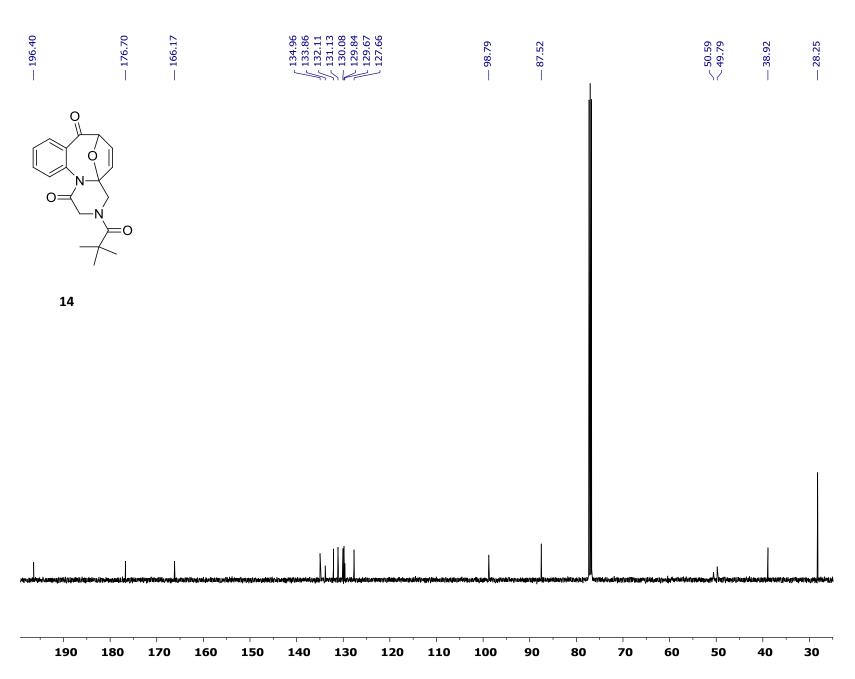


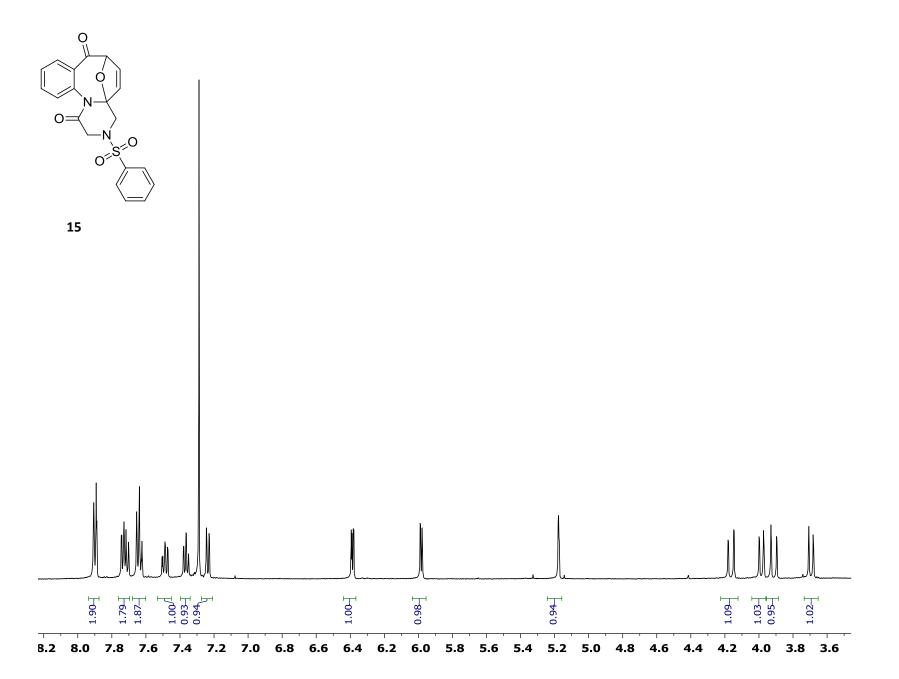


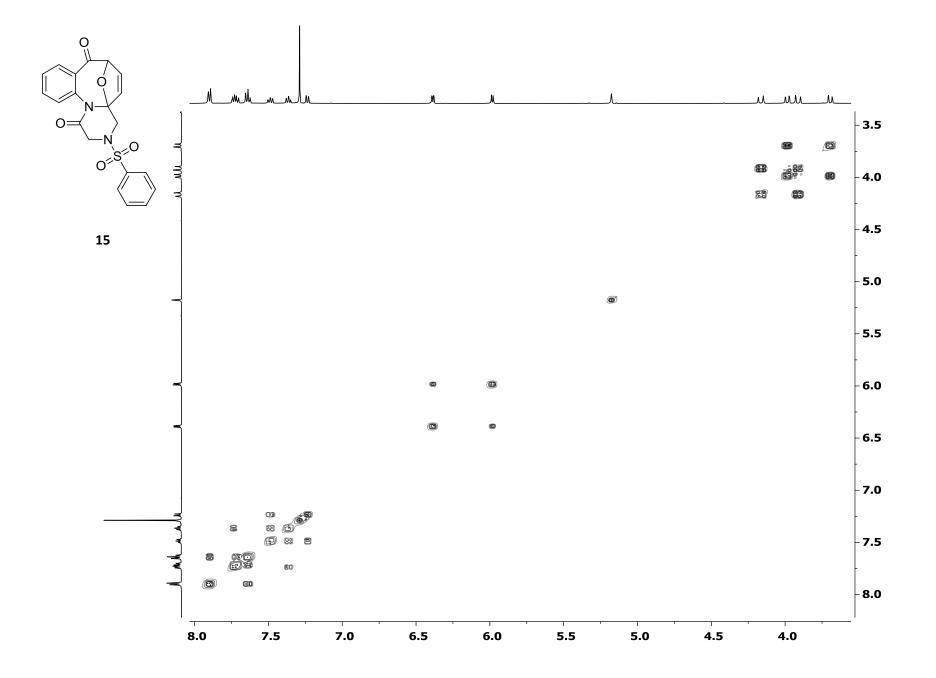


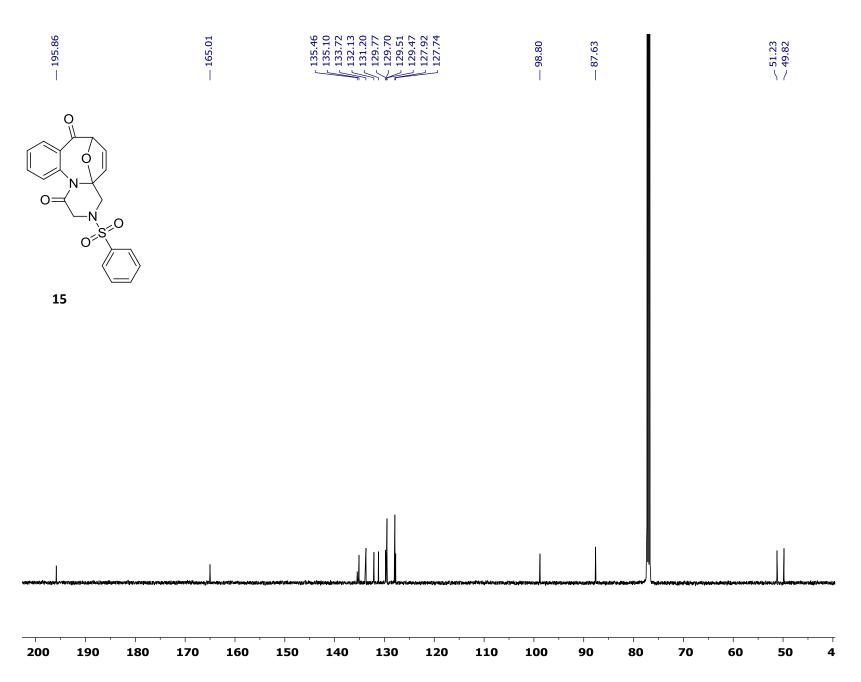


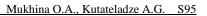

8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3

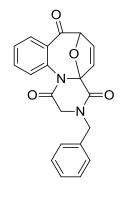


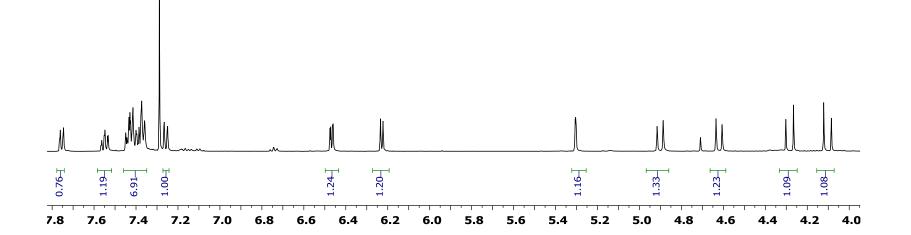


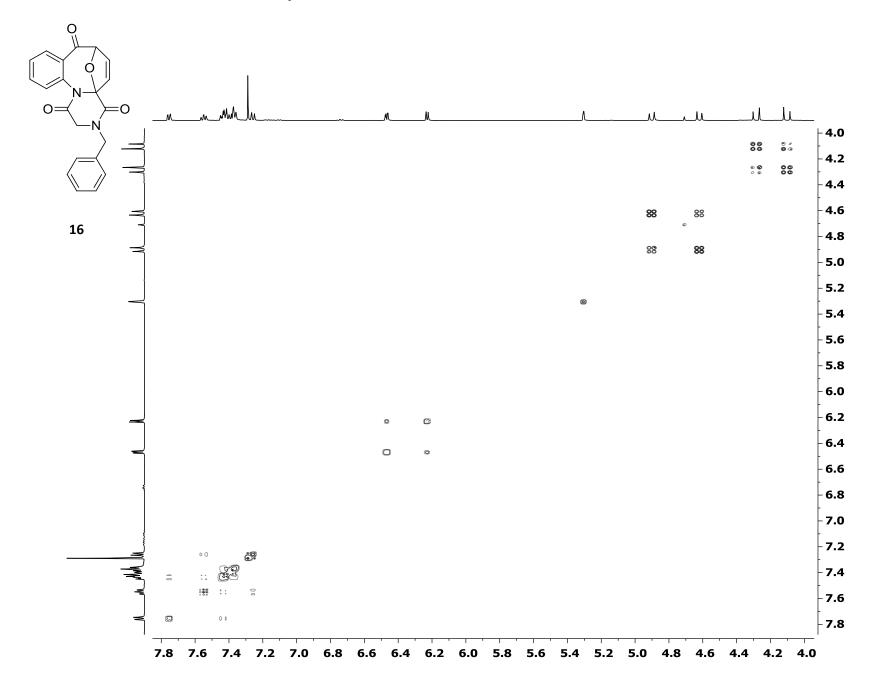


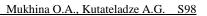


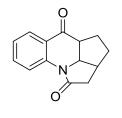


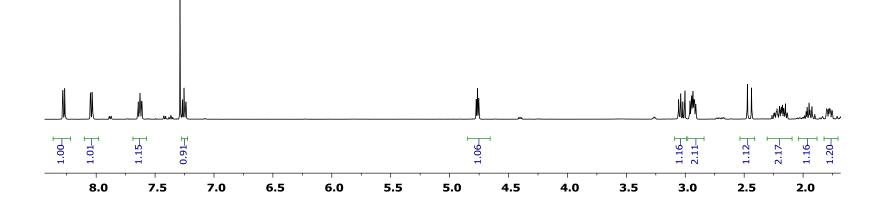


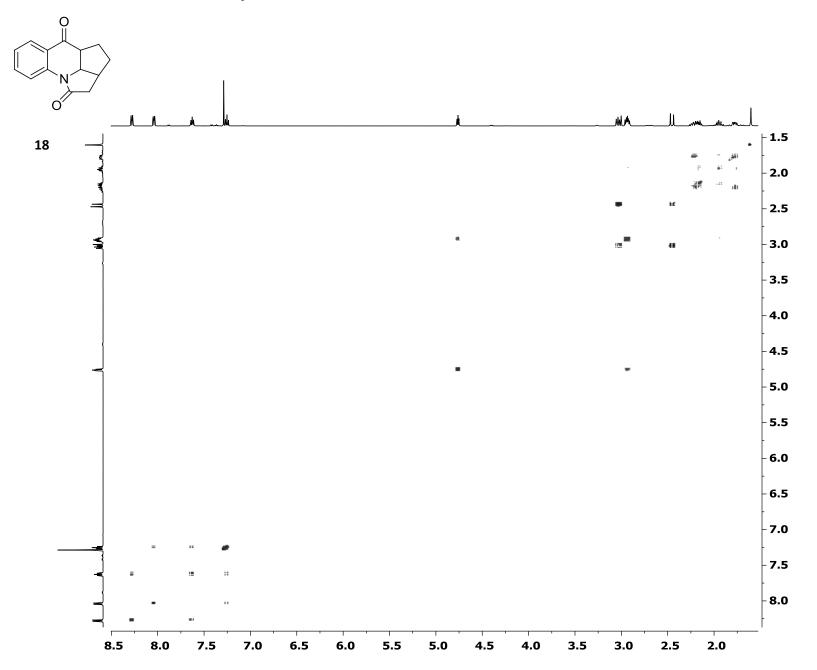


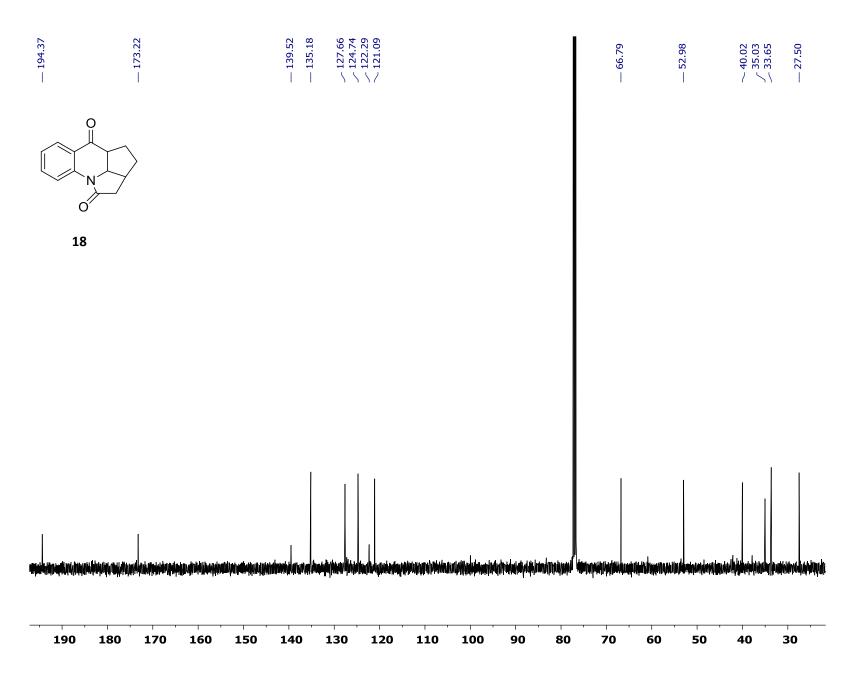





16







18

