Chiral Helical Oligotriazoles: New Class of Anion-Binding Catalysts for the Asymmetric Dearomatization of Electron-Deficient \boldsymbol{N}-Heteroarenes

Mercedes Zurro, ${ }^{\text {a,b }}$ Sören Asmus, ${ }^{\text {a,b }}$ Stephan Beckendorf, ${ }^{\text {a }}$ Christian Mück-Lichtenfeld ${ }^{\text {a }}$ and Olga García Mancheño ${ }^{\text {a,b,c* }}$

${ }^{a}$ Institute of Organic Chemistry, University of Münster, 48149 Münster (Germany). New Adresses: ${ }^{\text {b }}$ Institute for Organic Chemistry, University of Regensburg, 93053 Regensburg (Germany). ${ }^{\circ}$ Straubing Center of Science, 94315 Straubing (Germany).
E-mail: olga.garcia-mancheno@chemie.uni-regensburg.de

Supporting Information

Contents

General Information 2
Synthesis of the triazole catalysts TetrakisTriazoles 1a and 2a-c \& BisTriazole B1 2
TetrakisTriazole 1a 2
TetrakisTriazole 2a 6
TetrakisTriazole 2b9
TetrakisTriazole 2c 11
BisTriazole B1 13
Preparation of the silyl ketene acetals 4 14
General procedure for the preparation of the silyl ketene acetals 14
Quinoline derivatives 3 m and $3 p$ 15
Organocatalytic reaction 16
Screening of the reaction temperature and anion effects 16
General procedure for the organocatalytic reaction 16
Products 5a-p, 6 and 7 17
NMR Titration 25
Absolute Configuration 26
HPLC-Data 31
NMR-Spectra 49
References 95

General Information

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded in acetone- $\mathrm{D}_{6},{ }^{[1]} \mathrm{CDCl}_{3}$ and THF- D_{8} (reference signals: ${ }^{[2]}{ }^{1} \mathrm{H}=$ $2.05 \mathrm{ppm},{ }^{13} \mathrm{C}=29.84 \mathrm{ppm}$, acetone- $\mathrm{D}_{6} ;{ }^{1} \mathrm{H}=5.32 \mathrm{ppm},{ }^{13} \mathrm{C}=54.00 \mathrm{ppm},{ }^{13} \mathrm{C}=77.16 \mathrm{ppm}, \mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}=$ $3.58 \mathrm{ppm},{ }^{13} \mathrm{C}=25.37 \mathrm{ppm}, \mathrm{THF}-\mathrm{D}_{8}$) on a Bruker $A R X-300$ and a Varian $A V-300,400$ or 600 MHz. Chemical shifts (δ) are given in ppm and spin-spin coupling constants $(\mathcal{J}$) are given in Hz. Analytical thin layer chromatography was performed using silica gel $60 \mathrm{~F}_{254}$ and a solution of KMnO_{4} or phosphomolybdic acid served as staining agent. Column chromatography was performed on silica gel 60 (0.040-0.063 mm) or deactivated ${ }^{[3]}$ silica gel 60 (0.040-0.063 mm). Exact masses (HRMS (ES)) were recorded on a Bruker Daltonics MicroTof spectrometer (samples in $\mathrm{CH}_{3} \mathrm{OH}$ as solvent) or LTQ Orbitap LTQ XL (Thermo-Fisher Scientific, Bremen) (samples in $\mathrm{MeOH} / \mathrm{CHCl}_{3}$ as solvent). Melting points ($\mathbf{M p}$) were measured by differential scanning calorimetry with a Ta Instruments Q20 calorimeter. Gas chromatography spectra (GC-MS) were recorded on an Agilent Technologies 7890A GC-system with an Agilent 5975C VL MSD or an Agilent 5975 inert Mass Selective Detector (EI) and a HP-5MS column ($0.25 \mathrm{~mm} \times 30 \mathrm{~m}$, film: $0.25 \mu \mathrm{~m}$). The major signals are quoted in m / z with the relative intensity in parentheses, the fragment according to the complete molecule is labeled with $[M]^{+}$. The used method starts with the injection temperature T_{0}. After holding this temperature for 3 min , the column is heated to temperature T_{1} (ramp) and this temperature is held for an additional time t . Method: 50_40: $\mathrm{T}_{0}=50^{\circ} \mathrm{C}, \mathrm{T}_{1}=320^{\circ} \mathrm{C}$, ramp $=40^{\circ} \mathrm{C} / \mathrm{min} ; \mathrm{t}=4 \mathrm{~min}$. Chiral High Pressure Liquid Chromatography (HPLC) analysis was performed on a Agilent instrument. CD spectra were recorded on a J-815 (JASCO) spectrometer.
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Et}_{3} \mathrm{~N}$ were distilled over CaH_{2}; and MTBE, THF and toluene were distilled and dried over Na . The starting materials 3-methoxy-3-methylbut-1-yne ${ }^{[4]}$ and tosyl azide ${ }^{[5]}$ were prepared following known literature procedures. Other solvents and commercially available reagents were used without further purification.

Synthesis of the triazole catalysts TetrakisTriazoles 1a and 2a-c \& BisTriazole B1

TetrakisTriazole 1a

1,3-Dibromo-5-(3-methoxy-3-methylbut-1-yn-1-yl)benzene (9)

1,3,5-Tribromobenzene ($14.17 \mathrm{~g}, 45.0 \mathrm{mmol}, 3.0$ equiv.), Cul ($57 \mathrm{mg}, 0.3 \mathrm{mmol}, 2.0 \mathrm{~mol} \%$) and $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](105 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0 \mathrm{~mol} \%)$ were suspended in THF (50 mL). 3-Methoxy-3-methylbut-1-yne ($1.57 \mathrm{~g}, 15.0 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{~mL})$ were added and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ in a flame-dried pressure schlenk tube under argon for 2 days. The crude product was filtered through celite and washed with ethyl acetate $(3 \times 10 \mathrm{~mL})$ to remove solid material and $\mathrm{Et}_{3} \mathrm{~N}$. After removing the solvent, excessive 1,3,5tribromobenzene ($8.49 \mathrm{~g}, 27.0 \mathrm{mmol}$) and the desired product $9(3.98 \mathrm{~g}, 12.0 \mathrm{mmol}, 80 \%$) was isolated as a colourless oil by flash column chromatography (pentane/EtOAc, 50:1). ${ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta / \mathrm{ppm}$ $=7.61(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$\delta / \mathrm{ppm}=134.1,133.3,126.4,122.7,94.0,81.5,71.0,52.0,28.3 ;$ HRMS (ES): calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{OAg}\right]^{+}: m / z=436.8306$, found: 436.8303 .

1-Bromo-3-(3-Hydroxy-3-methylbut-1-in-1-yl)-5-(3-methoxy-3-methylbut-1-in-1-yl)benzene (10)

1,3-Dibromo-5-(3-methoxy-3-methylbut-1-yn-1-yl)benzene (9) (7.65 g, 23.00 mmol , 2.0 equiv.), Cul ($46 \mathrm{mg}, 0.24 \mathrm{mmol}, 2.0 \mathrm{~mol} \%$) and $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](81 \mathrm{mg}, 0.12 \mathrm{mmol}$, $1.0 \mathrm{~mol} \%)$ were suspended in THF (70 mL). 2-Methylbut-3-in-2-ol (1.13 mL , $11.50 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}(20 \mathrm{~mL})$ were added and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ in a flame-dried pressure schlenk tube under argon for 36 h . The crude product was filtered through celite and washed with ethyl acetate $(3 \times 10 \mathrm{~mL})$ to remove solid material and $\mathrm{Et}_{3} \mathrm{~N}$. After removing the solvent, the desired product $10(2.71 \mathrm{~g}, 7.40 \mathrm{mmol}$, 99%) was isolated by flash column chromatography (pentane/EtOAc, $50: 1 \rightarrow 5: 1$) as a white solid, as well as the recovered 1,3-dibromo-5-(3-methoxy-3-methylbut-1-in-1-yl)benzene ($4.14 \mathrm{~g}, 12.50 \mathrm{mmol}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=7.52-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{t}, \mathrm{J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 6 \mathrm{H}), 1.52(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=134.2,134.1,133.5,124.9,124.8,121.9,95.8,93.1,82.2,80.1$, 71.0, 65.7, 51.9, 31.5, 28.3; HRMS (ES): m / z calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrO}_{2} \mathrm{Na}\right]^{+}$: 357.0461, found: 357.0462; ATR-FTIR (cm^{-1}): 3396, 2983, 2936, 2825, 1587, 1554, 1426, 1361, 1250, 1361, 1250, 1171, 1145, 1076, 960, 933, 889, 866, 841, 809, 678.

1-(3-Hydroxy-3-methylbut-1-in-1-yl)-3-(3-methoxy-3-methylbut-1-in-1-yl)-5-((trimethylsilyl)ethinyl)benzene (11)

1-Bromo-3-(3-Hydroxy-3-methylbut-1-in-1-yl)-5-(3-methoxy-3-methylbut-1-in-1yl)benzene (10) ($67 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.), $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{BF}_{4}\right](1.3 \mathrm{mg}$, $4.00 \mu \mathrm{~mol}, 2 \mathrm{~mol} \%)$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} \quad(2.3 \mathrm{mg}, 2.00 \mu \mathrm{~mol}, 1 \mathrm{~mol} \%)$ were suspended in THF (70 mL). Trimethylsilylacetylene ($42 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$, 1.5 equiv.) and $\mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{~mL})$ were added and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ in a flame-dried pressure schlenk tube under argon for 24 h . The crude product was filtered through celite and washed with ethyl acetate ($3 \times 10 \mathrm{~mL}$) to remove solid material and $\mathrm{Et}_{3} \mathrm{~N}$. After removing the solvent, the desired product 10 ($60 \mathrm{mg}, 0.17 \mathrm{mmol}, 85 \%$) was isolated by flash column chromatography (pentane/EtOAc, 10:1) as a yellow resin. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta / \mathrm{ppm}=7.46$ (t, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 6 \mathrm{H}), 1.51(\mathrm{~s}, 6 \mathrm{H})$, 0.23 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta / \mathrm{ppm}=134.7,134.6,134.6,123.8,123.5,123.4,103.3,95.8$, 95.0, 92.3, 82.8, 80.7, 71.0, 65.7, 51.9, 31.5, 28.4, 0.0; HRMS (ES): m / z calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SiNa}\right]^{+}$: 375.1751, found: 375.1749; ATR-FTIR (cm^{-1}): 2983, 2154, 1581, 1464, 1414, 1363, 1249, 1171, 1145, 1076, 998, 952, 922, 879, 841, 760, 743, 682, 657.

1-Ethynyl-3-(3-Hydroxy-3-methylbut-1-in-1-yl)-5-(3-methoxy-3-methylbut-1-in-1-yl)benzene (12)

1-(3-Hydroxy-3-methylbut-1-in-1-yl)-3-(3-methoxy-3-methylbut-1-in-1-yl)-5-((trimeth-yl-silyl)ethinyl)benzene (11) ($2.70 \mathrm{~g}, 7.66 \mathrm{mmol}, 1.0$ equiv.) was dissolved in MeOH (150 mL). After addition of KOH ($319 \mathrm{mg}, 7.66 \mathrm{mmol}, 1.0$ equiv.) the mixture was stirred overnight at room temperature. $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and $\mathrm{HCl}(7.66 \mathrm{~mL}, 1 \mathrm{M}$ aqueous solution, $7.66 \mathrm{mmol}, 1.0$ equiv.) was added and the resulting mixture was extracted with $\mathrm{DCM}(4 \times 20 \mathrm{~mL})$ and dried over MgSO_{4}. After removing the solvent under reduced pressure the desired product $12(2.14 \mathrm{~g}, 7.64 \mathrm{mmol},>99 \%)$ was afforded as a slight yellow liquid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta / \mathrm{ppm}=7.48-7.44(\mathrm{~m}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~s}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 6 \mathrm{H}), 1.52(\mathrm{~s}$, 6 H) ${ }^{13}{ }^{3} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=135.0,134.8,134.7,123.6,123.6,122.8,95.2,92.5,82.6,82.0$, 80.5, 78.5, 71.0, 65.7, 51.9, 31.5, 28.4; HRMS (ES): m/z calculated for [$\left.\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}\right]^{+}: 303.1356$, found: 303.1352; ATR-FTIR (cm^{-1}): 3298, 2983, 1581, 1415, 1363, 1249, 1170, 1143, 1074, 947, 880, 830, 682, 639, 618.

4-(3-(1-(3,5-Bis(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl)-5-(3-methoxy-3-methylbut-1-in-1-yl)phenyl)-2-methylbut-3-in-2-ol (13)

3,5-Bis(trifluoromethyl)aniline ($1.55 \mathrm{~mL}, 9.97 \mathrm{mmol}, 1.3$ equiv.) was dissolved in TFA (25 mL) and cooled to $0^{\circ} \mathrm{C}$. After addition of NaNO_{2} ($794 \mathrm{mg}, 11.50 \mathrm{mmol}, 1.5$ equiv.) the mixture was stirred for 30 min at $0^{\circ} \mathrm{C} . \mathrm{NaN}_{3}(800 \mathrm{mg}, 12.30 \mathrm{mmol}, 1.6$ equiv.) was added slowly (exothermic reaction, nitrous fumes) at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 2 h at room temperature. Afterwards the reaction mixture was quenched by slow addition of $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$, followed by extraction with pentane $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous NaHCO_{3} solution ($3 \times 30 \mathrm{~mL}$), concentrated under reduced pressure (volume: $\sim 2 \mathrm{~mL}$), and directly used as in situ 3,5-bis(trifluoromethyl)phenylazide.

Alkyne-12 ($2.15 \mathrm{~g}, 7.67 \mathrm{mmol}, 1.0$ equiv.), 0.04 M aqueous CuSO_{4} solution ($9.6 \mathrm{~mL}, 0.06 \mathrm{mmol}, 5 \mathrm{~mol} \%$), sodium ascorbate ($9.6 \mathrm{~mL}, 0.12 \mathrm{M}$ aqueous solution, $0.18 \mathrm{mmol}, 15 \mathrm{~mol} \%$) and the in situ 3,5-bis(trifluoromethyl)phenylazide were combined in a solvent mixture of DCM (20 mL) and $t \mathrm{BuOH}(20 \mathrm{~mL})$ and stirred 12 h at room temperature and 3 h at $50^{\circ} \mathrm{C}$. The reaction mixture was diluted with water $(50 \mathrm{~mL})$ followed by extraction with DCM $(3 \times 100 \mathrm{~mL})$. The obtained organic phase was washed with aqueous ammonia (26%, $3 \times 25 \mathrm{~mL}$) and brine $(20 \mathrm{~mL})$, and dried over MgSO_{4}. The solvent was removed under reduced pressure obtaining a yellow solid. This crude product was dissolved in DCM and precipitated with pentane. The desired product 13 ($3.45 \mathrm{~g}, 6.44 \mathrm{mmol}, 84 \%$) was obtained as slight yellow solid by filtration. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=8.36(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 2 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H})$, $7.93(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 1 \mathrm{H}), 1.63(\mathrm{~s}$, 6 H), $1.55(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=148.0,137.9,135.0,133.8(\mathrm{q}, J=34.5 \mathrm{~Hz}$), 129.9, 128.8, 128.7, 124.2, 124.1, 122.7 (q, $J=273.3 \mathrm{~Hz}$), $122.7-122.1(\mathrm{~m}), 120.4(\mathrm{q}, J=2.8 \mathrm{~Hz}), 117.8,95.3$,
92.6, 83.0, 80.9, 71.0, 65.7, 52.0, 31.6, 28.4; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=-63.02$; HRMS (ES): m / z calculated $\left[\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}\right]^{+}$: 558.1587, found: 558.1589; ATR-FTIR (cm^{-1}): 3478, 3120, 2939, 1591, 1496, 1473, 1409, 1354, 1273, 1181, 1135, 1077, 1049, 956, 931, 885, 846, 824, 717, 682; Mp.: 204$206^{\circ} \mathrm{C}$.

1-(3,5-bis(trifluoromethyl)phenyl)-4-(3-ethynyl-5-(3-methoxy-3-methylbut-1-in-1-yl)phenyl)-1H-1,2,3triazole (14)

13 ($3.13 \mathrm{~g}, 5.84 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{KOH}(33 \mathrm{mg}, 0.58 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ were suspended in toluene (150 mL) and stirred for 4.5 h at $130^{\circ} \mathrm{C}$. The reaction mixture was neutralized with $\mathrm{HCl}(0.58 \mathrm{~mL}, 1.0 \mathrm{M}$ aqueous solution, 0.58 mmol , 1.0 equiv.) and diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The resulting mixture was extracted with DCM ($4 \times 50 \mathrm{~mL}$) and dried over MgSO_{4}. After removing the solvent under reduced pressure the crude product was dissolved in DCM/MeOH (100:1) and precipitated with pentane. The desired product 14 ($2.75 \mathrm{~g}, 5.76 \mathrm{mmol}, 99 \%$) was obtained as slight yellow solid by filtration.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta / \mathrm{ppm}=8.36(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 2 \mathrm{H}), 8.00-7.96(\mathrm{~m}, 3 \mathrm{H}), 7.58(\mathrm{bs}, 1 \mathrm{H}), 3.45(\mathrm{~s}$, $3 \mathrm{H}), 3.14(\mathrm{~s}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=147.9,137.9,135.4,133.9(\mathrm{q}, J=34.5$ $\mathrm{Hz}), 130.0,129.4,129.1,124.3,123.5,122.7(q, J=273.3 \mathrm{~Hz}), 122.7-122.3(\mathrm{~m}), 120.4(q, J=4.0 \mathrm{~Hz})$, 117.8, 92.8, 82.8, 82.2, 78.7, 71.0, 52.0, 28.4; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=-63.01$; HRMS (ES): m / z calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{ONa}\right]^{+}: 500.1168$, found: 500.1172; ATR-FTIR $\left(\mathrm{cm}^{-1}\right): 3295,3120,2994$, 2944, 1497, 1474, 1432, 1410, 1354, 1276, 1188, 1170, 1134, 1063, 1044, 896, 882, 850, 821, 710, 699, 690, 653; Mp.: 200-205 ${ }^{\circ} \mathrm{C}$.
trans-1,2-Bis(4-(3-(1-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl)-5-(3-methoxy-3-methylbut-1-in-1-yl)phenyl)-1H-1,2,3-triazol-1-yl)cyclohexane (1a)

((R, R)-1a) $\quad(R, R)$-Diaminocyclohexane $\quad(96 \mathrm{mg}, \quad 0.8 \mathrm{mmol}$, 1.0 equiv.), NaHCO_{3} ($538 \mathrm{mg}, 6.4 \mathrm{mmol}, 8.0$ equiv.) and CuSO_{4} ($26 \mathrm{mg}, 0.16 \mathrm{mmol}, 20 \mathrm{~mol} \%$) were suspended in $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$ ($12 \mathrm{~mL}, 3: 2: 1$). Nonafluorobutan-1-sulfonyl azide ($780 \mathrm{mg}, 2.4 \mathrm{mmol}, 3.0$ equiv.) was added and the mixture was stirred for 24 h at room temperature. A solution of "click"-alkyne 14 ($782 \mathrm{mg}, 1.64 \mathrm{mmol}, 2.05$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ ($24 \mathrm{~mL}, 10: 1$) and sodium ascorbate ($476 \mathrm{mg}, 2.4 \mathrm{mmol}, 3.0$ equiv.) was added. The reaction mixture was stirred for additional 48 h at room temperature. After removing the solvent under reduced pressure the residue was dissolved in DCM $(50 \mathrm{~mL})$. After washing with NaHCO_{3} solution $(4 \times 10 \mathrm{~mL})$, aqueous ammonia ($26 \%, 2 \times 10 \mathrm{~mL}$) and $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$, the solvent was removed under reduced pressure. The residue was taken up with DCM (5 mL)
and dropped into fast stirred pentane (150 mL). The desired product precipitated as a white solid and was isolated by filtration $\mathbf{1 a}(648 \mathrm{mg}, 0.58 \mathrm{mmol}, 72 \%) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{THF}-D_{8}\right): ~ \delta / \mathrm{ppm}=9.19(\mathrm{~s}, 2 \mathrm{H}), 8.58$ (s, 4H), $8.39(\mathrm{t}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.27(\mathrm{~s}, 2 \mathrm{H}), 8.12(\mathrm{~s}, 2 \mathrm{H}), 7.90(\mathrm{t}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{t}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H})$, $5.23-5.16(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 6 \mathrm{H}), 2.44-2.28(\mathrm{~m}, 4 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{THF}-D_{8}$): $\delta / \mathrm{ppm}=148.5,146.4,139.6,133.9$ (q, $J=34.0 \mathrm{~Hz}$), 133.3, 132.0, 129.0, 128.4, $125.0,124.1(q, J=272.6 \mathrm{~Hz}), 123.0,122.7-122.4(\mathrm{~m}), 121.4,121.2(\mathrm{q}, J=4.0 \mathrm{~Hz}), 120.1,92.7,84.5$, 71.5, 64.6, 51.9, 34.0, 28.8; ${ }^{19}$ F NMR (565 MHz, THF- D_{8}): $\delta / \mathrm{ppm}=-63.71$; HRMS (ES): m / z calculated for $\left[\mathrm{C}_{54} \mathrm{H}_{44} \mathrm{~F}_{12} \mathrm{~N}_{12} \mathrm{O}_{2} \mathrm{Na}^{+}: 1143.3411\right.$, found: 1143.3407; ATR-FTIR $\left(\mathrm{cm}^{-1}\right): 1608,1495,1357,1279,1231$, $1175,1140,1074,1038,895,847,810,710,683,654$; M.p.: $115-125^{\circ} \mathrm{C}$; $(R, R)-\mathbf{1 a},[\alpha]_{589}^{20}:+23.4(c 0.15$, CHCl_{3}).

((S,S)-1a) The opposite enantiomer was obtained from the corresponding (S, S)-amine. ((S, S)-Diaminocyclohexane ($57 \mathrm{mg}, \quad 0.50 \mathrm{mmol}, \quad 1.00$ equiv.), $\mathrm{NaHCO}_{3} \quad(336 \mathrm{mg}$, $4.00 \mathrm{mmol}, 8.00$ equiv.) and $\mathrm{CuSO}_{4}(16 \mathrm{mg}, 0.10 \mathrm{mmol}$, $20 \mathrm{~mol} \%)$ were suspended in $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL}$, 3:2:1). Nonafluorobutan-1-sulfonyl azide (488 mg , $1.50 \mathrm{mmol}, 3.0$ equiv.) was added and the mixture was stirred for 24 h at room temperature. A solution of "click"alkyne 14 ($489 \mathrm{mg}, 1.03 \mathrm{mmol}, 2.05$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ ($11 \mathrm{~mL}, 10: 1$) and sodium ascorbate (297 mg , $1.50 \mathrm{mmol}, 3.00$ equiv.) was added. The reaction mixture was stirred for additional 48 h at room temperature. After removing the solvent under reduced pressure the residue was dissolved in DCM (50 mL). After washing with NaHCO_{3} solution ($4 \times 10 \mathrm{~mL}$), aqueous ammonia ($26 \%, 2 \times 10 \mathrm{~mL}$) and $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$, the solvent was removed under reduced pressure. The desired product ($124 \mathrm{mg}, 0.11 \mathrm{mmol}, 22 \%$) was isolated (under non-optimized conditions) by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / E t O A c\right.$, $20: 1 \rightarrow 10: 1)$ as a white solid. $(S, S)-\mathbf{1 a},[\alpha]_{589}^{20}:-22.9\left(c 0.09, \mathrm{CHCl}_{3}\right)$.

HPLC (Daicel Chiralpak IA, Hexane $/ \mathrm{IPrOH}=90: 10, \lambda=254 \mathrm{~nm}, 1.0 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{R}}=14.4 \mathrm{~min}(R, R)-\mathbf{1 a}$, $19.8 \mathbf{m i n}(S, S)$ - $\mathbf{1 a}$.

TetrakisTriazole 2a

3-bromo-5-(3-methoxy-3-methylbut-1-yn-1-yl)aniline (15)

According to a procedure of $H . X u$ et al. ${ }^{[6]}$ 1,3-dibromo-5-(3-methoxy-3-methylbut-1-in-1yl)benzene 9 ($4.9 \mathrm{~g}, 14.75 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{Cu}_{2} \mathrm{O}$ ($105 \mathrm{mg}, 0.74 \mathrm{mmol}, 5 \mathrm{~mol} \%$), NH_{3} ($42.5 \mathrm{~mL}, 26 \%$ aqueous solution, $0.59 \mathrm{~mol}, 40.0$ equiv.) and 1,4-dioxane (42.5 mL) were combined in a 100 mL pressure flask (The reaction is strongly pressure dependent! If the ratio of gas phase to liquid phase is changed, different temperatures and reaction times are required). The mixture was stirred for 12 h at $100^{\circ} \mathrm{C}$. Next, a saturated NaCl solution $(100 \mathrm{~mL})$ was added and the reaction mixture was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The crude product
was adsorbed on silica and purified by flash column chromatography (pentane/EtOAc, 20:1 $\rightarrow 2: 1$). The desired product 15 ($818 \mathrm{mg}, 3.05 \mathrm{mmol}, 21 \%$ (91% relative to conversion)) was obtained as a brown oil as well as the recovered starting material $9(3.77 \mathrm{~g}, 11.36 \mathrm{mmol}, 77 \%) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=$ 6.96 (dd, $J=1.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ (dd, $J=2.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=2.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H})$, 1.51 (s, 6 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=147.5,125.2,124.6,122.7,118.0,116.7,91.7,83.2,71.0$, 51.9, 28.4; HRMS (ES): m/z calculated for [$\left.\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrNONa}\right]^{+}: 290.0151$, found: 290.0153; ATR-FTIR (cm ${ }^{-1}$): 3471, 3361, 3233, 2984, 2936, 2826, 1621, 1594, 1565, 1434, 1303, 1245, 1172, 1068.

1-Amino-3-(3-hydroxy-3-methylbut-1-in-1-yl)-5-(3-methoxy-3-methylbut-1-in-1-yl)benzene (16)

1-Amino-3-bromo-5-(3-methoxy-3-methylbut-1-in-1-yl)benzene
(6.28 g, 23.4 mmol, 1.0 equiv.), $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{BF}_{4}\right] \quad(150 \mathrm{mg}, \quad 0.48 \mathrm{mmol}, 2 \mathrm{~mol} \%)$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(278 \mathrm{mg}, \quad 0.24 \mathrm{mmol}, 1 \mathrm{~mol} \%)$ were suspended in THF (65 mL). Trimethylsilylacetylene ($42 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 1.5$ equiv.), 2-methylbut-3-in-2-ol (3.44 mL , 35.10 mmol , 1.5 equiv.) and $\mathrm{Et}_{3} \mathrm{~N}(6.5 \mathrm{~mL})$ were added and the resulting mixture was stirred at $90^{\circ} \mathrm{C}$ in a flame-dried pressure schlenk tube under argon for 40 h . The crude product was filtered through celite and washed with ethyl acetate ($3 \times 10 \mathrm{~mL}$) to remove solid material and $\mathrm{Et}_{3} \mathrm{~N}$. After removing the solvent, the desired product 16 ($5.58 \mathrm{~g}, 20.5 \mathrm{mmol}, 88 \%$) was isolated by flash column chromatography (pentane/EtOAc, 2:1) as a brown resin. ${ }^{1} \mathbf{H} \mathbf{N M R}(300 \mathrm{MHz}$, CDCl_{3}): $\delta / \mathrm{ppm}=6.91(\mathrm{bs}, 1 \mathrm{H}), 6.71-6.65(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 6 \mathrm{H}), 1.51(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta / \mathrm{ppm}=146.3,125.5,123.9,123.7,118.1,118.0,93.8,91.0,83.8,81.7,71.0,65.7,51.9$, 31.6, 28.5; HRMS (ES): m / z calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Na}\right]^{+}: 294.1465$, found: 294.1475; ATR-FTIR (cm ${ }^{-1}$): 2985, 2936, 1620, 1590, 1459, 1423, 1362, 1265, 1251, 1171, 1144, 1072, 950, 857, 831, 736, 704, 684.

1-Azido-3-(3-hydroxy-3-methylbut-1-in-1-yl)-5-(3-methoxy-3-methylbut-1-in-1-yl)benzene (17)

1-Amino-3-(3-hydroxy-3-methylbut-1-in-1-yl)-5-(3-methoxy-3-methylbut-1-in-1-yl)benzene (16) ($3.25 \mathrm{~g}, 12.0 \mathrm{mmol}, 1.0$ equiv.) was dissolved in $\mathrm{Et}_{2} \mathrm{O}(12 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and $\mathrm{HCl}(2.5 \mathrm{~mL}, 10 \mathrm{M}$ aqueous solution, $25.2 \mathrm{mmol}, 2.1$ equiv.) were added and the resulting mixture was cooled to $0^{\circ} \mathrm{C} . \mathrm{NaNO}_{2}(869 \mathrm{mg}, 12.6 \mathrm{mmol}, 1.05$ equiv.) was added to the suspension. The resulting intense red suspension was stirred for 90 min at $0^{\circ} \mathrm{C} . \mathrm{NaN}_{3}(819 \mathrm{mg}, 12.6 \mathrm{mmol}, 1.05$ equiv.) was fractionally added and the reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and additional 2 h at room temperature. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 30 \mathrm{~mL})$ and the resulting organic phases dried over MgSO_{4}. The crude product was adsorbed on silica and purified by flash column chromatography (pentane/EtOAc, 20:1 $\rightarrow 2: 1$). The desired product 17 ($818 \mathrm{mg}, 3.05 \mathrm{mmol}, 21 \%$ (91% relative to conversion)) was obtained as brown oil. ${ }^{1} \mathbf{H}$ NMR (300 MHz, CDCl ${ }_{3}$): $\delta / \mathrm{ppm}=7.24(\mathrm{t}, \mathrm{J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.96(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 6 \mathrm{H})$, 1.51 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=140.4,131.4,124.7,124.6,121.8,121.7,95.5,92.7,82.6$, 80.4, 71.0, 65.5, 51.9, 31.4, 28.3; HRMS (ES): m/z calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}\right]^{+}$: 320.1369, found: 320.1367.

4-(3-(4-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-yl)-5-(3-methoxy-3-methylbut-1-in-1-yl)phenyl)-2-methylbut-3-in-2-ol (18)

Azide 17 ($1.07 \mathrm{~g}, 3.60 \mathrm{mmol}, 1.0$ equiv.), 0.04 M aqueous CuSO_{4} solution ($4.5 \mathrm{~mL}, 0.06 \mathrm{mmol}, 5 \mathrm{~mol} \%$), sodium ascorbate ($4.5 \mathrm{~mL}, 0.12 \mathrm{M}$ aqueous solution, $\quad 0.18 \mathrm{mmol}$, $15 \mathrm{~mol} \%$) and \quad 1-ethinyl-3,5bis(trifluoromethyl)benzene ($1.19 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.4$ equiv.) were combined in a solvent mixture of DCM (9 mL) and tBuOH (9 mL) and stirred 48 h at $50^{\circ} \mathrm{C}$. The reaction mixture was diluted with water $(20 \mathrm{~mL})$ followed by extraction with DCM ($3 \times 75 \mathrm{~mL}$). After washing with 26% aqueous ammonia ($3 \times 25 \mathrm{~mL}$), the solvent was removed under reduced pressure. This crude product was dissolved in DCM and precipitated with pentane. The desired product 18 (1.91 g, $3.56 \mathrm{mmol}, 99 \%$) was obtained as slight yellow solid by filtration. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=8.38$ $(\mathrm{s}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 2 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.44(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 6 \mathrm{H}), 1.56(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=146.1$, 136.7, $135.3,132.6(q, J=33.6 \mathrm{~Hz}), 132.2,125.9(\mathrm{q}, J=3.4 \mathrm{~Hz}), 125.3,125.2,123.3(\mathrm{q}, J=272.9 \mathrm{~Hz}), 123.0$, 122.9, 122.5 - 121.9 (m), 118.6, 96.6, 94.1, 82.0, 80.0, 71.0, 65.7, 52.0, 31.5, 28.3; ${ }^{19}$ F NMR (282 MHz, CDCl_{3}): $\delta / \mathrm{ppm}=-62.99$; HRMS (ES): m / z calculated for $\left[\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}\right]^{+}$: 558.1587, found: 558.1587; ATR-FTIR $\left(\mathrm{cm}^{-1}\right): 3282,2988,2941,1601,1587,1458,1442,1405,1373,1336,1300,1278,1246,1167$, $1134,1076,1064,1040,1001,962,936,896,872,845,825,795,717,700,679 ;$ M.p.: 210-215 ${ }^{\circ} \mathrm{C}$.

4-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-ethinyl-5-(3-methoxy-3-methylbut-1-in-1-yl)phenyl)-1H-1,2,3triazole (19)

18 ($536 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{KOH}(6 \mathrm{mg}, 0.10 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were suspended in toluene (25 mL) and stirred for 4 h at $130^{\circ} \mathrm{C}$. The reaction mixture was neutralized with $\mathrm{HCl}(0.10 \mathrm{~mL}, 1.0 \mathrm{M}$ aqueous solution, 0.10 mmol , 1.0 equiv.) and diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The resulting mixture was extracted with DCM ($4 \times 50 \mathrm{~mL}$) and dried over MgSO_{4}. After removing the solvent under reduced pressure the crude product was dissolved in DCM/MeOH (100:1) and precipitated with pentane. The desired product 19 ($440 \mathrm{mg}, 0.92 \mathrm{mmol}, 92 \%$) was obtained as white solid by filtration. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=8.38(\mathrm{~s}$, $1 \mathrm{H}), 8.36(\mathrm{~s}, 2 \mathrm{H}), 7.89-7.86(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=146.1,136.8,135.7,132.6(\mathrm{q}, J=33.7 \mathrm{~Hz}), 132.2,125.9(\mathrm{q}, J=3.3 \mathrm{~Hz})$, $125.5,124.6,123.6,123.4,123.3(q, J=267.2 \mathrm{~Hz}), 122.5-122.0(\mathrm{~m}), 118.7,94.3,81.9,81.2,80.1,71.0$, 52.0, 28.3; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=-63.00$; HRMS (ES): m/z calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{ONa}\right]^{+}$: 500.1168, found: 500.1174; ATR-FTIR $\left(\mathrm{cm}^{-1}\right): 3308,3099,2992,1601,1585,1444,1372,1327,1277$, 1240, 1184, 1166, 1130, 1062, 1033, 990, 888, 853, 821, 708, 699, 682, 655; Mp.: 193-197 ${ }^{\circ} \mathrm{C}$.
(R, R)-1,2-Bis(4-(3-(4-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-yl)-5-(3-methoxy-3-methylbut-1-in-1-yl)phenyl)-1H-1,2,3-triazol-1-yl)cyclohexane (2a)

(R, R)-Diaminocyclohexane $\quad(57 \mathrm{mg}, \quad 0.50 \mathrm{mmol}$, 1.00 equiv.), NaHCO_{3} ($336 \mathrm{mg}, 4.00 \mathrm{mmol}, 8.00$ equiv.) and CuSO_{4} ($16 \mathrm{mg}, 0.10 \mathrm{mmol}, 20 \mathrm{~mol} \%$) were suspended in $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$ ($12 \mathrm{~mL}, 3: 2: 1$). Nonafluorobutan-1sulfonyl azide ($488 \mathrm{mg}, 1.50 \mathrm{mmol}, 3.00$ equiv.) was added and the mixture was stirred for 24 h at room temperature. A solution of "click"-alkyne 19 ($489 \mathrm{mg}, 1.03 \mathrm{mmol}$, 2.05 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ ($11 \mathrm{~mL}, 10: 1$) and sodium ascorbate ($297 \mathrm{mg}, 1.50 \mathrm{mmol}, 3.00$ equiv.) was added. The reaction mixture was stirred for additional 24 h at room temperature. After removing the solvent under reduced pressure the residue was dissolved in DCM (50 mL). After washing with NaHCO_{3} solution ($4 \times 10 \mathrm{~mL}$), aqueous ammonia (26%, $2 \times 10 \mathrm{~mL}$) and $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$, the mixture was dried over MgSO_{4} and the solvent was removed under reduced pressure. The desired product $\mathbf{2 a}(396 \mathrm{mg}, 0.35 \mathrm{mmol}, 70 \%$) was isolated by flash column chromatography (DCM/EtOAc, $10: 1 \rightarrow 5: 1$) as a white solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz, THF- D_{8}): $\delta / \mathrm{ppm}=9.23(\mathrm{~s}, 2 \mathrm{H}), 8.51(\mathrm{~s}, 4 \mathrm{H}), 8.35(\mathrm{~s}, 2 \mathrm{H})$, $8.35(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 2 \mathrm{H}), 7.86(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-5.11(\mathrm{~m}, 2 \mathrm{H})$, $3.36(\mathrm{~s}, 6 \mathrm{H}), 2.48-2.26(\mathrm{~m}, 4 \mathrm{H}), 2.15-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz,THF-D $\left.\mathrm{D}_{8}\right): \delta / \mathrm{ppm}=$ $146.2,1457,138.5,134.42134 .3,133.0(q, J=33.3 \mathrm{~Hz}), 129.0,126.4(q, J=3.8 \mathrm{~Hz}), 125.9,124.5(q, J=$ 272.5 Hz), 122.4 - 122.2 (m), 122.2, 122.0, 121.0, 117.0, 94.0, 83.5, 71.5, 64.8, 51.9, 33.9, 28.6, 25.6; ${ }^{19} \mathrm{~F}$ NMR (282 MHz,THF- D_{8}): $\delta / \mathrm{ppm}=-63.76$; HRMS (ES): m / z calculated for $\left[\mathrm{C}_{54} \mathrm{H}_{44} \mathrm{~F}_{12} \mathrm{~N}_{12} \mathrm{O}_{2} \mathrm{Na}\right]^{+}: 1143.3411$, found: 1143.3402; ATR-FTIR (cm^{-1}): 1613, 1596, 1464, 1375, 1323, 1277, 1238, 1172, 1131, 1074, 1033, 989, 896, 846, 806, 707, 682; $[\boldsymbol{\alpha}]_{589}^{20}=+9.0\left(c 0.15, \mathrm{CHCl}_{3}\right)$; Мр.: $185-195^{\circ} \mathrm{C}$.

TetrakisTriazole 2b

3-((Trimethylsilyl)ethinyl)aniline (20)

According to a procedure of M. Erdélyi et al. ${ }^{[7]}$ 3-iodoaniline $(3.25 \mathrm{~mL}, 27.00 \mathrm{mmol}$, 1.0 equiv.), trimethylsilylacetylene ($4.48 \mathrm{~mL}, 32.40 \mathrm{mmol}, 1.2$ equiv.), Cul (206 mg , $1.08 \mathrm{mmol}, 4 \mathrm{~mol} \%$) and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(379 \mathrm{mg}, 0.54 \mathrm{mmol}, 2 \mathrm{~mol} \%)$ were dissolved in $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{DMF}(70 \mathrm{~mL}, 1: 1)$ and stirred for 4 days at room temperature. The reaction mixture was diluted with 1 M aqueous HCl solution (150 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The organic layers were washed with saturated NaHCO_{3} solution $(2 \times 100 \mathrm{~mL})$. The combined aqueous layer was again extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(2 \times 100 \mathrm{~mL})$. All combined organic phases were dried over MgSO_{4}. The crude product was adsorbed on silica and purified by flash column chromatography (DCM). The desired product 20 ($4.73 \mathrm{~g}, 25.00 \mathrm{mmol}$, 93%) was obtained as a brown oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=7.08(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dt}, J$ $=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{bs}, 2 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=146.2,129.3,123.8,122.5,118.3,115.7,105.5,93.5,0.1$; HRMS (ES): m / z calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NSiNa}\right]^{+}: 190.1047$, found: 190.1054.

3-Azido-1-((trimethylsilyl)ethinyl)benzene (21) ${ }^{[8]}$

3-((Trimethylsilyl) ethinyl)aniline (20) (189 mg, $1.00 \mathrm{mmol}, 1.00$ equiv.) was suspended in HCl ($2.1 \mathrm{~mL}, 1 \mathrm{M}$ aqueous solution, $2.10 \mathrm{mmol}, 2.10$ equiv.) and cooled to $0^{\circ} \mathrm{C}$. NaNO_{2} ($73 \mathrm{mg}, 1.05 \mathrm{mmol}, 1.05$ equiv.) was added and the resulting mixture was stirred 20 min at $0^{\circ} \mathrm{C} . \mathrm{NaN}_{3}(69 \mathrm{mg}, 1.05 \mathrm{mmol}, 1.05$ equiv.) was fractionally added and the reaction mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$ and additional 20 min at room temperature. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$ and dried over MgSO_{4}. The desired product 21 ($210 \mathrm{mg}, 0.98 \mathrm{mmol}$, 98\%) was obtained after a filtration through silica (pentane) as brown oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=$ 7.27 (td, $J=7.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dt}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{ddd}, J=2.2,1.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ (ddd, $J=7.7,2.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=140.3,129.7,128.6,124.9$, 122.3, 119.5, 104.0, 95.6, 0.0.

4-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-((trimethylsilyl)ethinyl)phenyl)-1H-1,2,3-triazole (22)

Azide 21 ($1.27 \mathrm{~g}, 5.90 \mathrm{mmol}, 1.0$ equiv.), 0.04 M aqueous CuSO_{4} solution ($7.4 \mathrm{~mL}, 0.06 \mathrm{mmol}, 5 \mathrm{~mol} \%$), sodium ascorbate ($7.4 \mathrm{~mL}, 0.12 \mathrm{M}$ aqueous solution, $0.18 \mathrm{mmol}, 15 \mathrm{~mol} \%$) and 1-ethinyl-3,5-bis(trifluoromethyl)benzene ($1.76 \mathrm{~g}, 7.38 \mathrm{mmol}, 1.25$ equiv.) were combined in a solvent mixture of DCM $(15 \mathrm{~mL})$ and $\mathrm{tBuOH}(15 \mathrm{~mL})$ and stirred for 48 h at $50^{\circ} \mathrm{C}$. The reaction mixture was diluted with saturated NaCl solution (30 mL) followed by extraction with DCM $(4 \times 50 \mathrm{~mL})$. After washing with aqueous ammonia $(26 \%, 3 \times 25 \mathrm{~mL})$ the solvent was removed under reduced pressure. The desired product 22 ($2.12 \mathrm{~g}, 4.67 \mathrm{mmol}, 79 \%$) was obtained as yellow solid by filtration. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=8.38(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 2 \mathrm{H}), 7.90-7.84(\mathrm{~m}$, $2 \mathrm{H}), 7.80(\mathrm{ddd}, J=7.8,2.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dt}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{td}, J=7.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.28$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=145.9,136.7,132.6,132.5(\mathrm{q}, \mathrm{J}=33.6 \mathrm{~Hz}$); 132.4, 130.1, $125.9(\mathrm{q}, J=3.9 \mathrm{~Hz}), 123.7,123.3(\mathrm{q}, J=272.8 \mathrm{~Hz}), 122.4-121.8(\mathrm{~m}), 120.6,118.7,103.1,97.1,-0.1 ;{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=-63.0$; HRMS (ES): m / z calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{SiNa}\right]^{+}: 476.0988$, found: 476.0983; ATR-FTIR (cm^{-1}): 2962, 2169, 1605, 1581, 1486, 1405, 1372, 1325, 1276, 1244, 1216, 1170, 1137, 1109, 1038, 993, 878, 842, 789, 759, 711, 682, 642; Mp.: 126-128 ${ }^{\circ} \mathrm{C}$.

4-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-ethinylphenyl)-1H-1,2,3-triazole (23)

22 ($2.05 \mathrm{~g}, 4.52 \mathrm{mmol}, 1.0$ equiv.) was dissolved in $\mathrm{MeOH}(50 \mathrm{~mL})$. After addition of KOH ($253 \mathrm{mg}, 4.52 \mathrm{mmol}, 1.0$ equiv.) the mixture was stirred for 12 h at room temperature. $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added and the resulting mixture was extracted
with DCM $(3 \times 50 \mathrm{~mL})$ and dried over MgSO_{4}. After removing the solvent under reduced pressure the desired product $23(1.71 \mathrm{~g}, 4.50 \mathrm{mmol},>99 \%)$ was afforded as a yellow solid. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta / \mathrm{ppm}=8.39(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 2 \mathrm{H}), 7.91(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{ddd}, J=7.8,2.3,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59(\mathrm{dt}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=$ $146.0,136.7,132.9,132.5(q, J=33.4 \mathrm{~Hz}), 132.3,130.2,125.9(q, J=3.7 \mathrm{~Hz}), 124.3,124.0,123.3(q, J=$ 272.8 Hz), 122.1 (hept, $J=3.8 \mathrm{~Hz}$), 121.0, 118.7, 81.9, 79.5; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta / \mathrm{ppm}=-63.00$; HRMS (ES): m / z calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{Na}\right]^{+}: 404.0593$, found: 404.0599; ATR FTIR (cm^{-1}): 3261, 1607, $1582,1485,1407,1371,1325,1275,1241,1177,1125,1104,1087,1039,994,897,840,789,710,700$, 682, 651; Mp.: $144-146{ }^{\circ} \mathrm{C}$.
(R,R)-1,2-bis(4-(3-(4-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-yl)phenyl)-1H-1,2,3-triazol-1yl)cyclohexane (TetraTri 2b)

(R, R)-Diaminocyclohexane ($57 \mathrm{mg}, \quad 0.50 \mathrm{mmol}, \quad 1.00$ equiv.), NaHCO_{3} ($336 \mathrm{mg}, 4.00 \mathrm{mmol}, 8.00$ equiv.) and CuSO_{4} ($16 \mathrm{mg}, 0.10 \mathrm{mmol}, 20 \mathrm{~mol} \%$) were suspended in $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$ ($12 \mathrm{~mL}, 3: 2: 1$). Nonafluorobutan-1sulfonyl azide ($488 \mathrm{mg}, 1.50 \mathrm{mmol}, 3.00$ equiv.) was added and the mixture was stirred for 24 h at ambient temperature. A solution of "click"-alkyne 23 ($489 \mathrm{mg}, 1.03 \mathrm{mmol}, 2.05$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ ($11 \mathrm{~mL}, 10: 1$) and sodium ascorbate ($391 \mathrm{mg}, 1.03 \mathrm{mmol}, 2.05$ equiv.) was added. The reaction mixture was stirred for additional 24 h at room temperature. After removing the solvent under reduced pressure, the residue was dissolved in DCM (50 mL). After washing with NaHCO_{3} solution ($4 \times 10 \mathrm{~mL}$), aqueous ammonia $(26 \%, 2 \times 10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ the mixture was dried over MgSO_{4} and the solvent was removed under reduced pressure. The desired product $\mathbf{2 b}(312 \mathrm{mg}$, $0.34 \mathrm{mmol}, 68 \%$) was isolated by flash column chromatography (DCM/EtOAc, 10:1 $\rightarrow 5: 1$) as a white solid.
${ }^{1} \mathrm{H}$ NMR (600 MHz, THF- D_{8}): $\delta / \mathrm{ppm}=9.15(\mathrm{~s}, 2 \mathrm{H}), 8.51(\mathrm{~s}, 4 \mathrm{H}), 8.32(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 2 \mathrm{H}), 7.96$ (s, 2H), $7.80-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.25-5.16(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.12-2.02$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR (150 MHz, THF- D_{8}): $\delta / \mathrm{ppm}=146.4,146.1,138.5,134.6,134.1,133.0(\mathrm{q}, J=33.2 \mathrm{~Hz}$), $131.0,126.4(q, J=3.7 \mathrm{~Hz}), 126.2,124.6(q, J=272.5 \mathrm{~Hz}), 122.3-122.1(\mathrm{~m}), 121.7,121.1-120.9(\mathrm{~m})$, 119.8, 117.5, 64.7, 33.9; ${ }^{19}$ F NMR (564 MHz, THF- D_{8}): $\delta / \mathrm{ppm}=-63.75$; HRMS (ES): m / z calculated for $\left[\mathrm{C}_{42} \mathrm{H}_{28} \mathrm{~F}_{12} \mathrm{~N}_{12} \mathrm{Na}\right]^{+}: 951.2260$, found: 951.2251; ATR-FTIR $\left(\mathrm{cm}^{-1}\right): 1617,1589,1372,1327,1313,1276$, $1235,1175,1126,1111,1045,997,896,846,792,701,682 ;[\alpha]_{589}^{20}:-10.0\left(c 0.12, \mathrm{CHCl}_{3}\right)$; М.р.: 250$252^{\circ} \mathrm{C}$.

TetrakisTriazole 2c

3-(Trifluoromethyl)-5-((trimethylsilyl)ethynyl)aniline (24)
 ($3.378 \mathrm{~g}, 15 \mathrm{mmol}, 1.5$ equiv.) were suspended in THF (50 mL) and stirred for

30 min at $80^{\circ} \mathrm{C}$. After cooling to room temperature trimethylsilylacetylene ($2.08 \mathrm{~mL}, 15.0 \mathrm{mmol}, 1.5$ equiv.), Cul ($76 \mathrm{mg}, 0.04 \mathrm{mmol}, 4 \mathrm{~mol} \%$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(231 \mathrm{mg}, 0.02 \mathrm{mmol}, 2 \mathrm{~mol} \%)$ and $\mathrm{Et}_{3} \mathrm{~N}(14 \mathrm{~mL}, 100 \mathrm{mmol}, 10$ equiv.) were added. The resulting mixture was stirred for 3 days at $80^{\circ} \mathrm{C}$. The crude product was filtered through celite to remove solid material and $\mathrm{Et}_{3} \mathrm{~N}$. After removing the solvent, the desired product 24 ($2.492 \mathrm{~g}, 9.7 \mathrm{mmol}, 97 \%$) was isolated by flash column chromatography (pentane/EtOAc, 9:1) as a brown resin. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=6.87(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 0.01(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=146.5,132.0(\mathrm{q}, J=32.4 \mathrm{~Hz}), 124.9,123.8(\mathrm{q}, J=272.3 \mathrm{~Hz})$, $121.0,119.0(q, J=4.0 \mathrm{~Hz}), 111.7(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 103.8,95.4,-0.02 ;{ }^{19}$ F NMR (376 MHz,THF-D$\left.D_{8}\right): \delta / \mathrm{ppm}=$ -63.23; HRMS (ES): m / z calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NSiNa}\right]^{+}$: 280.0740, found: 280.0731; ATR FTIR (cm^{-1}): $3315,2962,2152,1627,1600,1475,1444,1365,1249,1174,1165,1114,999,985,891,837,721,694$.

4-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-(trifluoromethyl)-5-((trimethylsilyl)ethynyl)phenyl)-1H-1,2,3 triazole (25)

3-(Trifluoromethyl)-5-((trimethylsilyl)ethynyl)aniline 24 ($1.544 \mathrm{~g}, 6.0 \mathrm{mmol}, 1.2$ equiv.) was dissolved in TFA (25 mL) and cooled to $0^{\circ} \mathrm{C}$. After addition of $\mathrm{NaNO}_{2}(785 \mathrm{mg}, 11.5 \mathrm{mmol}$, 2.3 equiv.) the mixture was stirred for 30 min at $0^{\circ} \mathrm{C} . \mathrm{NaN}_{3}(813 \mathrm{mg}, 12.5 \mathrm{mmol}$, 2.5 equiv.) was added slowly (exothermic reaction, nitrous fumes) at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 2 h at room temperature. Afterwards the reaction mixture was quenched by slow addition of $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$, followed by extraction with pentane $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous NaHCO_{3} solution ($3 \times 30 \mathrm{~mL}$), concentrated under reduced pressure (volume: ~ 2 mL), and directly used as in situ 3,5-bis(trifluoromethyl)phenylazide.

The in situ azide solution, 0.04 M aqueous CuSO_{4} solution $(5.0 \mathrm{~mL}, 0.2 \mathrm{mmol}$, $5 \mathrm{~mol} \%$), sodium ascorbate ($0.149 \mathrm{~g}, 0.75 \mathrm{mmol}, 15 \mathrm{~mol} \%$) and 1-ethinyl-3,5bis(trifluoromethyl)benzene ($1.29 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv.) were combined in a solvent mixture of $\operatorname{DCM}(15 \mathrm{~mL})$ and $\mathrm{tBuOH}(15 \mathrm{~mL})$ and stirred for 3 days at $50^{\circ} \mathrm{C}$. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ followed by extraction with DCM $(4 \times 50 \mathrm{~mL})$. After washing with aqueous ammonia ($26 \%, 3 \times 25 \mathrm{~mL}$) the solvent was removed under reduced pressure. The desired product 25 ($1.453 \mathrm{~g}, 3.24 \mathrm{mmol}, 65 \%$) was obtained as slight yellow solid by flash column chromatography (pentane/EtOAc, 9:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): ~ \delta / \mathrm{ppm}=8.45(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 2 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{~s}$, 1H). ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=146.5,137.2,133.0,132.5(\mathrm{q}, J=33.7 \mathrm{~Hz}), 132.0,129.4(\mathrm{q}, J=$ $3.8 \mathrm{~Hz}), 126.8,126.1-126.0(\mathrm{~m}), 125.8(\mathrm{q}, ~ J=37.4 \mathrm{~Hz}), 123.3(\mathrm{q}, J=272.5 \mathrm{~Hz}), 122.9(\mathrm{q}, J=273.1 \mathrm{~Hz})$, $122.4(\mathrm{q}, J=3.7 \mathrm{~Hz}), 118.6,117.6(\mathrm{q}, J=3.8 \mathrm{~Hz}), 81.4,80.6 .{ }^{19} \mathrm{~F} \mathbf{N M R}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=62.99$, 63.09. HRMS (ES): m / z calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{8} \mathrm{~F}_{9} \mathrm{~N}_{3} \mathrm{Na}\right]^{+}: 472.0467$; found: 472.0464; ATR FTIR (cm ${ }^{-1}$):1602, $1305,1276,159,1168,1118,1085,1047,1031,999,987,889,860,844,823,806$.
(1R,2R)-1,2-bis(4-(3-(4-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-yl)-5-(trifluoromethyl)-phenyl)-1H-1,2,3-triazol-1-yl)cyclohexane (2c)

(R, R)-Diaminocyclohexane $\left(0.171 \mathrm{~g}, \quad 1.5 \mathrm{mmol}, 1.0\right.$ equiv.), NaHCO_{3} ($1.008 \mathrm{~g}, 12.0 \mathrm{mmol}, 8.0$ equiv.) and $\mathrm{CuSO}_{4}(7.5 \mathrm{~mL}, 0.04 \mathrm{M}$ aqueous solution, $0.3 \mathrm{mmol}, 20 \mathrm{~mol} \%$) were suspended in $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}(45 \mathrm{~mL}, 3: 2)$. Nonafluorobutan-1-sulfonyl azide ($0.843 \mathrm{~mL}, 4.5 \mathrm{mmol}, 3.00$ equiv.) was added and the mixture was stirred for 20 h at room temperature. A solution of "click"-alkyne 25 ($1.348 \mathrm{~g}, 3.09 \mathrm{mmol}, 1.03$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ ($30 \mathrm{~mL}, 10: 1$) and sodium ascorbate ($1.783 \mathrm{~g}, 9.0 \mathrm{mmol}, 3.0$ equiv.) were added. The reaction mixture was stirred for additional 3 days at room temperature. The solvent was removed under reduced pressure and the residue was solved in DCM (100 mL). After washing with NaHCO_{3} solution ($4 \times 30 \mathrm{~mL}$), aqueous ammonia (26%, $2 \times 50 \mathrm{~mL}$) and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ the mixture was dried over MgSO_{4} and the solvent was removed in vacuo. The desired product $\mathbf{2 c}(1.265 \mathrm{~g}, 1.2 \mathrm{mmol}, 79 \%$) was isolated by flash column chromatography (DCM) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz , acetone- D_{6}): $\delta / \mathrm{ppm}=9.34(\mathrm{~s}, 2 \mathrm{H}), 8.67(\mathrm{~s}, 2 \mathrm{H}), 8.45(\mathrm{~s}, 2 \mathrm{H}), 8.41(\mathrm{~s}, 4 \mathrm{H}), 8.07(\mathrm{~s}, 2 \mathrm{H}), 8.00(\mathrm{~s}, 2 \mathrm{H}), 7.96(\mathrm{~s}, 2 \mathrm{H}), 5.30-$ $5.22(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.42(\mathrm{~m}, 4 \mathrm{H}), 2.20-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.77(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , acetone$\left.D_{6}\right): \delta / p p m=146.0,145.1,138.5,134.9,133.8,132.9(q, J=33,0 \mathrm{~Hz}), 132.7(\mathrm{q}, J=33,3 \mathrm{~Hz}), 126.3(\mathrm{q}, J=$ $3,2 \mathrm{~Hz}), 126.1(\mathrm{q}, J=4,4 \mathrm{~Hz}), 124.4(\mathrm{q}, J=272,2 \mathrm{~Hz}), 124.3(\mathrm{q}, J=272,2 \mathrm{~Hz}), 122.7,122.3(\mathrm{q}, J=4,0 \mathrm{~Hz})$, 121.4, 120.3, $116.0(q, J=3,7 \mathrm{~Hz}), 65.3,32.9,25.3 .{ }^{19}$ F NMR (282 MHz , acetone- D_{6}): $\delta / \mathrm{ppm}=-63.56$, 63.58. HRMS (ES): m / z calculated for [$\mathrm{C}_{44} \mathrm{H}_{26} \mathrm{~F}_{18} \mathrm{~N}_{12} \mathrm{CII}^{-}: 1099,1810$; found: 1099,1835; ATR-FTIR (cm ${ }^{-1}$): 1489, 1354, 1379, 1307, 1278, 1170, 1105, 1041, 898, 804, 682; $[\boldsymbol{\alpha}]_{589}^{20}:+4.6\left(c 0.142, \mathrm{CHCl}_{3}\right)$.

BisTriazole B1

(R, R)-1,2-Bis(4-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,3-triazole-1-yl)cyclohexane (B1)

(R, R)-Diaminocyclohexane ($150 \mu \mathrm{~L}, 1.25 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{NaHCO}_{3}(0.84 \mathrm{~g}$, $10.0 \mathrm{mmol}, 8.0$ equiv.) and $\mathrm{CuSO}_{4}(20 \mathrm{mg}, 0.13 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ were suspended in $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$ (9 mL , 6:3:2). Nonafluorobutan-1-sulfonyl azide ($1.22 \mathrm{~g}, 3.74 \mathrm{mmol}, 3.00$ equiv.) was added and the mixture was stirred for 8 h at room temperature. A solution of 1-ethinyl-3,5-bis(trifluoromethyl)benzene ($0.75 \mathrm{~g}, 3.13 \mathrm{mmol}, 2.5$ equiv.) and sodium ascorbate ($0.75 \mathrm{~g}, 7.5 \mathrm{mmol}, 3.0$ equiv.) were added. The reaction mixture was stirred for additional 12 h at room temperature. The solvent was removed under reduced pressure and the residue was solved in $\mathrm{DCM}(30 \mathrm{~mL})$. After washing with NaHCO_{3} solution $(4 \times 10 \mathrm{~mL})$, aqueous ammonia ($26 \%, 2 \times 10 \mathrm{~mL}$) and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The resulting solution mixture was added dropwise into pentane and the formed solid was filtrated. The collected solid was dissolved in acetone and again precipitated by addition of the solution in pentane, providing the desired product B1 ($548.0 \mathrm{mg}, 0.82 \mathrm{mmol}, 66 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- D_{6}): $\delta / \mathrm{ppm}=8.65(\mathrm{~s}, 2 \mathrm{H}), 8.34(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 7.92(\mathrm{~s}, 2 \mathrm{H}), 5.31-5.18(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.32(\mathrm{~m}$, 4 H), $2.14-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.72(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, acetone- D_{6}): $\delta / \mathrm{ppm}=144.8,134.5$,
$132.6(\mathrm{q}, J=33.2 \mathrm{~Hz}), 126.2(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 124.3(\mathrm{q}, J=272.1 \mathrm{~Hz}), 122.7,122.2-121.4(\mathrm{~m}), 64.9,33.3$, 25.2; ${ }^{19}$ F-NMR (300 MHz , acetone- D_{6}): $\delta / \mathrm{ppm}=-63.63$; HRMS (ES): m/z calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~F}_{12} \mathrm{~N}_{6} \mathrm{Na}\right]^{+}$: 665.1294, found: 665.1290; ATR-FTIR $\left(\mathrm{cm}^{-1}\right): 1313,1276,1165,1128,1091,898,842,702,682 ;[\boldsymbol{\alpha}]_{589}^{20}$: +131.0 (c 0.155, CHCl_{3}); М.p.: $282-284{ }^{\circ} \mathrm{C}$.

Preparation of the silyl ketene acetals 4

General procedure for the preparation of the silyl ketene acetals

According to Jacobsen et al. ${ }^{[9]} n$-butyllithium (1.6 M in hexane; 1.1 equiv.) was added slowly to a solution of dry $\mathrm{HN}(\mathrm{Pr})_{2}$ (1.2 equiv.) in THF ($2.5 \mathrm{~mL} / \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 20 min at $0^{\circ} \mathrm{C}$ and then cooled to $-78^{\circ} \mathrm{C}$. The corresponding ester (1.0 equiv.) was added at $-78^{\circ} \mathrm{C}$ over 10 min and the reaction was stirred for additional 30 min at $-78^{\circ} \mathrm{C}$. NMP $(0.2 \mathrm{~mL} / \mathrm{mmol})$ was added slowly, followed by a slow addition (30 min) of a tert-butyldimethylsilyl chloride solution (1.2 equiv., dissolved in $0.2 \mathrm{~mL} / \mathrm{mmol}$ of THF). The resulting reaction mixture was stirred for additional 30 min at $-78^{\circ} \mathrm{C}$ and warmed to room temperature over a time of 1 h . Then the solvent was removed under reduced pressure and the resulting residue was dissolved in pentane ($6 \mathrm{~mL} / \mathrm{mmol}$), washed with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL} / \mathrm{mmol}), \mathrm{NaHCO}_{3}$ saturated solution ($3 \mathrm{~mL} / \mathrm{mmol}$), NaCl saturated solution ($3 \mathrm{~mL} / \mathrm{mmol}$) and $\mathrm{CuSO}_{4}(3 \mathrm{~mL} / \mathrm{mmol})$ solutions and dried over anhydrous NaSO_{4}. After removing the solvent under reduced pressure, the crude product was purified by vacuum distillation to afford the desired product as a colourless liquid.

1-(tert-Butyldimethylsilyloxy)-1-isopropoxyethene (4a)

OTBS According to the general procedure n-butyllithium (1.6 M in hexanes; $11.5 \mathrm{~mL}, 18.3 \mathrm{mmol}, 1.1$ equiv.), $\mathrm{HN}(\operatorname{Pr})_{2}(2.8 \mathrm{~mL}, 20.0 \mathrm{mmol}, 1.2$ equiv.), isopropyl acetate ($1.96 \mathrm{~mL}, 16.7 \mathrm{mmol}, 1.0$ equiv.) and tert-butyldimethylsilyl chloride ($3.000 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.2$ equiv.) were put under reaction conditions. The resulting crude product was purified by distillation (b.p.: $100-110^{\circ} \mathrm{C}$ at 60 mbar) to afford the desired product ($2.881 \mathrm{~g}, 13.3 \mathrm{mmol}, 80 \%$). The analytical data match with those previously reported. ${ }^{[9]}{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=4.19$ (hept, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.27(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.25(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 6 \mathrm{H})$.

1-(tert-Butyldimethylsilyloxy)-1-(tert-butoxy)ethene (4b)

According to the general procedure n-butyllithium (1.6 M in hexane; $8.3 \mathrm{~mL}, 13.2 \mathrm{mmol}, 1.1$ equiv.), $\mathrm{HN}(\mathrm{P} \operatorname{Pr})_{2}(2.0 \mathrm{~mL}, 14.4 \mathrm{mmol}, 1.2$ equiv.), tert-butyl acetate ($1.6 \mathrm{~mL}, 12 \mathrm{mmol}, 1.0$ equiv.) and tert-butyldimethylsilyl chloride ($2.170 \mathrm{~g}, 14.4 \mathrm{mmol}, 1.2$ equiv.) were put under reaction conditions. The resulting crude product was purified by distillation (b.p.: 50-57 ${ }^{\circ} \mathrm{C}$ at 3 mbar) to afford the desired product ($1.512 \mathrm{~g}, 6.6 \mathrm{mmol}, 55 \%$). The analytical data match with those previously reported. ${ }^{[9]}{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=3.47(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~s}$, $9 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 6 \mathrm{H})$.

1-(tert-Butyldimethylsilyloxy)-1-methoxyethene (4c)

Abstract

According to the general procedure n-butyllithium (1.6 M in hexane; $11.5 \mathrm{~mL}, 18.3 \mathrm{mmol}, 1.10$ equiv.), $\mathrm{HN}(\mathrm{iPr})_{2}(2.8 \mathrm{~mL}, 20.0 \mathrm{mmol}, 1.2$ equiv.), methyl acetate ($1.3 \mathrm{~mL}, 16.7 \mathrm{mmol}, 1.0$ equiv.) and tert-butyldimethylsilyl chloride ($3.000 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.20$ equiv.) were added under reaction conditions. The resulting crude product was purified by distillation (b.p.: $80-85^{\circ} \mathrm{C}$ at 60 mbar) to afford the desired product ($2.040 \mathrm{~g}, 10.8 \mathrm{mmol}, 65 \%$). The analytical data match with those previously reported. ${ }^{[9]}{ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=3.53(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}$, $1 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H})$.

Quinoline derivatives $3 m$ and $3 p$

Adapting the experimental procedure reported by Ragaini et $a{ }^{[10]}$ for the synthesis of phenanthroline derivatives, two quinoline derivatives were synthesized.

4-chloroquinoline (3m)

 4-Hydroxiquinoline ($500 \mathrm{mg}, 3.44 \mathrm{mmol}, 1.0$ equiv.) and POCl_{3} ($5.7 \mathrm{~mL}, 14.0 \mathrm{mmol}$) were refluxed for 1 h in a dried Schlenk pressure tube. The mixture was allowed to cool and very slowly added under vigorous stirring to 20 mL of cold water immersed in an ice bath. The mixture was taken to pH 13 by the addition of NaOH pellets, maintaining the temperature at $0{ }^{\circ} \mathrm{C}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure obtaining an oil, that was purified by column chromathography (pentane: AcOEt, 9:1) to afford 4chloroquinoline (27) (447 mg, $2.73 \mathrm{mmol}, 85 \%$) as a white solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=8.79$ (d, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{dd}, J=8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{ddd}, J=8.4,6.9,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66(\mathrm{ddd}, J=8.2,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=$ 149.9, 149.1, 142.9, 130.6, 129.9, 127.8, 126.6, 124.3, 121.4. HRMS (ES): m/z calculated for $\left[\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{CINH}^{+}\right.$: 164.0267, found: 164.0263; ATR-FTIR (cm^{-1}): 3048, 1585, 1556, 1495, 1381, 1296, 822, 752, 665.

4-Methoxyquinoline (3p)

Sodium methoxide ($202 \mathrm{mg}, 3.74 \mathrm{mmol}, 7.0$ equiv.), MeOH anhydrous were added to a dried schlenk pressure tube. 4-chloroquinoline ($87 \mathrm{mg}, 0.53 \mathrm{mmol}, 1.0$ equiv.) was then added and the resulting mixture was refluxed for 2 days. The solvent was removed under reduced pressure and the obtained residue was purified by column chromatography (pentane: AcOEt, 1:1) to afford 4 -methoxyquinoline ($73 \mathrm{mg}, 0.459 \mathrm{mmol}, 86 \%$) as colourless liquid. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=$ $8.76(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.21$ (ddd, $J=8.4,1.4,0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.06 (ddd, $J=8.5,1.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.71 (ddd, $J=8.4,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{ddd}, J=8.2,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta / \mathrm{ppm}=162.7$, 151.2, 148.8, 130.1, 128.7, 125.9, 122.0, 121.5, 100.2, 55.9 . HRMS (ES): m / z calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NOH}\right]^{+}: 160.0757$, found: 160.0759; ATR-FTIR (cm^{-1}): 2938, 1591, 1572, 1506, 1392, 1312, 1111, 988, 763.

Organocatalytic reaction

Screening of the reaction temperature and anion effects

3a

2) TetraTri catalyst 1a

additive, MTBE, Temp., 15 h

5a

Entry	Cat. loading (mol\%)	Temp [${ }^{\circ} \mathrm{C}$]	Additive	Yield [\%] ${ }^{\text {[a] }}$	e.r. ${ }^{\text {[b] }}$
1	10	rt	--	76	70:30
2	10	$0-\mathrm{rt}$	--	64	77:23
3	10	-30	--	87	91:9
4	5	-30	--	74	91:9
5	10	-78	--	51	95:5
6	5	-78	--	42	95:5
7	10	-78-rt	--	76	96:4
8	5	-78-rt	--	64	95:5
9	2.5	-78-rt	--	44	95:5
10	5	-78-rt	--	$95^{[c]}$	95:5
11	5	-78-rt	NaBr (1 equiv.)	91	89:11
12	5	-78-rt	NaBF_{4} (1 equiv.)	73	87:13

[a] Yield of isolated product after column chromatography. [b] Enantiomeric ratio determined by HPLC using a commercially available chiral stationary-phase column (Diacel chiralcel OD-H). [c] 20 h reaction.

Note: Considering the unavailability of other TrocX acylating agents, the importance of Cl^{-}with respect to other counteranions was evaluated by adding 1 equiv. of $\mathrm{Br}^{-}(\mathrm{NaBr}$, entry 11$)$ or the inert BF_{4}^{-}anion $\left(\mathrm{NaBF}_{4}\right.$, entry 12) to the reaction mixture. In the presence of these anions and the subsequent binding competation with the catalyst, the reaction proceeded well, but with notable lower enantioselectivity.

General procedure for the organocatalytic reaction

In a previously dried schlenk pressure tube, the corresponding quinoline derivative 3 (0.1 mmol) was dissolved in methyl-tert-butylether (MTBE) ($2 \mathrm{~mL}, 0.05 \mathrm{M}$). 2,2,2-Trichloroethyl chloroformate (TrocCl) (1.0 equiv.) was added at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and following cooled down to $-78^{\circ} \mathrm{C}$ (dry ice/acetone bath). Catalyst TetraTri $\mathbf{1 a}$ ($5 \mathrm{~mol} \%$) and silyl ketene acetal (2 equiv.) were added. The reaction mixture was stirred for 20 h (when used silyl ketene acetal isopropyl derivative) or 24 h (when used silyl ketene acetal tert-butyl derivative) and allowed to warm to ambient temperature during that time. The crude product was adsorbed on silica by adding small amount of SiO_{2} and removing the solvent under reduced pressure. The crude product was purified by flash column chromatography to afford the desired product.

The racemic versions were prepared without catalyst. The reaction solution was stirred at $-78^{\circ} \mathrm{C}$ for 20 h and additional 24 h at ambient temperature or it was directly taken out of the $-78^{\circ} \mathrm{C}$ bath and stirred for 24 h at room temperature.

Products 5a-q, 6 and 7

Ethyl 2-(2-isopropoxy-2-oxoethyl)quinoline-1(2H)-carboxylate (6)

Quinoline ($12.1 \mu \mathrm{~L}, 0.1 \mathrm{mmol}, 1.0$ equiv.), ethyl chlroroformate ($10.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$, 1.0 equiv.), TetraTri $1 \mathbf{a} \quad(11.2 \mathrm{mg}, \quad 0.10 \mathrm{mmol}, \quad 10 \mathrm{~mol} \%$) and 1 -(tert-butyldimethylsilyloxy)-1-isopropoxyethene (4a) ($51 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 2.0$ equiv.) were added according to the general procedure. The desired product (11.2 mg , 0.037 mmol, 37%) was isolated as colourless oil by flash column chromatography (pentane/EtOAc 20:1). The enantiomeric ratio was found to be 48:52 by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (95:5) $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=300 \mathrm{~nm}, \operatorname{tr}$ (minor): 6.8 min , tr (major): 7.8 min .) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=7.58(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=9.5,5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.46$ (td, $J=7.4,5,9 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dq}, J=$ $10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=170.0,154.1,134.3,128.2,127.8,127.0,126.5,125.9,124.9$, 124.5, 68.2, 62.4, 49.5, 38.5, 21.9, 21.9, 14.6; HRMS (ES): m/z calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}\right]^{+}: 326.1363$, found: 326.1356; ATR-FTIR (cm^{-1}): 2981, 2938, 1703, 1490, 1374, 1315, 1267, 1106, $1033,763$.

Benzyl 2-(2-isopropoxy-2-oxoethyl)quinoline-1(2H)-carboxylate (7)

Quinoline ($12.1 \mu \mathrm{~L}, \quad 0.1 \mathrm{mmol}, 1.0$ equiv.), benzyl chlroroformate $(15.0 \mu \mathrm{~L}$, $0.1 \mathrm{mmol}, 1.0$ equiv.), TetraTri 1a ($11.2 \mathrm{mg}, 0.10 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and 1 -(tert-butyldimethylsilyloxy)-1-isopropoxyethene (4a) ($51 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 2.0$ equiv.) were added according to the general procedure. The desired product ($21.3 \mathrm{mg}, 0.058 \mathrm{mmol}, 58 \%$) was isolated as colourless oil by flash column chromatography (pentane/EtOAc 20:1). The enantiomeric ratio was found to be 42:58 by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (95:5) $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=300 \mathrm{~nm}$, tr (minor): 10.6 min , tr (major): 12.1 min . ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=7.59$ (br. s, 1 H), $7.41-7.28$ (m, 5H), 7.26-7.17 (m, 1H), 7.10-7.05 (m, 2H), 6.51 (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=9.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{td}, J=$ $7.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.95$ (hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.18(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=169.9$, 154.0, 136.2, 134.1, 132.8, 128.7, 128.3, 128.2, 128.1, 127.9, 127.0, 126.5, 125.9, 125.0, 124.7, 87.5, 68.2, 68.0, 49.7, 38.4, 21.9, 21.9; HRMS (ES): m / z calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na}\right]^{+}: 388.1519$, found: 388.1519; ATR-FTIR $\left(\mathrm{cm}^{-1}\right): 2980,2933,1703,1489,1456,1397,1302,1266,1105,1022,963,905,823$, 761, 697, 602, 459.
(R)-2,2,2-Trichloroethyl 2-(2-isopropoxy-2-oxoethyl)quinoline-1(2H)-carboxylate (5a)

Quinoline ($12.1 \mu \mathrm{~L}, 0.1 \mathrm{mmol}, 1.0$ equiv.), $\operatorname{TrocCl}(14.2 \mu \mathrm{~L}, 0.1 \mathrm{mmol}, 1.0$ equiv.), TetraTri 1a ($5.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and 1-(tert-butyldimethylsilyloxy)-1isopropoxyethene (4a) ($51 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 2.0$ equiv.) were added according to the
general procedure. The desired product ($38.7 \mathrm{mg}, 0.095 \mathrm{mmol}, 95 \%$) was isolated by flash column chromatography (pentane/EtOAc 30:1). The enantiomeric ratio was found to be $95: 5$ by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (95:5) $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=300 \mathrm{~nm}$, $\operatorname{tr}(S): 6.7 \mathrm{~min}, \operatorname{tr}(R): 7.6 \mathrm{~min}$.) [$\boldsymbol{\alpha}_{589}^{20}$: $-171\left(c 0.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=7.66(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.07$ (m, 2H), $6.54(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=9.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{td}, J=7.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{br} . \mathrm{s}$, $1 \mathrm{H}), 4.98$ (hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.66 (br. s, 1 H), $2.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~d}$, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=169.6,152.4,128.0,127.1,126.6,126.0,125.3,95.2$, $77.4,75.6,68.3,50.1,38.3,29.9,22.0,21.9$; HRMS (ES): m / z calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Cl}_{3} \mathrm{NO}_{4} \mathrm{Na}\right]^{+}$: 428.0194, found: 428.0192; ATR-FTIR (cm^{-1}): 2950, 1716, 1491, 1398, 1373, 1313, 1267, 1128, 1105, 1033, 954, 810, 773, 754, 711.
(R)-2,2,2-Trichloroethyl 2-(2-(tert-butoxy)-2-oxoethyl)quinoline-1(2H)-carboxylate (5b)

Quinoline (3a) ($12.3 \mu \mathrm{~L}, 0.1 \mathrm{mmol}, 1.0$ equiv.), $\operatorname{TrocCl}(14.2 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$, 1.0 equiv.), TetraTri $1 \mathbf{a} \quad(5.6 \mathrm{mg}, \quad 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and 1 -(tert-butyldimethylsilyloxy)-1-(tert-butoxy)ethene (4b) ($54 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 2.0$ equiv.) were reacted according to the general procedure. The desired product ($23.6 \mathrm{mg}, 0.056 \mathrm{mmol}, 56 \%$) was isolated by flash column chromatography (pentane/EtOAc 20:1) as a slightly yellow oil.

Scale up: Following the general procedure, quinoline (3a) ($123.4 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 1.0$ equiv.) was reacted with $\operatorname{TrocCl}(141.9 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 1.0$ equiv.). TetraTri 1 a ($28 \mathrm{mg}, 0.025 \mathrm{mmol}, 2.5 \mathrm{~mol} \%$) and 1 -(tert-butyldimethylsilyloxy)-1-(tert-butoxy)ethene (4b) ($54 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 2.0$ equiv.) were added at $-78 \circ \mathrm{C}$, the reaction mixture was slowly warmed up to r.t. overnight and then further stirred for 4 days at r.t.. The desired product ($298.7 \mathrm{mg}, 0.71 \mathrm{mmol}, 71 \%$) was isolated by flash column chromatography (pentane/EtOAc 20:1).

The enantiomeric ratio was found to be $98: 2$ by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (95:5) $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=300 \mathrm{~nm}$, $\operatorname{tr}(S): 6.0 \mathrm{~min}$, $\operatorname{tr}(R): 6.8 \mathrm{~min}$) $[\alpha]_{589}^{20}:-170\left(c 1.15, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=7.65(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.16$ (dd, $J=9.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.49 (dd, $J=13.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.07 (br. s, 1 H), 4.62 (br. s, 1 H), 2.41 (d, $J=7.3$ Hz), $1.42(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=169.3,152.4,130.3,128.0,127.9,127.2,126.5$, 125.8, 125.3, 125.2, 95.2, 81.1, 75.6, 50.2, 39.9, 28.1. HRMS (ES): m / z calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Cl}_{3} \mathrm{NO}_{4} \mathrm{Na}^{+}\right.$: 442.0350, found: 442.0344; ATR-FTIR $\left(\mathrm{cm}^{-1}\right)$: 2978, 1717, 1491, 1395, 1368, 1315, 1271, 1145, 1121, 754, 711.
(R)-2,2,2-Trichloroethyl 2-(2-methoxy-2-oxoethyl)quinoline-1(2H)-carboxylate (5c)

Quinoline (3a) ($13.2 \mu \mathrm{~L}, 0.11 \mathrm{mmol}, 1.0$ equiv.), TrocCl ($15.2 \mu \mathrm{~L}, 0.11 \mathrm{mmol}$, 1.0 equiv.), TetraTri $1 \mathbf{1 a}(6.2 \mathrm{mg}, \quad 0.06 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and 1 -(tert-butyldimethylsilyloxy)-1-methoxyethene (4c) ($41.4 \mathrm{mg}, 0.22 \mathrm{mmol}, 2.0$ equiv.) were reacted according to the general procedure. The desired product ($31.8 \mathrm{mg}, 0.084 \mathrm{mmol}, 76 \%$) was isolated by flash column chromatography (pentane/EtOAc 20:1) as a colourless oil. The enantiomeric ratio
was found to be 89:11 by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (95:5) hexane $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $300 \mathrm{~nm}, \operatorname{tr}(S): 10.2 \mathrm{~min}, \operatorname{tr}(R): 14.5 \mathrm{~min}) .[\alpha]_{589}^{20}:-102\left(c 0.20, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=$ 7.66 (br. s, 1H), $7.33-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=9.5,5.9 \mathrm{~Hz}$, 1 H), 5.51 (dd, $J=13.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.06 (br. s, 1 H), 4.67 (br. s, 1 H), 3.64 (s, 3 H), 2.50 (d, $J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=170.6,151.5,133.1,132.2,128.1,127.0,126.6,126.0,125.4$, 110.1, 95.2, 75.6, 52.0, 50.0, 37.7. HRMS (ES): m/z calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{Cl}_{3} \mathrm{NO}_{4} \mathrm{Na}\right]^{+}: 399.9881$, found: 399.9875; ATR-FTIR (cm^{-1}): 2953, 1732, 1715, 1491, 1396, 1315, 1267, 1122, 1034, 754, 711.
(R)-2,2,2-Trichloroethyl 2-(2-isopropoxy-2-oxoethyl)-4-methylquinoline-1(2H)-carboxylate (5d)

4-Methylquinoline ($13.2 \mu \mathrm{~L}, 0.1 \mathrm{mmol}, 1.0$ equiv.), $\operatorname{TrocCl}(14.2 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$, 1.0 equiv.), TetraTri $1 \mathbf{1 a}(5.6 \mathrm{mg}, \quad 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and 1 -(tert-butyldimethylsilyloxy)-1-isopropoxyethene (4a) ($51 \mu \mathrm{~L}, \quad 0.2 \mathrm{mmol}, 2.0$ equiv.) were reacted according to the general procedure. The desired product (36.1 mg , $0.086 \mathrm{mmol}, 86 \%$) was isolated by flash column chromatography (pentane/EtOAc 20:1) as a colourless oil. The enantiomeric ratio was found to be $92: 8$ by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (98:2) $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=300 \mathrm{~nm}$, tr $(S): 8.0 \mathrm{~min}, \operatorname{tr}(R): 9.0 \mathrm{~min}) .[\alpha]_{589}^{20}:-120\left(c 0.16, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=7.65(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.95(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.98$ (hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}$, $1 \mathrm{H}), 2.41(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~m}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=169.8,152.2,131.3,128.9,128.8,127.8,126.6,125.2,124.4,123.5,95.3,75.6$, 68.2, 49.8, 47.8, 22.0, 21.9, 18.6. HRMS (ES): m/z calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Cl}_{3} \mathrm{NO}_{4} \mathrm{Na}\right]^{+}: 442.0356$, found: 442.0339; ATR-FTIR (cm ${ }^{-1}$): 2980, 1721, 1491, 1396, 1373, 1315, 1269, 1227, 1144, 1105, 754, 714.
(R)-2,2,2-Trichloroethyl 2-(2-(tert-butoxy)-2-oxoethyl)-4-methylquinoline-1(2H)-carboxylate (5e)

4-Methylquinoline ($13.2 \mu \mathrm{~L}, 0.1 \mathrm{mmol}, 1.0$ equiv.), $\operatorname{TrocCl}(14.2 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$, 1.0 equiv.), TetraTri $1 \mathbf{a}(5.6 \mathrm{mg}, \quad 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and 1 -(tert-butyldimethylsilyloxy)-1-(tert-butoxy)ethene (4b) ($51 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 2.0$ equiv.) were added according to the general procedure. The desired product (22.9 mg , $0.054 \mathrm{mmol}, 54 \%$) was isolated by flash column chromatography (pentane/EtOAc $30: 1$). The enantiomeric ratio was found to be $98: 2$ by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (95:5) $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=300$ $\mathrm{nm}, \operatorname{tr}(S): 5.8 \mathrm{~min}, \operatorname{tr}(R): 6.5 \mathrm{~min}$. $[\alpha]_{589}^{20}:-218\left(c 0.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=7.50$ (s, 1H), $7.05(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{q}, ~ J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.14 (br. s, 1H), 4.51 (br. s, 1H), 2.47-2.35 (m, 2H), 2.31 (s, 3H), 1.42 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=169.4,152.4,135.0,128.7,128.6,127.1,127.0,126.9,126.0,125.9,95.3,81.1$, 75.6, 50.2, 39.0, 28.2, 21.0; HRMS (ES): m/z calculated for [$\left.\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Cl}_{3} \mathrm{NO}_{4} \mathrm{Na}\right]^{+}$: 456.0507, found: 456.0505; ATR-FTIR $\left(\mathrm{cm}^{-1}\right): 2961,1707,1498,1392,1367,1290,1276,1255,1226,1151,1138,1035$, 815, 711.
(R)-2,2,2-Trichloroethyl 2-(2-isopropoxy-2-oxoethyl)-6-methylquinoline-1(2H)-carboxylate (5f)

6-Methylquinoline ($13.4 \mu \mathrm{~L}, 0.1 \mathrm{mmol}, 1.0$ equiv.), $\operatorname{TrocCl}(14.2 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$, 1.0 equiv.), TetraTri 1a $(5.6 \mathrm{mg}, \quad 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and 1 -(tert-butyldimethylsilyloxy)-1-isopropoxyethene (4a) ($51 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 2.0$ equiv.) were reacted according to the general procedure. The desired product (33.6 mg , $0.080 \mathrm{mmol}, 80 \%$) was isolated by flash column chromatography (pentane/EtOAc 30:1). The enantiomeric ratio was found to be 97:3 by chiral HPLC (Chiralpak AD-H, hexane/isopropanol (98:2) $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=300$ $\mathrm{nm}, \mathrm{tr}(R): 9.9 \mathrm{~min}, \mathrm{tr}(S): 12.2 \mathrm{~min}.)[\alpha]_{589}^{20}$: $-251\left(c 0.35, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=7.52$ (br. s, 1H), 7.06 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.49$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.13$ (dd, $J=8.6,5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.49(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.25-4.40(\mathrm{~m}, 2 \mathrm{H}), 4.98$ (hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.44 (br. s, 2H), 2.32 (s, 3 H), $1.22(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=169.5,152.3$, 135.0, 128.6, 128.6, 128.6, 127.0, 126.9, 126.0, 125.9, 95.2, 75.4, 68.1, 49.9, 25.7, 21.8, 21.8, 20.8; HRMS (ES): m/z calculated for [$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Cl}_{3} \mathrm{NO}_{4} \mathrm{Na}^{+}$: 442.0350 , found: 442.0344; ATR-FTIR $\left(\mathrm{cm}^{-1}\right): 2980,1716$, 1496, 1467, 1454, 1429, 1395,1313, 1267, 1259, 1230, 1182, 1159, 954, 927, 916, 900, 881, 815, 752.
(R)-2,2,2-Trichloroethyl 2-(2-isopropoxy-2-oxoethyl)-3-methylquinoline-1(2H)-carboxylate (5g)

3-Methylquinoline ($13.4 \mu \mathrm{~L}, 0.1 \mathrm{mmol}, 1.0$ equiv.), $\operatorname{TrocCl}(14.2 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$, 1.0 equiv.), TetraTri $\mathbf{1 a}(5.6 \mathrm{mg}, \quad 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and 1 -(tert-butyldimethylsilyloxy)-1-isopropoxyethene (4a) ($51 \mu \mathrm{~L}, \quad 0.2 \mathrm{mmol}, 2.0$ equiv.) were reacted according to the general procedure. The desired product ($38.9 \mathrm{mg}, 0.092 \mathrm{mmol}, 92 \%$) was isolated by flash column chromatography (pentane/EtOAc 20:1) as colourless oil. The enantiomeric ratio was found to be 72:28 by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (95:5) $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=300 \mathrm{~nm}$, tr (S): 6.0 min, tr $(R): 6.9 \mathrm{~min}$) $[\alpha]_{589}^{20}:-12\left(c 0.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=7.61$ (s , $1 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.28-6.27(\mathrm{~m}$, $1 \mathrm{H}), 5.34-5.31(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{hept}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 2.41-2.36$ (m, 1H), 2.32 (d, $J=9.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.98 (d, $J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8 / \mathrm{ppm}=169.8,152.4,128.2,127.1,127.0,125.7,125.4,121.7,110.1$, 95.2, 75.7, 68.4, 54.4, 36.4, 22.0, 21.8, 20.7. HRMS (ES): m/z calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Cl}_{3} \mathrm{NO}_{4} \mathrm{Na}\right]^{+}: 442.0356$, found: 442.0349; ATR-FTIR (cm ${ }^{-1}$): 2980, 1720, 1489, 1396, 1373, 1315, 1263, 1250, 1139, 1105, 1045, 1032, 816, 756, 716.
(R)-2,2,2-Trichloroethyl 2-(2-isopropoxy-2-oxoethyl)-6-nitroquinoline-1(2H)-carboxylate (5i)

6-Nitroquinoline ($17.4 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.), TrocCl ($14.2 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$, 1.0 equiv.), TetraTri $\mathbf{1 a}(5.6 \mathrm{mg}, \quad 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and 1 -(tert-butyldimethylsilyloxy)-1-isopropoxyethene (4a) ($51 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 2.0$ equiv.) were reacted according to the general procedure. The desired product ($24.5 \mathrm{mg}, 0.054 \mathrm{mmol}, 54 \%$) was isolated by flash column chromatography (pentane/EtOAc 9:1) as a
yellow solid. The enantiomeric ratio was found to be $94: 6$ by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (95:5) $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=300 \mathrm{~nm}$, $\operatorname{tr}(S): 14.9 \mathrm{~min}, \operatorname{tr}(R): 16.9 \mathrm{~min}) .[\boldsymbol{\alpha}]_{589}^{20}$: $-260(c 0.44$, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=8.12(\mathrm{dd}, J=9.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.88$ (d, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=9.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{td}, J=7.6,5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.02(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.21(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=169.0,151.9,144.5$, $139.3,130.3,127.5,125.1,124.7,123.2,121.8,94.7,75.9,68.7,50.6,38.9,21.9,21.7$. HRMS (ES): m / z calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}\right]^{+}: 473.0050$, found: 473.0046; ATR-FTIR (cm^{-1}): 2982, 1717, 1520, 1487, 1344, 1267, 1236, 1209, 1128, 1103, 1047, 800, 746, 714.
(R)-2,2,2-Trichloroethyl 6-bromo-2-(2-isopropoxy-2-oxoethyl)quinoline-1(2H)-carboxylate (5j)

6-Bromoquinoline ($13.1 \mu \mathrm{~L}, 0.1 \mathrm{mmol}, 1.0$ equiv.), $\operatorname{TrocCl}(14.2 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$, 1.0 equiv.), TetraTri $1 \mathrm{a} \quad(5.6 \mathrm{mg}, \quad 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and 1 -(tert-butyldimethylsilyloxy)-1-isopropoxyethene (4a) ($51 \mu \mathrm{~L}, \quad 0.2 \mathrm{mmol}, 2.0$ equiv.) were reacted according to the general procedure. The desired product (29.8 mg , $0.062 \mathrm{mmol}, 62 \%$) was isolated by flash column chromatography (pentane/EtOAc 30:1). The enantiomeric ratio was found to be 95:5 by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (98:2) $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=300$ nm , tr $(S): 9.3 \mathrm{~min}, \operatorname{tr}(R): 9.9 \mathrm{~min}$. $[\boldsymbol{\alpha}]_{589}^{\mathbf{2 0}}$: $-164\left(c 0.20, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=7.55$ (br. s, 1H), $7.36(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=9.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{td}, J$ $=7.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.02 (br. s), 4.98 (hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.65 (br. s, 1 H), 2.45 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.58 $(\mathrm{s}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=169.2$, $153.5,152.0,145.2,130.7,130.7,130.6,129.1,129.0,124.9,124.8,124.8,94.9,75.5,68.3,49.9,21.8$, 21.7; HRMS (ES): m / z calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrCl}_{3} \mathrm{NO}_{4} \mathrm{H}^{+}\right.$: 483.9479, found: 483.9477; ATR-FTIR (cm ${ }^{-1}$): 2980, 1716, 1485, 1390, 1375, 1309, 1282, 1267, 1234, 1199, 1105, 1098, 1033, 813, 765.
(R)-2,2,2-Trichloroethyl 5-bromo-2-(2-isopropoxy-2-oxoethyl)quinoline-1(2H)-carboxylate (5k)

5 -Bromoquinoline ($20.8 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.), $\operatorname{TrocCl}(14.2 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$, 1.0 equiv.), TetraTri $1 \mathbf{a} \quad(5.6 \mathrm{mg}, \quad 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and 1 -(tert-butyldimethylsilyloxy)-1-isopropoxyethene (4a) ($51 \mu \mathrm{~L}, \quad 0.2 \mathrm{mmol}, \quad 2.0$ equiv.) were reacted according to the general procedure. The desired product (32.1 mg , $0.066 \mathrm{mmol}, 66 \%$) was isolated by flash column chromatography (pentane/EtOAc 30:1). The enantiomeric ratio was found to be 95:5 by chiral HPLC (Chiralpak AD-H, hexane/isopropanol (98:2) $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=300$ nm , $\operatorname{tr}(R): 11.5 \mathrm{~min}$, tr $(S): 17.3 \mathrm{~min}$.). $[\boldsymbol{\alpha}]_{589}^{20}:-153\left(c 0.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=$ $7.60(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J$ $=9.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.53 (td, $J=7.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.03 (br. s, 1 H), 5.00 (hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.64 (br. s, $1 \mathrm{H}), 2.44(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=169.2,152.0,129.4,129.4,128.4,126.7,126.6,124.8,124.7,121.3,94.9,75.6$, 68.3, 49.5, 37.8, 21.8, 21.7; HRMS (ES): m/z calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{NO}_{4} \mathrm{Na}\right]^{+}$: 507.9284, found:
507.9274; ATR-FTIR $\left(\mathrm{cm}^{-1}\right): 2985,1754,1493,1372,1316,1285,1272,1222,1203,1108,1090,1041$, 831, 772.
(R)-2,2,2-Trichloroethyl 6-chloro-2-(2-isopropoxy-2-oxoethyl)quinoline-1(2H)-carboxylate (5I)

6-Chloroquinoline ($16.3 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.), $\operatorname{TrocCl}(14.2 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$, 1.0 equiv.), TetraTri $1 \mathbf{a} \quad(5.6 \mathrm{mg}, \quad 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and 1 -(tert-butyldimethylsilyloxy)-1-isopropoxyethene (4a) ($51 \mu \mathrm{~L}, \quad 0.2 \mathrm{mmol}, 2.0$ equiv.) were reacted according to the general procedure. The desired product (27.5 mg , $0.062 \mathrm{mmol}, 62 \%$) was isolated by flash column chromatography (pentane/EtOAc 30:1). The enantiomeric ratio was found to be 95:5 by chiral HPLC (Chiralpak AD-H, hexane/isopropanol (98:2) $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=300$ nm , $\operatorname{tr}(R): 12.6 \mathrm{~min}, \operatorname{tr}(S): 15.8 \mathrm{~min}$.). $[\boldsymbol{\alpha}]_{589}^{20}:-158\left(c 0.75, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8/ppm $=$ 7.60 (br. s, 1H), 7.21 (dd, $J=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.11 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J$ $=9.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{td}, J=6.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.01$ (br. s, 1H), 4.98 (hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.63(\mathrm{~s}, 1 \mathrm{H})$, $2.56-2.35(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~s}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=169.4,152.2,138.6,127.9,127.8,126.4,126.3,126.2,125.0,125.0,95.1,75.7,68.7$, 50.1, 29.9, 21.9, 21.9; HRMS (ES): m / z calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{4} \mathrm{NO}_{4} \mathrm{Na}\right]^{+}: 463.9780$, found: 463.9776; ATR-FTIR (cm^{-1}): 2980, 2918, 1716, 1485, 1392, 13751309, 1284, 1234, 1101, 817, 752, 669, 626.
(R)-2,2,2-Trichloroethyl 4-chloro-2-(2-isopropoxy-2-oxoethyl)quinoline-1(2H)-carboxylate (5m)

4-Chloroquinoline ($13.0 \mu \mathrm{~L}, 0.1 \mathrm{mmol}, 1.0$ equiv.), $\operatorname{TrocCl}(14.2 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$, 1.0 equiv.), TetraTri $1 \mathbf{a}(5.6 \mathrm{mg}, \quad 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and 1-(tert-butyldimethylsilyloxy)-1-isopropoxyethene (4a) ($51 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 2.0$ equiv.) were reacted according to the general procedure. The desired product (30.2 mg , $0.069 \mathrm{mmol}, 69 \%$) was isolated by flash column chromatography (pentane/EtOAc 20:1) as yellow oil. The enantiomeric ratio was found to be 89:11 by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (98:2) 1.0 $\mathrm{mL} / \mathrm{min}, \lambda=300 \mathrm{~nm}$, tr $(S): 7.1 \mathrm{~min}$, tr $(R): 7.9 \mathrm{~min}$. $[\boldsymbol{\alpha}]_{589}^{20}:+0.5\left(c 0.55, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta / \mathrm{ppm}=7.65(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=7.8,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.31(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05$ (br. s, 1 H), 4.98 (hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.70 (br. $\mathrm{s}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=169.2,152.1,129.6,129.4,129.4,125.6,125.6,125.6,124.8,110.2,95.1,75.7,68.6$, 50.9, 38.0, 22.0, 21.9. HRMS (ES): m / z calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{Cl}_{4} \mathrm{NO}_{4} \mathrm{Na}\right]^{+}: 461.9809$, found: 461.9795; ATR-FTIR (cm^{-1}): 2982, 1722, 1601, 1483, 1385, 1317, 1269, 1229, 1144, 1103, 1042, 756, 716.
(R)-6-Methyl 1-(2,2,2-trichloroethyl) 2-(2-isopropoxy-2-oxoethyl)quinoline-1,6(2H)-dicarboxylate (5n)

Methyl quinoline-6-carboxylate ($18.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.), TrocCl ($14.2 \mu \mathrm{~L}, 0.1 \mathrm{mmol}, 1.0$ equiv.), TetraTri $\mathbf{1 a}(5.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and 1-(tert-butyldimethylsilyloxy)-1-isopropoxyethene (4b) ($51 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$, 2.0 equiv.) were reacted according to the general procedure. The desired product ($33.0 \mathrm{mg}, 0.071 \mathrm{mmol}, 71 \%$) was isolated by flash column chromatography (pentane/EtOAc 10:1). The enantiomeric ratio was found to be 94:6 by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (95:5) $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=300 \mathrm{~nm}$, tr $(S): 24.8 \mathrm{~min}, t r(R): 35.4 \mathrm{~min}$. $[\boldsymbol{\alpha}]_{589}^{20}:-202\left(c 0.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) ~ \delta / \mathrm{ppm}=7.92(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.70(\mathrm{~m}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=$ $9.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.53 (td, $J=7.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.97$ (hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.70$ (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J$ $=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=169.2,166.4,152.0,129.2,129.2,128.0,128.0,126.7$, 126.7, 125.4, $94.8,75.6,68.3,52.2,50.2,38.5,21.8,21.7$; HRMS (ES): m / z calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{Cl}_{3} \mathrm{NO}_{6} \mathrm{Na}^{+}\right.$: 486.0248 , found: 486.00243; ATR-FTIR $\left(\mathrm{cm}^{-1}\right): 2982,2953,1716,1606,1573,1492$, 1442, 1392, 1375, 1269, 1228, 1199, 1130, 1105, 1033, 808, 763, 752, 713.
(R)-2,2,2-Trichloroethyl 2-(2-isopropoxy-2-oxoethyl)-6-methoxyquinoline-1(2H)-carboxylate (50)

6-methoxyquinoline ($13.8 \mu \mathrm{~L}, \quad 0.1 \mathrm{mmol}, \quad 1.0$ equiv.), TrocCl ($14.2 \mu \mathrm{~L}$, $0.1 \mathrm{mmol}, 1.0$ equiv.), TetraTri $\mathbf{1 a}$ ($5.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and 1 -(tert-butyldimethylsilyloxy)-1-isopropoxyethene (4a) ($51 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 2.0$ equiv.) were reacted according to the general procedure. The desired product ($38.3 \mathrm{mg}, 0.088 \mathrm{mmol}, 88 \%$) was isolated by flash column chromatography (pentane/EtOAc 20:1) as colourless oil. The enantiomeric ratio was found to be $95: 5$ by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (95:5) $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=300 \mathrm{~nm}$, tr (S): $9.7 \mathrm{~min}, t r(R): 14.0 \mathrm{~min}$.) $[\alpha]_{589}^{20}:-145$ (c 0.42, CHCl_{3}). ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=7.61-7.50(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=$ $2.9 \mathrm{~Hz}, 1 \mathrm{H}$), $6.49(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.14(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 5.13(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.97$ (hept, $J=6.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.50 (br. s, 1H), 3.80 (s, 3 H), 2.44 (br. s, 2 H), 1.21 (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}$), 1.20 (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=169.6,157.0,152.5,132.8,130.1,129.4,128.1,126.0,113.5,111.2,95.3$, 75.7, 68.3, 55.6, 50.0, 37.7, 22.0, 21.9. HRMS (ES): m/z calculated for [$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Cl}_{3} \mathrm{NO}_{5} \mathrm{Naj}^{+}$: 458.0299, found: 458.0308; ATR-FTIR (cm^{-1}): 2980, 1717, 1497, 1396, 1375, 1265, 1119, 1107, 1034, 808, 714.

2,2,2-Trichloroethyl 2-(2-isopropoxy-2-oxoethyl)-4-oxo-3,4-dihydroquinoline-1(2H)-carboxylate (5p)

4-Methoxyquinoline ($14.1 \mu \mathrm{~L}, 0.1 \mathrm{mmol}, 1.0$ equiv.), $\operatorname{TrocCl}(14.2 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$, 1.0 equiv.), TetraTri $\mathbf{1 a}(5.6 \mathrm{mg}, \quad 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and 1 -(tert-butyldimethylsilyloxy)-1-isopropoxyethene ($\mathbf{4 a}$) ($51 \mu \mathrm{~L}, \quad 0.2 \mathrm{mmol}, 2.0$ equiv.) were reacted according to the general procedure. The desired product (31.2 mg , $0.074 \mathrm{mmol}, 74 \%$) was isolated by flash column chromatography (pentane/EtOAc 20:1) as a colourless oil.

The enantiomeric ratio was found to be 20:80 by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (95:5) $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=300 \mathrm{~nm}$, $\operatorname{tr}(S): 12.1 \mathrm{~min}, \operatorname{tr}(R): 15.0 \mathrm{~min}$. $[\boldsymbol{\alpha}]_{589}^{20}:-46\left(c 0.96, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}(300 \mathrm{MHz}$, CDCl_{3}): $\delta / \mathrm{ppm} 8.01$ (dd, $\left.J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (ddd, $J=8.6,7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.26(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{tdd}, J=7.6,5.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (hept, $J=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=17.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{dd}, J=17.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ $-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=192.2,169.3,152.1$, 139.0, 134.9, 134.2, 127.2, 125.4, 125.2, 125.2, 75.8, 68.7, 51.6, 42.9, 37.2, 21.7. HRMS (ES): m / z calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Cl}_{3} \mathrm{NO}_{5} \mathrm{Na}\right]^{+}: 444.0148$, found: 444.0146; ATR-FTIR $\left(\mathrm{cm}^{-1}\right): 2980,1724,1687,1601,1481,1460$, 1387, 1315, 1302, 1269, 1223, 1132, 1105, 1041, 820, 764, 714.
(R)-2,2,2-Trichloroethyl 6-(2-isopropoxy-2-oxoethyl)phenanthridine-5(6H)-carboxylate (5q)

Phenanthridine ($17.9 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv.), $\operatorname{TrocCl}(14.2 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$, 1.0 equiv.), TetraTri $1 \mathbf{a}(5.6 \mathrm{mg}, \quad 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and 1 -(tert-butyldimethylsilyloxy)-1-isopropoxyethene (4a) ($51 \mu \mathrm{~L}, \quad 0.2 \mathrm{mmol}, \quad 2.0$ equiv.) were reacted according to the general procedure. The desired product (40.1 mg , $0.088 \mathrm{mmol}, 88 \%$) was isolated by flash column chromatography (pentane/EtOAc 20:1). The enantiomeric ratio was found to be 90:10 by chiral HPLC (Chiralpak AD-H, hexane/isopropanol (90:10) $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ 300 nm , $\operatorname{tr}(R): 9.7 \mathrm{~min}$, $\operatorname{tr}(S): 12.0 \mathrm{~min}) .[\alpha]_{589}^{20}:-112\left(c 0.45, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=$ $7.88-7.76$ (m, 2H), 7.69 (br. s, 1H), $7.46-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.07$ (dd, $J=8.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.12 (br. s, 1H), 4.99 (hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}) 4.44$ (br. $\mathrm{s}, 1 \mathrm{H}$), $2.68-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 1 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.18$ (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=169.4,152.0,130.3,128.6,128.1,127.9,126.3$, 126.1, 123.8, 123.8, 95.3, 75.5, 68.3, 39.3, 25.7, 21.9, 21.8; HRMS (ES): m / z calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{Cl}_{3} \mathrm{NO}_{4} \mathrm{Na}\right]^{+}: 478.0350$, found: 478.0345; ATR-FTIR $\left(\mathrm{cm}^{-1}\right): 2987,1742,1699,1442,1398,1321$, 1296, 1249, 1141, 1103, 1074, 1047, 1026, 750, 732.

NMR Titration

TetraTri 1b (0.005 M) in [D8]THF + 10 eq. 1-((2,2,2-trichloroethoxy)carbonyl)quinolin-1-ium chloride 6

(R, R)-1a-Cl -Anion Complex
Full spectra:

An increase of the equivalents of salt are shown from the bottom to the top of the figure.

Zoom spectra:

Absolute configuration

1) CD Spectrum of product (R)-5b

The CD measurement was carried out on a J-815 (JASCO) spectrometer at room temperature. A 0.133 mM solution in THF of a sample of $\mathbf{5 b}$ with 98:2 e.r. was employed, providing the spectrum shown below:

Conformation analysis / CD simulation of 5b with DFT

A conformational search was performed for $(S)-5 b$ with the SCAN program for general conformational search of the Tinker ${ }^{11}$ package using the MM3 force field. ${ }^{12}$ A few missing torsional parameters, all in relation to atom type 9 ("NSP2"), were added by choosing suitable parameters of similar atom type combinations:

Additional MM3 parameters (Tinker format) for the first conformational search

angle	6	3	9		$900 \quad 112.50$		
torsion	2	1	9	3	2.3000 .01	$-1.200180 .02$	0.8000 .03
torsion	2	1	9	2	2.3000 .01	$-1.200180 .02$	0.8000 .03
torsion	6	3	9	1	-0.600 0.01	4.200180 .02	0.0000 .03
torsion	6	3	9	2	-0.600 0.01	4.200180 .02	0.0000 .03
torsion	9	1	2	2	0.2500 .01	$-0.650180 .02$	0.6000 .03
torsion	9	1	2	5	0.0000 .01	0.000180 .02	0.8000 .03
torsion	9	3	6	1	3.5300 .01	2.300180 .02	$-3.5300 .03$

From the conformers obtained in the MM3 search, 143 structures were selected as unique by geometrical comparison (RSMD>=1.5 \AA) and DFT geometry optimizations were performed on these with TURBOMOLE ${ }^{13}$, using the TPSS meta-GGA functional, ${ }^{14}$ the triple zeta basis set def2-TZVP, ${ }^{15}$ and the dispersion correction of Grimme et al. ${ }^{16}$ with BJ damping ${ }^{17}$ (TPSS-D3/def2-TZVP).

After optimization of the 143 conformations with DFT, 88 unique conformers were selected using an energy ($\Delta \mathrm{E}>0.1 \mathrm{kcal} / \mathrm{mol}$), dipole moment ($\Delta \mu>0.1 \mathrm{D}$) and geometry (RSMD $>=1.8 \AA$) criterion. A calculation of vibrational normal modes was done for all minima and the contribution of translations, rotations and normal vibrations to the free enthalpy at $298 \mathrm{~K}\left(\mathrm{G}_{298}\right)$ added to the electronic energy to obtain the relative free energy $\Delta \mathrm{G}(298 \mathrm{~K}) .{ }^{18}$ The 88 conformers were sorted according to $\Delta \mathrm{G}(298 \mathrm{~K})$ and the CD spectra of conformers within a range of $\Delta \mathrm{G}(298 \mathrm{~K})=0-5 \mathrm{kcal} / \mathrm{mol}$ calculated with TD-DFT using the B3LYP functional ${ }^{19}$ and the same basis set (B3LYP/def2-TZVP).

It turned out that one conformer (No. 093) is the most stable one by more than $0.8 \mathrm{kcal} / \mathrm{mol}$ on the free energy scale. The CD spectra of that and 8 more conformers in the range of $\Delta \mathrm{G}(298 \mathrm{~K})=0-1.5 \mathrm{kcal} / \mathrm{mol}$ look qualitatively very similar and have the inverse signature of the experimentally obtained CD spectrum of compound (R)-5b. We consider this as clear evidence for our stereochemical assignment.

Structures and CD spectra of the more stable conformers of the (S)-enantiomer of product $\mathbf{5 b}$

Conformer No.

calculated CD spectrum B3LYP/def2-
TZVP
(200-350nm) horizontal axis: [λ / nm]
(in kcal/mol)
Structure

093
[0.0]

179
[+0.82]

328
[+0.86]

225
[+0.90]

Conformer No.

[rel. $\Delta \mathrm{G}(298)$]
Structure
calculated CD spectrum B3LYP/def2-
TZVP
(200-350nm) horizontal axis: [λ / nm]
071
[+0.99]
为

006
[+1.15]

029
[+1.21]

2) Derivatization to β-amino ester 28 and comparison of the optical rotation:

2,2,2-Trichloroethyl (S)-2-(2-isopropoxy-2-oxoethyl)-3,4-dihydroquinoline-1(2H)-carboxylate (26)

An enantioenriched sample of $\mathbf{5 a}(147 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.0$ equiv., $93: 7$ e.r.), was reacted with $\mathrm{Et}_{3} \mathrm{SiH}$ ($115 \mu \mathrm{~L}, 0.72 \mathrm{mmol}, 2$ equiv.) in the presence of Pd / C (10 wt) ($38.3 \mathrm{mg}, 0.036 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in MeOH at r.t. After 1 h another portion of $\mathrm{Et}_{3} \mathrm{SiH}$ ($115 \mu \mathrm{~L}, 0.72 \mathrm{mmol}, 2$ equiv.) was added. The reaction was stirred vigorously for another 2 h . Then the mixture was filtrated through celite $®$, washed three times with $A c O E t$, and the solvent evaporated under reduced pressure. The desired product $26(88.5 \mathrm{mg}, 0.22 \mathrm{mmol}, 60 \%)$ was isolated by flash column chromatography (pentane/EtOAc $20: 1 \rightarrow 10: 1$) as colourless oil. The enantiomeric ratio was found to be 93:7 by chiral HPLC (Chiralpak OD-H, heptane/isopropanol (95:5) $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}$, tr (S): 7.0 min , tr $(R): 8.5 \mathrm{~min}.) .[\boldsymbol{\alpha}]_{589}^{20}:-4.2\left(c 0.125, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=7.57(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.20 (td, $J=8.2,7.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.03(\mathrm{~m}, 2 \mathrm{H}), 5.10-4.90(\mathrm{~m}, 3 \mathrm{H}), 4.65(\mathrm{br} \mathrm{d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.79-2.59(\mathrm{~m}, 3 \mathrm{H}), 2.50-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{dq}, J=13.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=170.3,152.9,135.7,128.0,126.4,125.2,95.5,75.4,68.1,51.2,38.9,29.0,24.9$, 21.9; HRMS (ES): m / z calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{20}{ }^{35} \mathrm{Cl}_{3} \mathrm{NO}_{4} \mathrm{Na}\right]^{+}: 430.0350$, found: 430.0343.

Isopropyl (S)-2-(1,2,3,4-tetrahydroquinolin-2-yl)acetate (27)

26 ($86.4 \mathrm{mg}, 0.21 \mathrm{mmol}, 1$ equiv.) was treated with Zn powder ($138.2 \mathrm{mg}, 2.11 \mathrm{mmol}$, 10 equiv.) and $\mathrm{AcOH}\left(62.9 \mu \mathrm{~L}, 1.10 \mathrm{mmol}, 5.2\right.$ equiv.) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(1: 1,2 \mathrm{~mL})$ at room temperature for 2.5 h . Then, an aq. sat. solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added, the reaction extracted with DCM ($5 \times 5 \mathrm{~mL}$), the organic layers collected and the solvent removed under reduced pressure. The crude mixture was used directly for the next step without further purification. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=7.04-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.06 ($\mathrm{p}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.69-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.65(\mathrm{~m}, 1 \mathrm{H}), 2.85$ (ddd, $J=15.9,10.0,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.73(\mathrm{dt}, J=15.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{dtd}, J=12.9,5.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ (dddd, $J=$ 12.9, $10.0,8.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=172.0,144.2$, 129.4, 127.0, 121.0, 117.5, 114.7, 68.2, 48.0, 41.4, 28.2, 25.8, 22.0; HRMS (ES): m/z calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2} \cdot \mathrm{H}^{+}\right.$: 235.1521 , found: 235.1528 .

Methyl (S)-2-(1,2,3,4-tetrahydroquinolin-2-yl)acetate (28) ${ }^{[20]}$

The crude product 27 was dissolved in MeOH (5 mL) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (282.0 mg , $2.05 \mathrm{mmol}, ~ \sim 10$ equiv.) was added. After stirring for 12 h , brine was added and the mixture extracted with AcOEt ($3 \times 10 \mathrm{~mL}$), the organic layers collected and the solvent removed under reduced pressure. The desired product 28 ($23.1 \mathrm{mg}, 0.113 \mathrm{mmol}, 53 \% / 2$-steps) was isolated by flash column chromatography (pentane \rightarrow pentane/EtOAc 9:1) as yellow oil. The enantiomeric ratio was found to be 93:7 by chiral HPLC (Chiralpak OD-H, heptane/isopropanol (90:10) 1.0 $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, tr $(R): 8.1 \mathrm{~min}, \operatorname{tr}(S): 10.5 \mathrm{~min}$.). $[\boldsymbol{\alpha}]_{589}^{20}:+83.5\left(c 0.23, \mathrm{CHCl}_{3}\right)$ (Lit. ${ }^{[20 a]}(S)-28$ with 98.8:1.2 e.r. $\left.=[\boldsymbol{\alpha}]_{589}^{\mathbf{2 0}}:+104.7\left(c 1.0, \mathrm{CHCl}_{3}\right)\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=7.04-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.63$ (td, $J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 3.80-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.93$

- $2.78(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{dt}, J=16.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.49(\mathrm{~m}, 2 \mathrm{H}), 1.97$ (dtd, $J=12.9,5.4,3.2 \mathrm{~Hz}, 1 \mathrm{H})$,
1.72 (dddd, $J=13.0,10.0,8.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=172.9,144.1,129.3,127.0$, 121.0, 117.5, 114.7, 51.9, 47.9, 40.8, 28.1, 25.7. HRMS (ES): m / z calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2} \cdot \mathrm{H}\right]^{+}: 206.1176$, found: 206.1186.

HPLC-Data

Product 5a

OD-H; Hexane : $\mathrm{PrOH}=95: 5$

Product 5b

OD-H; Hexane : $\mathrm{PrOH}=95: 5$

Product 5c

OD-H; Hexane : $\mathrm{iPrOH}=95: 5$

Product 5d

OD-H; Hexane : $\mathrm{PrOH}=98: 2$

1	8.072	9.240	9.383	134.206	8.113
2	9.043	89.234	90.617	1519.942	91.887

Product 5e

OD-H; Hexane : $\mathrm{PrOH}=95: 5$

Product 5f

AD-H; Hexane : $\mathrm{PrOH}=98: 2$

Product 5g

OD-H; Hexane : $\mathrm{PrOH}=99: 1$

Product 5i

OD-H; Hexane : $\mathrm{PrOH}=95: 5$

Product 5j

OD-H; Hexane : $\mathrm{iPrOH}=95: 5$

1	9.314	2.839	5.344	44.642	4.503
2	9.932	50.291	94.656	946.627	95.497

Product 5k

AD-H; Hexane : $\mathrm{PrOH}=98: 2$

Product 5I

AD-H; Hexane : $\mathrm{PrOH}=98: 2$

Product 5m

OD-H; Hexane : $\mathrm{PrOH}=98: 2$

Product 5n

OD-H; Hexane : $\mathrm{PrOH}=95: 5$

Product 5o

OD-H; Hexane : $\mathrm{PrOH}=95: 5$

\#	. Time	Height	Height \%	Area	Area \%
1	9.689	4.477	8.120	84.317	5.592
2	13.968	50.661	91.880	1423.366	94.408

Product 5p

OD-H; Hexane : $\mathrm{PrOH}=95: 5$

	Time	Height	Height \%	Area	Area \%
1	12.094	61.883	84.469	1415.296	80.249
2	15.039	11.378	15.531	348.337	19.751

Product 5q

AD-H; Hexane : $\mathrm{PPOH}=90: 10$

Product 26

Obtained from the reduction of a 93:7 e.r. sample of $\mathbf{5 a}$

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	Area \%
1	7.010	MM	0.2143	416.78482	32.41836	92.9580
2	8.515	MM	0.2561	31.57327	2.05485	7.0420

Obtained from the reduction of a 74:26 e.r. sample of 5 a

Product 28

NMR-spectra

คi
Nั

11

ion Mon

$\begin{array}{llll}-55 & -60 & -65 & -70 \\ & & -19 F^{-6}\end{array}$

 -

220

※ N
$\stackrel{0}{7}$

+
 $\stackrel{N}{\mathbf{N}}$

-
$\stackrel{N}{N}$

$30 \quad 1$
$120 \begin{gathered}110 \\ \left.13 C^{(p p m}\right)\end{gathered}$ 100 80

응

23

$\stackrel{\circ}{\circ}$

©

$-62.5-63.0-63.5$
19F (ppm)

N

-100.19
-55.93

M

-50.18
-39.45 28.15

-169.80
-152.21
131.28
128.95
128.82
127.84
126.61
125.22
124.39
123.54

-95.32

-15.61
-68.22

21.96
21.90
18.57

-169.39
-152.37
$\left[\begin{array}{l}135.02 \\ 128.72 \\ 128.60 \\ 127.05 \\ 127.02 \\ 126.99 \\ 125.90 \\ 125.86\end{array}\right.$
-95.34
-81.08
-75.59
-50.21
-38.95
28.17
20.97

-7
$\stackrel{7}{9}$

	110																				
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

-169.84
-152.45
128.19
127.11
127.05
125.70
125.44
121.69
-110.12
-95.25

సָ సָ ָi「~~~

-169.17
-152.07
129.61
129.42
129.40
125.63
125.60
125.57
124.82
-110.16

5p

-192.23
てと'691 -
zt'zss

| N |
| :--- | :--- |
| Ni |
| N |
| |

\circ
$\stackrel{0}{\mathrm{~N}}$
$\stackrel{+}{1}$

-170.01
-154.14

134.27
128.24
127.83
126.97
126.47
125.91
124.91
124.49

gٌ
풏

References

${ }^{[1]}$ The acetone- D_{6} supplied from Deutero GmBH included an impurity at 3.76 ppm .
${ }^{[2]}$ Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512-7515.
${ }^{[3]}$ Deactivated Silica was prepared by treatment of silica gel 60 (0.040-0.063 mm) with $\mathrm{Et}_{3} \mathrm{~N}$, followed by washing sequences with $\mathrm{DCM} / \mathrm{MeOH}(5: 1)$ and EtOAc.
${ }^{[4]}$ Pinkerton, D. M.; Banwell, M. G.; Willis, A. C. Org. Lett. 2009, 11, 4290-4293.
${ }^{[5]}$ Ghosh, A. K.; Bischoff, A.; Cappiello, J. Eur. J. Org. Chem. 2003, 5, 821-832.
${ }^{[6]} \mathrm{Xu}, \mathrm{H} . ;$ Wolf, C. Chem. Commun. 2009, 3035-3037.
${ }^{[7]}$ Erdélyi, M.; Gogoll, A. J. Org. Chem. 2001, 66, 4165-4169.
${ }^{[8]}$ Tomioka, H.; Sawai, S. Org. Biomol. Chem. 2003, 1, 4441-4450.
${ }^{[9]}$ Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964-12965.
${ }^{[10]}$ Ferretti, F.; Ragaini, F.; Lariccia, R.; Gallo, E.; Cenini, S. Organometallics 2010, 29, 1465-1471.
${ }^{[11]}$ See http://dasher.wustl.edu/tinker
${ }^{[12]}$ a) Allinger, N. L.; Yuh, Y. H.; Lii, J.-H. J. Am. Chem. Soc. 1989, 111, 8551-8566. b) Lii, J.-H.; Allinger, N.
L. J. Am. Chem. Soc. 1989, 111, 8566-8575. c) Lii, J.-H.; Allinger, N. L. J. Am. Chem. Soc. 1989, 111, 85768582.
${ }^{[13]}$ TURBOMOLE V6.5 2013, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
${ }^{[14]}$ Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91, 146401.
${ }^{[15]}$ Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
${ }^{[16]}$ Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.
${ }^{[17]}$ Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456-1465.
${ }^{[18]}$ For low vibrational frequencies ($<100 \mathrm{~cm}^{-1}$) a rigid rotor approximation was used to compute the entropic contribution to $\Delta \mathrm{G}$: Grimme, S. Chem. Eur. J. 2012, 18, 9955-9964.
${ }^{[19]}$ a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. b) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623-11627.
${ }^{[20]}$ (a) Katayama, S.; Ae, N.; Nagata, R. Tetrahedron: Asymmetry 1998, 9, 4295-4299. (b) Wang, X.-B.; Wang, D.W.; Lu, S.-M.; Yu, C.-B.; Zhou, Y.-G. Tetrahedron: Asymmetry 2009, 20, 1040-1045. (c) Diaz, G.; Diaz, M. A. N.; Reis, M. A. J. Braz. Chem. Soc. 2013, 24, 1497-1503.

