Supporting Information for:

Correlation of methane activation and oxide catalyst reducibility and its implications for oxidative coupling

Gaurav Kumar, Sai Lap Jacky Lau, Matthew D. Krcha, Michael J. Janik *

Department of Chemical Engineering, The Pennsylvania State University, University Park, PA

16802

mjanik@engr.psu.edu

Information available:

Table S1. Valence configurations for metal oxides with transition metal dopants

Table S2. *K-point* sampling with the third vector perpendicular to the surface, and the meshes used for the metal oxides

Table S3A. Lattice constants of the metal oxides

Table S3B. Surface facets, number of atomic layers, number of frozen layers, and the number of atoms in the surface slab for each metal oxide

Table S3C. Atomistic structures of bulk, and bare, oxygen vacant, H-adsorbed and \cdot CH₃ adsorbed surfaces of different metal oxides

Table S4. Values for Fermi energy, energy in the vacuum and work function

Table S5. Oxygen vacancy formation energy ΔE_{vac} , C-H activation reaction energy ΔE_{act} , ·CH₃ adsorption energy ΔE_{ads} of all the pure/doped oxides used in the universal correlation

Table S6. Statistical details of the correlation between C-H bond activation of methane ΔE_{act} and the oxygen vacancy formation energy ΔE_{vac}

Table S7. The position of oxygen vacancies in various stable oxidation states of TbO_x in a mirrored $Tb_{16}O_{32}$ surface slab

Table S1.	Valence co	onfiguratior	is for meta	loxides	with	transition	metal dopants
-----------	------------	--------------	-------------	---------	------	------------	---------------

Metal Oxide	Dopant	Valence Configuration				
	Ag	$4d^{10}5s^1$				
	Mn	$3d^{6}4s^{1}$				
	Ni	$3d^{8}4s^{2}$				
	Pd	$4d^95s^1$				
CeO ₂	Pt	$5d^96s^1$				
	V	$3d^44s^1$				
	W	$5d^46s^2$				
	Zn	$3d^{10}4p^2$				
	Zr	$4s^24p^64d^25s^2$				

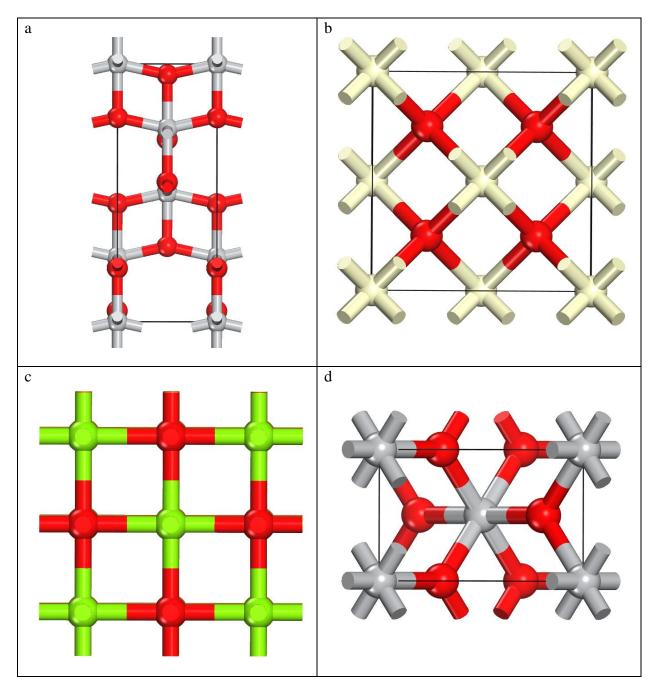
Metal Oxide	Dopant	Valence Configuration		
	Be	$2s^2$		
	Cr	$3d^{5}4s^{1}$		
	Cu	$3d^{10}4p^{1}$		
	Eu	$5s^25p^64f^76s^2$		
	Fe	$3d^{7}4s^{1}$		
	Ga	$4s^24p^1$		
MgO	Ge	$4s^24p^2$		
	In	$5s^25p^1$		
	Li	$1s^{1}2s^{1}2p^{1}$		
	Mn	$3d^{6}4s^{1}$		
	Ni	$3d^{8}4s^{2}$		
	Pd	$4d^95s^1$		

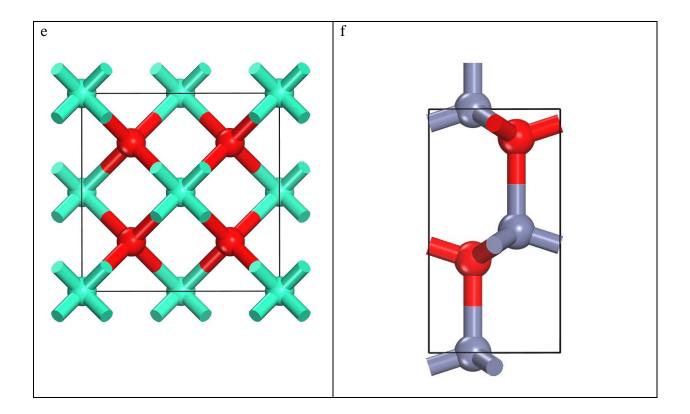
Metal Oxide	Dopant	Valence Configuration
	Ce	$4s^24p^64f^15d^16s^2$
TiO ₂	Fe	$3p^63d^74s^1$
	Zr	$4s^24p^64d^25s^2$

Table S2. K-point sampling with the third vector perpendicular to the surface, and the meshes
used for the metal oxides. For doped systems, similar <i>k-point</i> was used as the host oxide

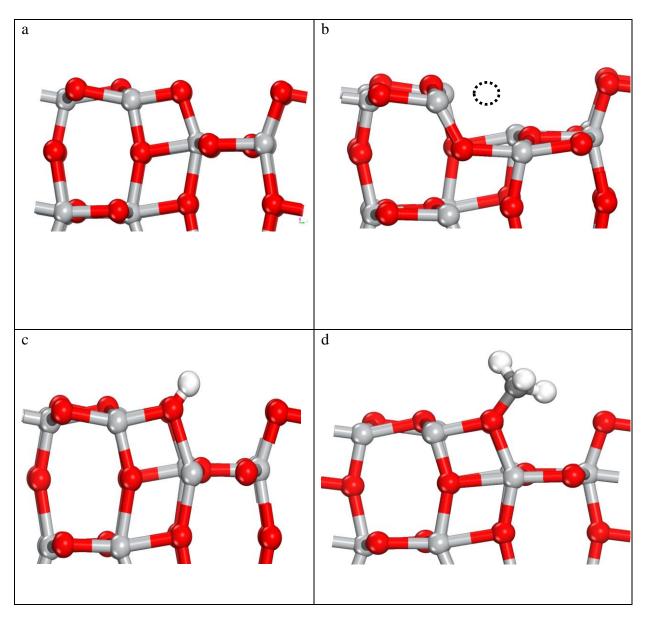
Metal Oxide	k-points
Anatase TiO ₂	3x3x1
CeO ₂	2x2x1
MgO	3x3x1
Rutile TiO ₂	3x3x1
TbO _x	2x2x1
ZnO	3x3x1

 Table S3A.
 Lattice constants of the metal oxides

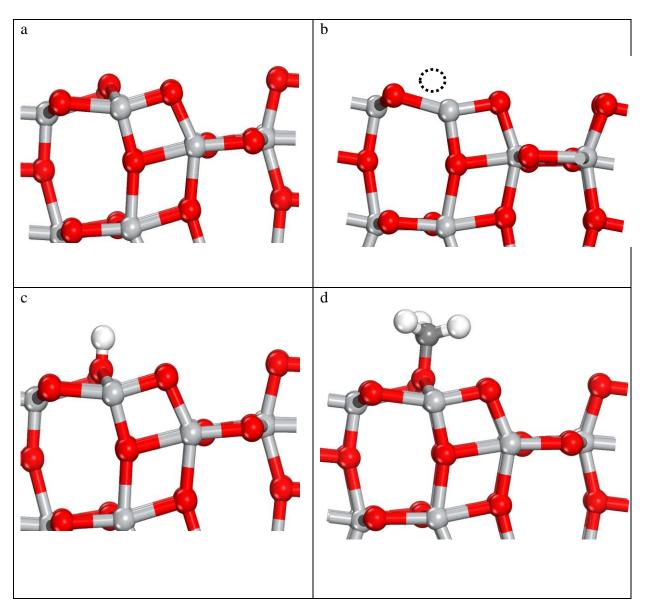

Metal Oxides	Lattice constants (in Å)
Anatase TiO ₂	a = b = 3.789, c = 9.817
CeO ₂	a = b = c = 5.481
MgO	a = b = c = 4.234
TbO _x	a = b = c = 5.449
Rutile TiO ₂	a = b = 4.594, c = 2.959
ZnO	a = b = 3.283, c = 5.260

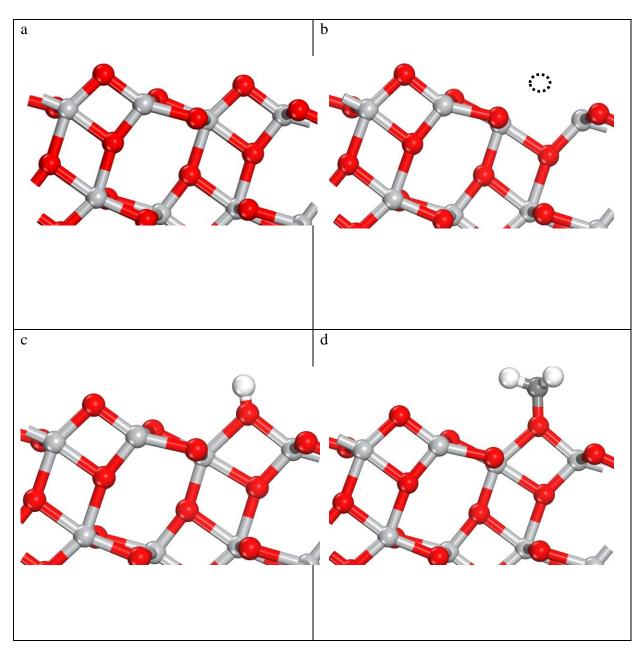

Table S3B. Surface facets, number of atomic layers, number of frozen layers, and the number of atoms in the surface slab for each metal oxide

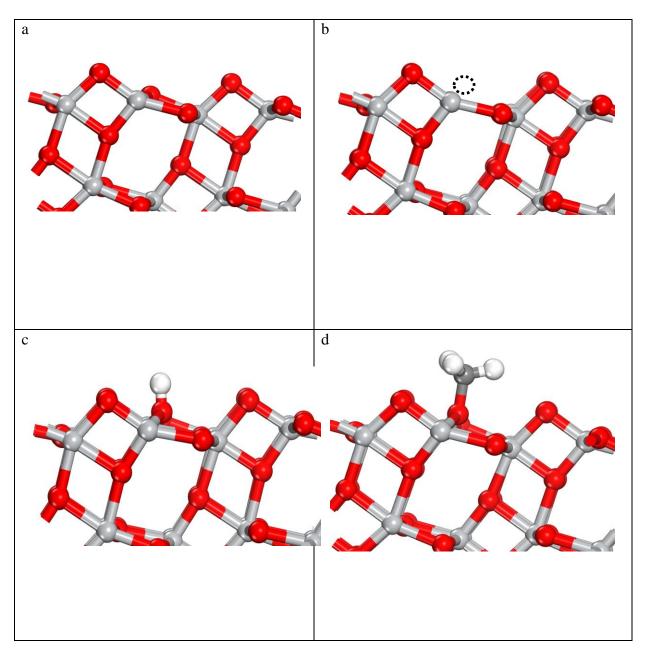
	Mirrored/	Surface	Number	Number of	Number	of atoms	
Metal Oxides	Non-mirrored	facets	of atomic	frozen	Metal	Oxygen	
			layers	layers		50	
Anatase TiO ₂	Non-mirrored	100	4	0	16	32	
Anatase TiO ₂	Non-mirrored	101	2	0	16	32	
Anatase TiO ₂	Non-mirrored	001	4	2	16	20	
(doped)	Non-minored	001	4	2	10	32	
CeO ₂	Mirrored	111	4	0	16	32	
(pure/doped)	wintored	111	4	0	10	52	
MgO	Mirrored	110	11	0	44	44	
MgO	Non-mirrored	100	4	2	32	32	
MgO	Minnound	100	F	1	40	40	
(pure/doped)	Mirrored	100	5	1	40	40	
Rutile TiO ₂	Non-mirrored	110	3	0	24	48	
TbO _x	Mirrored	111	4	0	16	16x	
ZnO	Non-mirrored	001	5	0	40	40	
ZnO	Non-mirrored	100	5	0	40	40	
ZnO	Non-mirrored	110	5	0	40	40	

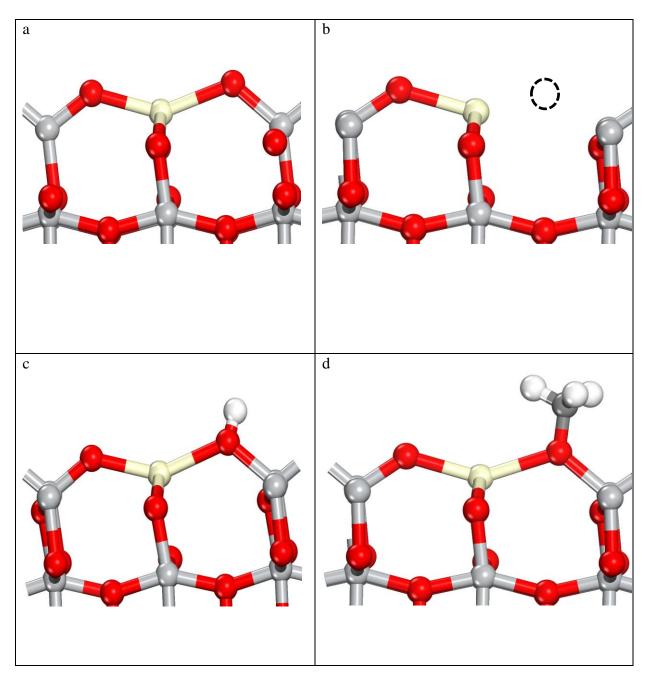

Table S3C. Atomistic structures of bulk, and bare, oxygen vacant, H-adsorbed and \cdot CH₃ adsorbed surfaces of different metal oxides

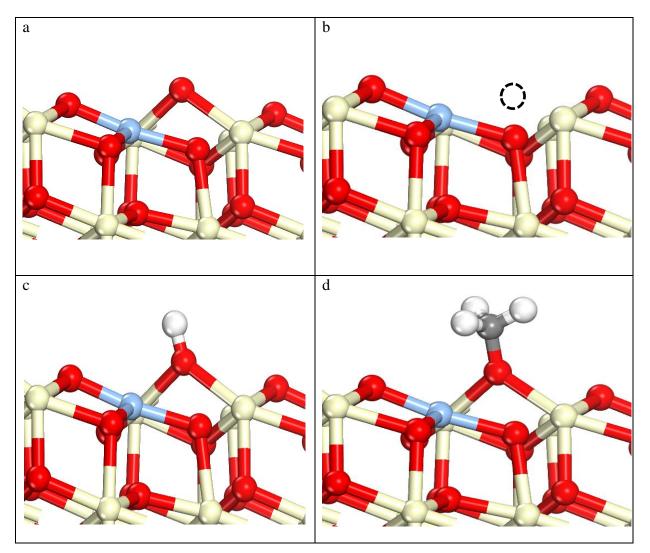
Side views of bulk a) Anatase TiO_2 , b) CeO_2 , c) MgO, d) Rutile TiO_2 , e) TbO_2 , and f) ZnO. Ti is shown in grey, Ce in off white, Mg in bright green, Tb in turquoise, Zn in blueish grey, and O in red.

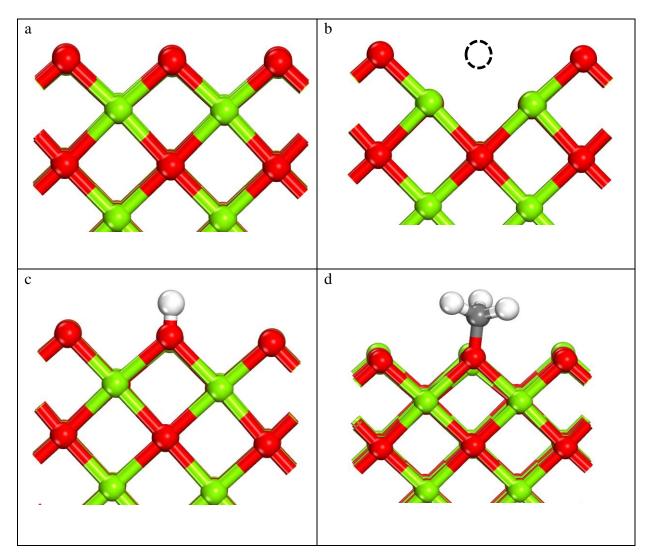


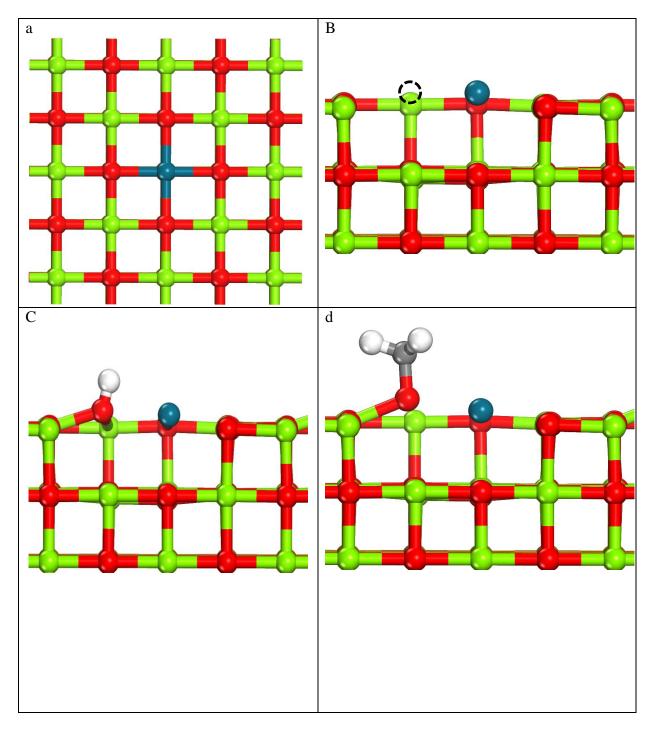

Side views of anatase TiO_2 (100) a) bare surface, b) oxygen vacant surface at the bridge (missing oxygen is shown as a dotted circle), with c) H adsorbed at the bridging oxygen, and d) $\cdot CH_3$ adsorbed at the bridging oxygen. Ti is shown in grey (light), O is shown in red (dark), C in dark grey, and H in white.

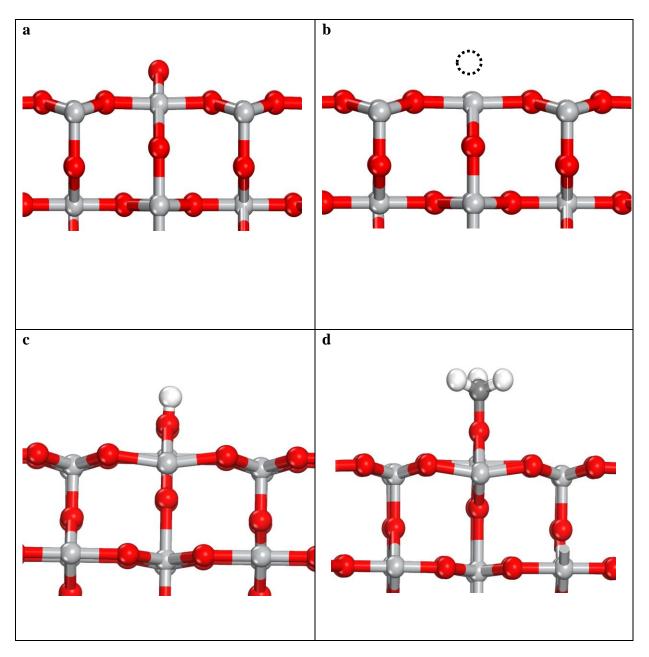

Side views of anatase TiO_2 (100) a) bare surface, b) oxygen vacant surface in plane (missing oxygen is shown as a dotted circle), with c) H adsorbed at the in-planed oxygen, and d) \cdot CH₃ adsorbed at the in-planed oxygen. Ti is shown in grey (light), O is shown in red (dark), C in dark grey, and H in white.

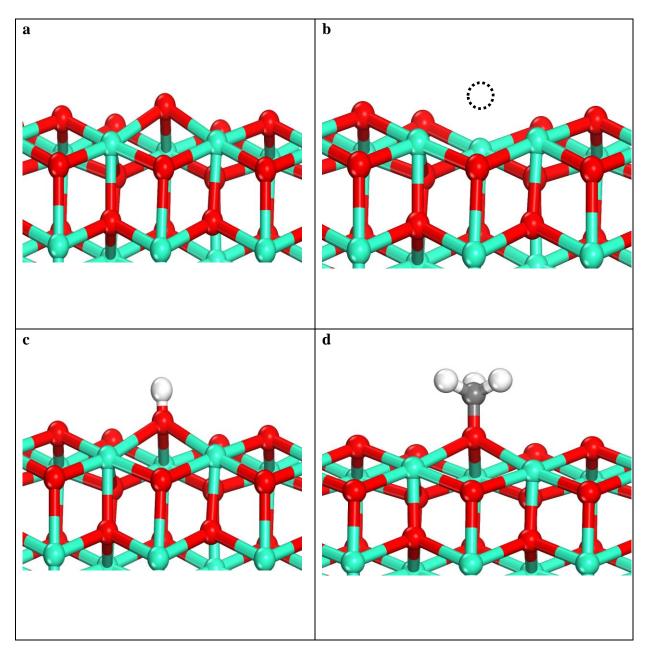

Side views of anatase TiO₂ (101) a) bare surface, b) oxygen vacant surface at the bridge (missing oxygen is shown as a dotted circle), with c) H adsorbed at the bridging oxygen, and d) \cdot CH₃ adsorbed at the bridging oxygen. Ti is shown in grey (light), O is shown in red (dark), C in dark grey, and H in white.

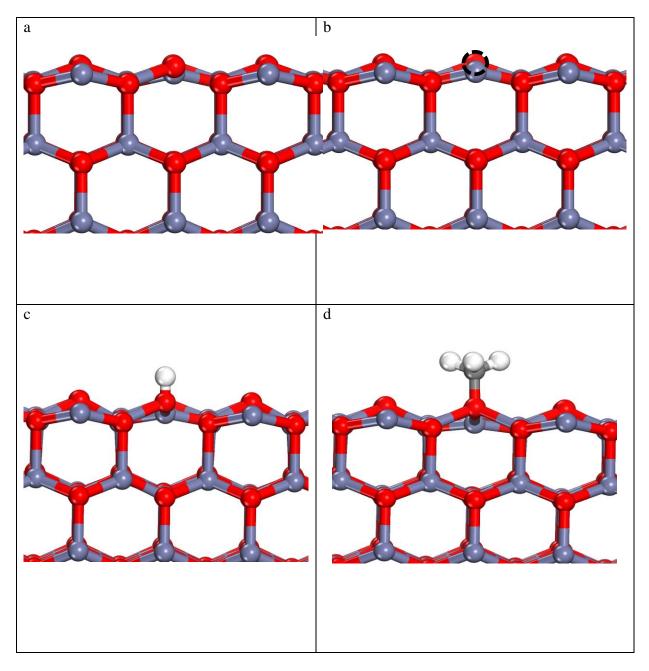

Side views of anatase TiO_2 (101) a) bare surface, b) oxygen vacant surface in the plane (missing oxygen is shown as a dotted circle), with c) H adsorbed at the in-planed oxygen, and d) \cdot CH₃ adsorbed at the in-planed oxygen. Ti is shown in grey (light), O is shown in red (dark), C in dark grey, and H in white.

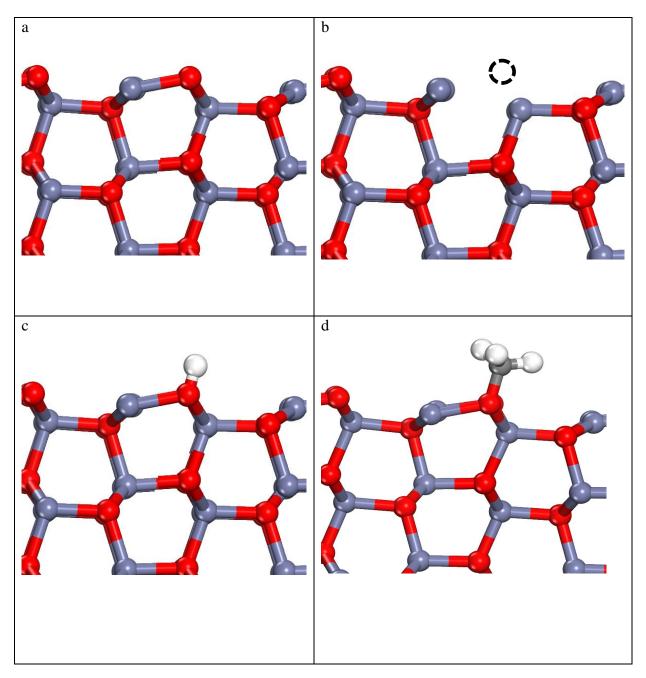

Side views of Ce doped anatase $TiO_2(001)$ a) bare surface, b) oxygen vacant surface (missing oxygen is shown as a dotted circle), with c) H adsorbed, and d) ·CH₃ adsorbed. Ce is shown in off white (light), Ti is shown in grey (light), O is shown in red (dark), C in dark grey, and H in white.

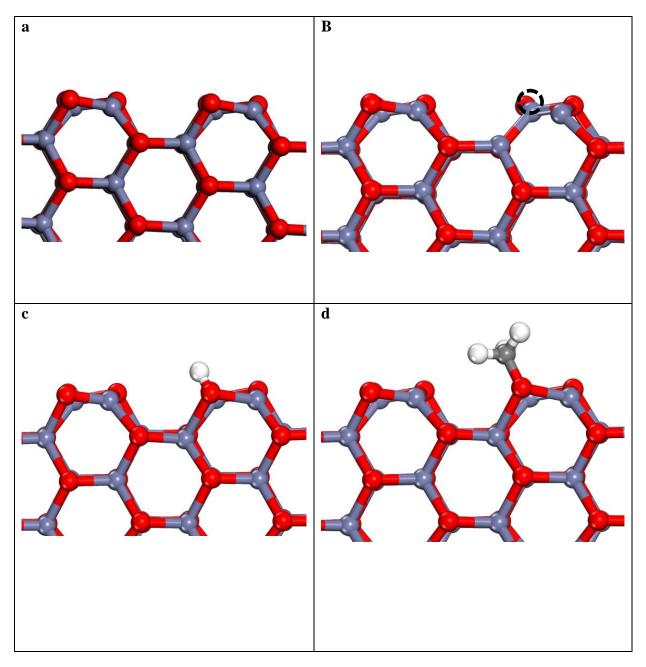

Side views of Ag doped CeO₂ (111) a) bare surface, b) oxygen vacant surface (missing oxygen is shown as a dotted circle), with c) H adsorbed, and d) \cdot CH₃ adsorbed. Ag is shown in purple (light), Ce is shown in off white (light), O is shown in red (dark), C in dark grey, and H in white.


Side views of MgO (110) a) bare surface, b) oxygen vacant surface (missing oxygen is shown as a dotted circle), with c) H adsorbed, and d) \cdot CH₃ adsorbed. Mg is shown in green (light), O is shown in red (dark), C in dark grey, and H in white.


Top view of Pd doped MgO (100) a) bare surface. Side views of Pd doped MgO (100) surface with b) oxygen vacant surface (missing oxygen is shown as a dotted circle), c) H adsorbed, and d) \cdot CH₃ adsorbed. Pd is shown in blue (grey), Mg is shown in green (light), O is shown in red (dark), C in dark grey, and H in white.


Side views of rutile TiO₂ (110) a) bare surface, b) oxygen vacant surface at the bridge (missing oxygen is shown as a dotted circle), with c) H adsorbed at the bridging oxygen, and d) \cdot CH₃ adsorbed at the bridging oxygen. Ti is shown in grey (light), O is shown in red (dark), C in dark grey, and H in white.


Side views of TbO₂ (111) a) bare surface, b) oxygen vacant surface (missing oxygen is shown as a dotted circle), with c) H adsorbed, and d) \cdot CH₃ adsorbed. Tb is shown in green (light), O is shown in red (dark), C in dark grey, and H in white.


Side views of ZnO (001) a) bare surface, b) oxygen vacant surface (missing oxygen is shown as a dotted circle), with c) H adsorbed, and d) \cdot CH₃ adsorbed. Zn is shown as grey (light), O is shown in red (dark), C in dark grey, and H in white.

Side views of ZnO (100) a) bare surface, b) oxygen vacant surface (missing oxygen is shown as a dotted circle, with c) H adsorbed, and d) \cdot CH₃ adsorbed. Zn is shown as grey (light), O is shown in red (dark), C in dark grey, and H in white.

Side views of ZnO (110) a) bare surface, b) oxygen vacant surface (missing oxygen is shown as a dotted circle, with c) H adsorbed, and d) \cdot CH₃ adsorbed. Zn is shown as grey (light), O is shown in red (dark), C in dark grey, and H in white.

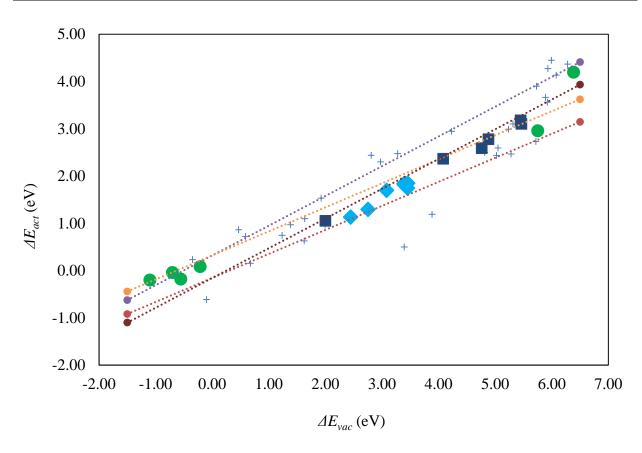
	Metal oxide	Fermi energy,	Energy in	Work function,
Host oxide	Dopants	$E_f(eV)$	vacuum, E_v	Φ (eV)
			(eV)	
	Ag	0.01	5.42	5.41
	Mn	0.68	5.55	4.87
	Ni	0.41	5.74	5.33
$C_{2}O_{2}(111)$	Pd	0.15	5.43	5.28
$CeO_2(111)$	Pt	0.22	5.66	5.44
	V	0.49	5.8	5.32
	W	0.98	4.98	4.00
	Zn	-0.63	5.73	6.35
	Zr	1.29	5.33	4.03
	No dopant	0.53	4.76	4.23
	Be	1.55	4.8	3.25
	Cu	1.37	4.67	3.25
	Ga	1.63	4.77	3.23
MgO (100)	Ge	1.53	4.76	2.59
	Pd	0.87	4.77	3.90
	No dopant	1.39	4.78	3.39
	Tb ₁₆ O ₃₂	-2.20	3.74	5.95
	Tb ₁₆ O ₃₀		3.56	5.59
$Tb_{16}O_{28}$		-2.08	3.48	5.57
Tb ₁₆ O ₂₆		-1.52	3.11	4.63
	Tb ₁₆ O ₂₄	0.77	3.61	2.85
	Tb ₁₆ O ₂₂	0.66	3.20	2.54

Table S4. Values for Fermi energy, energy in the vacuum and work function

-	l oxide	Oxygen vacancy	C-H activation	·CH ₃ adsorption
Host oxide	Dopant	formation energy,	reaction energy,	energy, ΔE_{ads}
	1	ΔE_{vac} (eV)	$\Delta E_{act} (\mathrm{eV})$	(eV)
	Ag	-0.35	0.23	-3.71
	Mn	0.68	0.15	-3.11
	Ni	-0.10	-0.61	-4.16
	Pd	0.59	0.72	-3.07
	Pt	0.47	0.86	-2.94
	V	1.23	0.74	-2.94
CeO ₂ (111)	W	1.93	1.53	-2.33
	Zn	-1.13	-0.21	-4.02
	Zr	1.63	1.10	-2.72
	U-value = 0	3.40	1.81	-1.93
	U-value = 1	3.45	1.85	-1.89
	U-value = 2	3.39	1.84	-1.90
	U-value = 3	3.45	1.74	-1.93
	U-value = 4	3.08	1.70	-2.11
	U-value = 5	2.76	1.29	-2.34
	U-value = 6	2.45	1.13	-2.57
CeO	₂ (110)	2.00	0.96	-2.46
	No dopant	6.28	4.37	1.07
	Be	5.89	3.66	0.27
	Cr	5.99	4.45	1.09
	Cu	4.82	2.50	-0.97
	Eu	6.08	4.13	0.78
	Fe	5.73	3.9	0.56
	Ga	5.28	2.47	-0.83
	Ge	5.92	3.56	0.49
MgO (100)	In	5.03	2.43	-0.94
	Li	3.39	0.50	-3.11
	Li [#]	5.43	3.09	-0.45
	Li*	5.72	2.73	-0.32
	Mn	5.92	4.30	0.86
	Ni	5.31	3.09	-0.39
	Pd	4.23	2.95	-0.63
MgC	0 (110)	5.24	2.99	-0.58
	(001)	3.28	2.48	-1.20
	0(100)	2.98	2.30	-1.40
ZnO	(110)	2.81	2.44	-1.27

Table S5. Oxygen vacancy formation energy ΔE_{vac} , C-H activation reaction energy ΔE_{act} , ·CH₃ adsorption energy ΔE_{ads} of all the pure/doped oxides used in the universal correlation

	Ana 001	4.08	2.37	-1.37
	Ana100 (brg)	4.76	2.59	-1.34
	Ana100 (ip)	5.46	3.10	-0.73
	Ana101 (brg)	4.88	2.78	-1.14
	Ana101 (ip)	5.45	3.18	-0.59
TiO ₂	Ce	3.88	1.19	-2.56
1102	Fe	1.63	0.63	-3.06
	Fe and Ce	1.39	0.97	-2.99
	Rut 110 (brg)	2.00	1.05	-2.86
	Zr	5.05	2.59	-0.79
TbO ₂		-1.10	-0.20	-3.89
TbO _{1.88}		-0.56	-0.18	-3.78
TbO _{1.75}		-0.70	-0.04	-3.74
TbO _{1.63}		-0.21	0.08	-3.62
TbO _{1.5}		5.75	2.95	-0.72
TbO _{1.38}		6.39	4.19	0.64

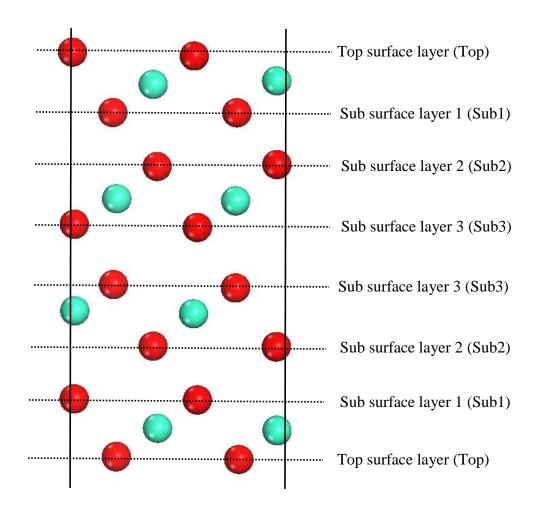

#,* In these cases, 2 Mg atoms have been replaced by 2 Li atoms and one oxygen vacancy has been created to account for the loss of electrons. The calculations over a non-mirrored MgO (100) surface have then been performed over different surface oxygens (# and *), and therefore, the second oxygen vacancy formation has been used as the surface reducibility descriptor.

brg represents the surface where the bridging oxygen is removed to represent the oxygen vacancy formation, while ip represents the vacancy formation of the in surface place oxygen.

Table S6. Statistical details of the correlation between C-H bond activation of methane ΔE_{act} and the oxygen vacancy formation energy ΔE_{vac} , and the -··CH₃ adsorption energy ΔE_{ads} and the oxygen vacancy formation energy ΔE_{vac}

Data	У	Х	А	В	\mathbb{R}^2	95% CI	
						А	В
Overall	ΔE_{act}	ΔE_{vac}	0.569	0.081	0.88	0.510, 0.629	-0.157, 0.320
	$-\Delta E_{ads}$	ΔE_{vac}	-0.616	3.687	0.88	-0.681, -0.552	3.430, 3.945
CeO ₂ U	ΔE_{act}	ΔE_{vac}	0.703	-0.584	0.95	0.508, 0.897	-1.199, 0.032
value	$-\Delta E_{ads}$	ΔE_{vac}	-0.664	4.179	0.99	-0.737, -0.591	3.950, 4.409
TiO ₂	ΔE_{act}	ΔE_{vac}	0.595	-0.131	0.99	0.525, 0.666	-0.457, 0.195
facet	$-\Delta E_{ads}$	ΔE_{vac}	-0.614	4.063	0.97	-0.764, -0.463	3.371, 4.755
TbO _x	ΔE_{act}	ΔE_{vac}	0.548	0.259	0.97	0.429, 0.667	-0.165, 0.682
	$-\Delta E_{ads}$	ΔE_{vac}	-0.557	3.407	0.97	-0.688, -0.426	2.942, 3.873

Linear regression analysis on predictor y using response x: Model: y = Ax + B



Here, the four dotted lines represent the regression lines with 95% CI coefficients, A and B. All the sub-correlations: varying the U-value for Ce in CeO₂ (\diamond), the surface facets for TiO₂ (\blacksquare) and the oxidation state for TbO_x (\bullet) lie within this confidence interval.

TbO _x	Stoichiometry	Vacancy				Total number of
		Тор	Sub1	Sub2	Sub3	oxygen vacancies [*]
TbO ₂	Tb ₁₆ O ₃₂	0	0	0	0	0
TbO _{1.88}	Tb ₁₆ O ₃₀	0	0	1	0	2
TbO _{1.75}	Tb ₁₆ O ₂₈	1	0	1	0	4
TbO _{1.63}	Tb ₁₆ O ₂₆	2	0	1	0	6
TbO _{1.5}	Tb ₁₆ O ₂₄	2	0	2	0	8
TbO _{1.38}	Tb ₁₆ O ₂₂	4	0	1	0	10

Table S7. The position of oxygen vacancies in various stable oxidation states of TbO_x in a mirrored $Tb_{16}O_{32}$ surface slab

*Since we use a mirrored surface, total number of oxygen vacancies is twice the number of vacancies in a particular surface layer.

