Chiral Helical Oligotriazoles: New Class of Anion-Binding Catalysts for the Asymmetric Dearomatization of Electron-Deficient *N*-Heteroarenes

Mercedes Zurro,^{a,b} Sören Asmus,^{a,b} Stephan Beckendorf,^a Christian Mück-Lichtenfeld^a and Olga García Mancheño^{a,b,c*}

^a Institute of Organic Chemistry, University of Münster, 48149 Münster (Germany). *New Adresses:* ^b Institute for Organic Chemistry, University of Regensburg, 93053 Regensburg (Germany). ^c Straubing Center of Science, 94315 Straubing (Germany).

E-mail: olga.garcia-mancheno@chemie.uni-regensburg.de

Supporting Information

Contents

General Information	2
Synthesis of the triazole catalysts TetrakisTriazoles 1a and 2a-c & BisTriazole B1	2
TetrakisTriazole 1a	2
TetrakisTriazole 2a	6
TetrakisTriazole 2b	9
TetrakisTriazole 2c	11
BisTriazole B1	13
Preparation of the silyl ketene acetals 4	14
General procedure for the preparation of the silyl ketene acetals	
Quinoline derivatives 3m and 3p	15
Organocatalytic reaction	16
Screening of the reaction temperature and anion effects	
General procedure for the organocatalytic reaction	
Products 5a-p , 6 and 7	
NMR Titration	25
Absolute Configuration	26
HPLC-Data	31
NMR-Spectra	49
References	95

General Information

¹H, ¹³C and ¹⁹F NMR spectra were recorded in acetone- D_6 ,^[1] CDCl₃ and THF- D_8 (reference signals:^[2] ¹H = 2.05 ppm, ¹³C = 29.84 ppm, acetone-D₆; ¹H = 5.32 ppm, ¹³C = 54.00 ppm, ¹³C = 77.16 ppm, CDCl₃; ¹H = 3.58 ppm, ¹³C = 25.37 ppm, THF-D₈) on a Bruker ARX-300 and a Varian AV-300, 400 or 600 MHz. Chemical shifts (δ) are given in ppm and spin-spin coupling constants (J) are given in Hz. Analytical thin layer chromatography was performed using silica gel 60 F₂₅₄ and a solution of KMnO₄ or phosphomolybdic acid served as staining agent. Column chromatography was performed on silica gel 60 (0.040-0.063 mm) or deactivated ^[3] silica gel 60 (0.040-0.063 mm). Exact masses (HRMS (ES)) were recorded on a Bruker Daltonics MicroTof spectrometer (samples in CH₃OH as solvent) or LTQ Orbitap LTQ XL (Thermo-Fisher Scientific, Bremen) (samples in MeOH/CHCl₃ as solvent). Melting points (Mp) were measured by differential scanning calorimetry with a Ta Instruments Q20 calorimeter. Gas chromatography spectra (GC-MS) were recorded on an Agilent Technologies 7890A GC-system with an Agilent 5975C VL MSD or an Agilent 5975 inert Mass Selective Detector (EI) and a HP-5MS column (0.25 mm x 30 m, film: 0.25 µm). The major signals are quoted in m/z with the relative intensity in parentheses, the fragment according to the complete molecule is labeled with [M]⁺. The used method starts with the injection temperature T₀. After holding this temperature for 3 min, the column is heated to temperature T₁ (ramp) and this temperature is held for an additional time t. Method: 50_40: T₀ = 50 °C, T₁ = 320 °C, ramp = 40 °C/min; t = 4 min. Chiral High Pressure Liquid Chromatography (HPLC) analysis was performed on a Agilent instrument. CD spectra were recorded on a J-815 (JASCO) spectrometer.

CH₂Cl₂ and Et₃N were distilled over CaH₂; and MTBE, THF and toluene were distilled and dried over Na. The starting materials 3-methoxy-3-methylbut-1-yne^[4] and tosyl azide^[5] were prepared following known literature procedures. Other solvents and commercially available reagents were used without further purification.

Synthesis of the triazole catalysts TetrakisTriazoles 1a and 2a-c & BisTriazole B1

TetrakisTriazole 1a

1,3-Dibromo-5-(3-methoxy-3-methylbut-1-yn-1-yl)benzene (9)

OMe

1,3,5-Tribromobenzene (14.17 g, 45.0 mmol, 3.0 equiv.), Cul (57 mg, 0.3 mmol, 2.0 mol%) and $[PdCl_2(PPh_3)_2]$ (105 mg, 0.15 mmol, 1.0 mol%) were suspended in THF (50 mL). 3-Methoxy-3-methylbut-1-yne (1.57 g, 15.0 mmol, 1.0 equiv.) and Et₃N (10 mL) were added and the resulting mixture was stirred at 50 °C in a flame-dried pressure schlenk tube under

 $Br \sim Br$ argon for 2 days. The crude product was filtered through celite and washed with ethyl acetate (3 × 10 mL) to remove solid material and Et₃N. After removing the solvent, excessive 1,3,5-tribromobenzene (8.49 g, 27.0 mmol) and the desired product **9** (3.98 g, 12.0 mmol, 80%) was isolated as a colourless oil by flash column chromatography (pentane/EtOAc, 50:1). ¹H NMR (400 MHz, CDCl₃): δ /ppm = 7.61 (t, *J* = 1.8 Hz, 1H), 7.51 (d, *J* = 1.8 Hz, 2H), 3.40 (s, 3H), 1.52 (s, 6H); ¹³C NMR (100 MHz, CDCl₃):

 $\delta/\text{ppm} = 134.1, 133.3, 126.4, 122.7, 94.0, 81.5, 71.0, 52.0, 28.3;$ **HRMS (ES):** calculated for $[C_{12}H_{12}Br_2OAg]^+$: m/z = 436.8306, found: 436.8303.

1-Bromo-3-(3-Hydroxy-3-methylbut-1-in-1-yl)-5-(3-methoxy-3-methylbut-1-in-1-yl)benzene (10)

1,3-Dibromo-5-(3-methoxy-3-methylbut-1-yn-1-yl)benzene (**9**) (7.65 g, 23.00 mmol, 2.0 equiv.), Cul (46 mg, 0.24 mmol, 2.0 mol%) and $[PdCl_2(PPh_3)_2]$ (81mg, 0.12 mmol, 1.0 mol%) were suspended in THF (70 mL). 2-Methylbut-3-in-2-ol (1.13 mL, 11.50 mmol, 1.0 equiv.) and Et₃N (20 mL) were added and the resulting mixture was stirred at 50 °C in a flame-dried pressure schlenk tube under argon for 36 h. The crude product was filtered through celite and washed with ethyl acetate (3 × 10 mL) to

remove solid material and Et₃N. After removing the solvent, the desired product **10** (2.71 g, 7.40 mmol, 99%) was isolated by flash column chromatography (pentane/EtOAc, $50:1 \rightarrow 5:1$) as a white solid, as well as the recovered 1,3-dibromo-5-(3-methoxy-3-methylbut-1-in-1-yl)benzene (4.14 g, 12.50 mmol). ¹H NMR (300 MHz, CDCl₃): δ /ppm = 7.52 - 7.48 (m, 2H), 7.41 (t, *J* = 1.4 Hz, 1H), 3.40 (s, 3H), 1.59 (s, 6H), 1.52 (s, 6H); ¹³C NMR (75 MHz,CDCl₃): δ /ppm = 134.2, 134.1, 133.5, 124.9, 124.8, 121.9, 95.8, 93.1, 82.2, 80.1, 71.0, 65.7, 51.9, 31.5, 28.3; HRMS (ES): *m*/*z* calculated for [C₁₇H₁₉BrO₂Na]⁺: 357.0461, found: 357.0462; ATR-FTIR (cm⁻¹): 3396, 2983, 2936, 2825, 1587, 1554, 1426, 1361, 1250, 1361, 1250, 1171, 1145, 1076, 960, 933, 889, 866, 841, 809, 678.

1-(3-Hydroxy-3-methylbut-1-in-1-yl)-3-(3-methoxy-3-methylbut-1-in-1-yl)-5-((trimethylsilyl)ethinyl)benzene (11)

OMe

`OH

B

1-Bromo-3-(3-Hydroxy-3-methylbut-1-in-1-yl)-5-(3-methoxy-3-methylbut-1-in-1-yl)benzene (**10**) (67 mg, 0.20 mmol, 1.0 equiv.), [Cu(MeCN)₄][BF₄] (1.3 mg, 4.00 μ mol, 2 mol%) and Pd(PPh₃)₄ (2.3 mg, 2.00 μ mol, 1 mol%) were suspended in THF (70 mL). Trimethylsilylacetylene (42 μ L, 0.30 mmol, 1.5 equiv.) and Et₃N (0.2 mL) were added and the resulting mixture was stirred at 50 °C in a flame-dried pressure schlenk tube under argon for 24 h. The crude

product was filtered through celite and washed with ethyl acetate (3 × 10 mL) to remove solid material and Et₃N. After removing the solvent, the desired product **10** (60 mg, 0.17 mmol, 85%) was isolated by flash column chromatography (pentane/EtOAc, 10:1) as a yellow resin. ¹H NMR (400 MHz, CDCl₃): δ /ppm = 7.46 (t, *J* = 1.6 Hz, 1H), 7.45 (t, *J* = 1.6 Hz, 1H), 7.41 (t, *J* = 1.6 Hz, 1H), 3.40 (s, 3H), 1.59 (s, 6H), 1.51 (s, 6H), 0.23 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ /ppm = 134.7, 134.6, 134.6, 123.8, 123.5, 123.4, 103.3, 95.8, 95.0, 92.3, 82.8, 80.7, 71.0, 65.7, 51.9, 31.5, 28.4, 0.0; HRMS (ES): *m*/*z* calculated for [C₂₂H₂₈O₂SiNa]⁺: 375.1751, found: 375.1749; **ATR-FTIR** (cm⁻¹): 2983, 2154, 1581, 1464, 1414, 1363, 1249, 1171, 1145, 1076, 998, 952, 922, 879, 841, 760, 743, 682, 657.

1-Ethynyl-3-(3-Hydroxy-3-methylbut-1-in-1-yl)-5-(3-methoxy-3-methylbut-1-in-1-yl)benzene (12)

1-(3-Hydroxy-3-methylbut-1-in-1-yl)-3-(3-methoxy-3-methylbut-1-in-1-yl)-5-((trimethyl-silyl)ethinyl)benzene (**11**) (2.70 g, 7.66 mmol, 1.0 equiv.) was dissolved in MeOH (150 mL). After addition of KOH (319 mg, 7.66 mmol, 1.0 equiv.) the mixture was stirred overnight at room temperature. H₂O (50 mL) and HCI (7.66 mL, 1M aqueous solution, 7.66 mmol, 1.0 equiv.) was added and the resulting mixture was extracted with DCM (4 × 20 mL) and dried over MgSO₄. After removing the solvent under

reduced pressure the desired product **12** (2.14 g, 7.64 mmol, >99%) was afforded as a slight yellow liquid. ¹**H NMR** (400 MHz, CDCl₃): δ /ppm = 7.48 – 7.44 (m, 3H), 3.41 (s, 3H), 3.08 (s, 1H), 1.60 (s, 6H), 1.52 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃): δ /ppm = 135.0, 134.8, 134.7, 123.6, 123.6, 122.8, 95.2, 92.5, 82.6, 82.0, 80.5, 78.5, 71.0, 65.7, 51.9, 31.5, 28.4; **HRMS (ES)**: *m*/*z* calculated for [C₁₉H₂₀O₂Na]⁺: 303.1356, found: 303.1352; **ATR-FTIR** (cm⁻¹): 3298, 2983, 1581, 1415, 1363, 1249, 1170, 1143, 1074, 947, 880, 830, 682, 639, 618.

4-(3-(1-(3,5-Bis(trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-4-yl)-5-(3-methoxy-3-methylbut-1-in-1yl)phenyl)-2-methylbut-3-in-2-ol (13)

3,5-Bis(trifluoromethyl)aniline (1.55 mL, 9.97 mmol, 1.3 equiv.) was dissolved in TFA (25 mL) and cooled to 0 °C. After addition of NaNO₂ (794 mg, 11.50 mmol, 1.5 equiv.) the mixture was stirred for 30 min at 0 °C. NaN₃ (800 mg, 12.30 mmol, 1.6 equiv.) was added slowly (exothermic reaction, nitrous fumes) at 0° C and the mixture was stirred for 2 h at room

temperature. Afterwards the reaction mixture was quenched by slow addition of H_2O (25 mL), followed by extraction with pentane (3 × 30 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ solution (3 × 30 mL), concentrated under reduced pressure (volume: ~ 2 mL), and directly used as *in situ* 3,5-bis(trifluoromethyl)phenylazide.

Alkyne-**12** (2.15 g, 7.67 mmol, 1.0 equiv.), 0.04 M aqueous $CuSO_4$ solution (9.6 mL, 0.06 mmol, 5 mol%), sodium ascorbate (9.6 mL, 0.12 M aqueous solution, 0.18 mmol, 15 mol%) and the *in situ* 3,5-bis(trifluoromethyl)-phenylazide were combined in a solvent mixture of DCM (20 mL) and *t*BuOH (20 mL) and stirred 12 h at room temperature and 3 h at 50 °C. The reaction mixture was diluted with water (50 mL) followed by extraction with DCM (3 × 100 mL). The obtained organic phase was washed with aqueous ammonia (26%, 3 × 25 mL) and brine (20 mL), and dried over MgSO₄. The

solvent was removed under reduced pressure obtaining a yellow solid. This crude product was dissolved in DCM and precipitated with pentane. The desired product **13** (3.45 g, 6.44 mmol, 84%) was obtained as slight yellow solid by filtration. ¹**H NMR** (300 MHz, CDCl₃): δ /ppm = 8.36 (s, 1H), 8.31 (s, 2H), 7.97 (s, 1H), 7.93 (t, *J* = 1.6 Hz, 1H), 7.91 (t, *J* = 1.6 Hz, 1H), 7.51 (t, *J* = 1.5 Hz, 1H), 3.44 (s, 3H), 2.18 (s, 1H), 1.63 (s, 6H), 1.55 (s, 6H); ¹³**C NMR** (75 MHz,CDCl₃): δ /ppm = 148.0, 137.9, 135.0, 133.8 (q, *J* = 34.5 Hz), 129.9, 128.8, 128.7, 124.2, 124.1, 122.7 (q, *J* = 273.3 Hz), 122.7 – 122.1 (m), 120.4 (q, *J* = 2.8 Hz), 117.8, 95.3,

92.6, 83.0, 80.9, 71.0, 65.7, 52.0, 31.6, 28.4; ¹⁹**F NMR** (282 MHz,CDCl₃): δ /ppm = -63.02; **HRMS (ES)**: *m*/*z* calculated [C₂₇H₂₃F₆N₃O₂Na]⁺: 558.1587, found: 558.1589; **ATR-FTIR** (cm⁻¹): 3478, 3120, 2939, 1591, 1496, 1473, 1409, 1354, 1273, 1181, 1135, 1077, 1049, 956, 931, 885, 846, 824, 717, 682; **Mp.:** 204-206 °C.

1-(3,5-bis(trifluoromethyl)phenyl)-4-(3-ethynyl-5-(3-methoxy-3-methylbut-1-in-1-yl)phenyl)-1*H*-1,2,3triazole (14)

13 (3.13 g, 5.84 mmol, 1.0 equiv) and KOH (33 mg, 0.58 mmol, 10 mol%) were suspended in toluene (150 mL) and stirred for 4.5 h at 130 °C. The reaction mixture was neutralized with HCl (0.58 mL, 1.0 M aqueous solution, 0.58 mmol, 1.0 equiv.) and diluted with H_2O (50 mL). The resulting mixture was extracted with DCM (4 × 50 mL) and dried over MgSO₄. After removing the solvent under reduced pressure the crude product was dissolved in DCM/MeOH (100:1) and precipitated with pentane. The desired product **14** (2.75 g, 5.76 mmol, 99%) was obtained as slight yellow solid by filtration.

¹**H NMR** (300 MHz, CDCl₃): δ /ppm = 8.36 (s, 1H), 8.31 (s, 2H), 8.00 – 7.96 (m, 3H), 7.58 (bs, 1H), 3.45 (s, 3H), 3.14 (s, 1H), 1.56 (s, 6H); ¹³**C NMR** (75 MHz,CDCl₃): δ /ppm = 147.9, 137.9, 135.4, 133.9 (q, *J* = 34.5 Hz), 130.0, 129.4, 129.1, 124.3, 123.5, 122.7 (q, *J* = 273.3 Hz), 122.7 – 122.3 (m), 120.4 (q, *J* = 4.0 Hz), 117.8, 92.8, 82.8, 82.2, 78.7, 71.0, 52.0, 28.4; ¹⁹**F NMR** (282 MHz,CDCl₃): δ /ppm = -63.01; **HRMS (ES)**: *m*/*z* calculated for [C₂₄H₁₇F₆N₃ONa]⁺: 500.1168, found: 500.1172; **ATR-FTIR** (cm⁻¹): 3295, 3120, 2994, 2944, 1497, 1474, 1432, 1410, 1354, 1276, 1188, 1170, 1134, 1063, 1044, 896, 882, 850, 821, 710, 699, 650; **Mp.:** 200-205 °C.

trans-1,2-Bis(4-(3-(1-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl)-5-(3-methoxy-3-methylbut-1-in-1-yl)phenyl)-1H-1,2,3-triazol-1-yl)cyclohexane (1a)

((*R*,*R*)-1a) (*R*,*R*)-Diaminocyclohexane (96 mg, 0.8 mmol, 1.0 equiv.), NaHCO₃ (538 mg, 6.4 mmol, 8.0 equiv.) and CuSO₄ (26 mg, 0.16 mmol, 20 mol%) were suspended in MeOH/Et₂O/H₂O (12 mL, 3:2:1). Nonafluorobutan-1-sulfonyl azide (780 mg, 2.4 mmol, 3.0 equiv.) was added and the mixture was stirred for 24 h at room temperature. A solution of "click"-alkyne **14** (782 mg, 1.64 mmol, 2.05 equiv.) in CH₂Cl₂/MeOH (24 mL, 10:1) and sodium ascorbate

(476 mg, 2.4 mmol, 3.0 equiv.) was added. The reaction mixture was stirred for additional 48 h at room temperature. After removing the solvent under reduced pressure the residue was dissolved in DCM (50 mL). After washing with NaHCO₃ solution (4 × 10 mL), aqueous ammonia (26%, 2 × 10 mL) and H₂O (10 mL), the solvent was removed under reduced pressure. The residue was taken up with DCM (5 mL)

and dropped into fast stirred pentane (150 mL). The desired product precipitated as a white solid and was isolated by filtration **1a** (648 mg, 0.58 mmol, 72%). ¹**H NMR** (600 MHz, THF- D_{θ}): δ /ppm = 9.19 (s, 2H), 8.58 (s, 4H), 8.39 (t, *J* = 1.6 Hz, 2H), 8.27 (s, 2H), 8.12 (s, 2H), 7.90 (t, *J* = 1.6 Hz, 2H), 7.77 (t, *J* = 1.6 Hz, 2H), 5.23 - 5.16 (m, 2H), 3.36 (s, 6H), 2.44 - 2.28 (m, 4H), 2.10 - 2.03 (m, 2H), 1.49 (s, 12H); ¹³**C NMR** (150 MHz, THF- D_{θ}): δ /ppm = 148.5, 146.4, 139.6, 133.9 (q, *J* = 34.0 Hz), 133.3, 132.0, 129.0, 128.4, 125.0, 124.1 (q, *J* = 272.6 Hz), 123.0, 122.7 - 122.4 (m), 121.4, 121.2 (q, *J* = 4.0 Hz), 120.1, 92.7, 84.5, 71.5, 64.6, 51.9, 34.0, 28.8; ¹⁹**F NMR** (565 MHz, THF- D_{θ}): δ /ppm = -63.71; **HRMS (ES)**: *m*/*z* calculated for [C₅₄H₄₄F₁₂N₁₂O₂Na]⁺: 1143.3411, found: 1143.3407; **ATR-FTIR** (cm⁻¹): 1608, 1495, 1357, 1279, 1231, 1175, 1140, 1074, 1038, 895, 847, 810, 710, 683, 654; **M.p.**: 115-125 °C; (*R*,*R*)-1a, [α]²⁰₅₈₉: +23.4 (*c* 0.15, CHCl₃).

((*S*,*S*)-1a) The opposite enantiomer was obtained from the corresponding (*S*,*S*)-amine. (*S*,*S*)-Diaminocyclohexane (57 mg, 0.50 mmol, 1.00 equiv.), NaHCO₃ (336 mg, 4.00 mmol, 8.00 equiv.) and CuSO₄ (16 mg, 0.10 mmol, 20 mol%) were suspended in MeOH/Et₂O/H₂O (12 mL, 3:2:1). Nonafluorobutan-1-sulfonyl azide (488 mg, 1.50 mmol, 3.0 equiv.) was added and the mixture was stirred for 24 h at room temperature. A solution of "click"-

alkyne **14** (489 mg, 1.03 mmol, 2.05 equiv.) in CH₂Cl₂/MeOH (11 mL, 10:1) and sodium ascorbate (297 mg, 1.50 mmol, 3.00 equiv.) was added. The reaction mixture was stirred for additional 48 h at room temperature. After removing the solvent under reduced pressure the residue was dissolved in DCM (50 mL). After washing with NaHCO₃ solution (4 × 10 mL), aqueous ammonia (26%, 2 × 10 mL) and H₂O (10 mL), the solvent was removed under reduced pressure. The desired product (124 mg, 0.11 mmol, 22%) was isolated (under non-optimized conditions) by flash column chromatography (CH₂Cl₂/EtOAc, 20:1 \rightarrow 10:1) as a white solid. (*S*,*S*)-**1a**, [α]²⁰₅₈₉ : -22.9 (*c* 0.09, CHCl₃).

HPLC (Daicel Chiralpak IA, Hexane/iPrOH = 90:10, λ = 254 nm, 1.0 mL/min): $t_{\rm R}$ = 14.4 min (*R*,*R*)-1a, 19.8 min (*S*,*S*)-1a.

TetrakisTriazole 2a

3-bromo-5-(3-methoxy-3-methylbut-1-yn-1-yl)aniline (15)

According to a procedure of *H. Xu et al.*^[6] 1,3-dibromo-5-(3-methoxy-3-methylbut-1-in-1yl)benzene **9** (4.9 g, 14.75 mmol, 1.0 equiv.), Cu₂O (105 mg, 0.74 mmol, 5 mol%), NH₃ (42.5 mL, 26% aqueous solution, 0.59 mol, 40.0 equiv.) and 1,4-dioxane (42.5 mL) were combined in a 100 mL pressure flask (The reaction is strongly pressure dependent! If the ratio of gas phase to liquid phase is changed, different temperatures and reaction times are required). The mixture was stirred for 12 h at 100 °C. Next, a saturated NaCl solution

(100 mL) was added and the reaction mixture was extracted with EtOAc (3 × 100 mL). The crude product

was adsorbed on silica and purified by flash column chromatography (pentane/EtOAc, 20:1 → 2:1). The desired product **15** (818 mg, 3.05 mmol, 21% (91% relative to conversion)) was obtained as a brown oil as well as the recovered starting material **9** (3.77 g, 11.36 mmol, 77%). ¹H NMR (300 MHz, CDCl₃): δ /ppm = 6.96 (dd, *J* = 1.8, 1.3 Hz, 1H), 6.77 (dd, *J* = 2.2, 1.8 Hz, 1H), 6.65 (dd, *J* = 2.2, 1.3 Hz, 1H), 3.40 (s, 3H), 1.51 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ /ppm = 147.5, 125.2, 124.6, 122.7, 118.0, 116.7, 91.7, 83.2, 71.0, 51.9, 28.4; HRMS (ES): *m*/*z* calculated for [C₁₂H₁₄BrNONa]⁺: 290.0151, found: 290.0153; **ATR-FTIR** (cm⁻¹): 3471, 3361, 3233, 2984, 2936, 2826, 1621, 1594, 1565, 1434, 1303, 1245, 1172, 1068.

1-Amino-3-(3-hydroxy-3-methylbut-1-in-1-yl)-5-(3-methoxy-3-methylbut-1-in-1-yl)benzene (16)

1-Amino-3-bromo-5-(3-methoxy-3-methylbut-1-in-1-yl)benzene (**15**) (6.28 g, 23.4 mmol, 1.0 equiv.), [Cu(MeCN)₄][BF₄] (150 mg, 0.48 mmol, 2 mol%) and Pd(PPh₃)₄ (278 mg, 0.24 mmol, 1 mol%) were suspended in THF (65 mL). Trimethylsilylacetylene (42 μ L, 0.30 mmol, 1.5 equiv.), 2-methylbut-3-in-2-ol (3.44 mL, 35.10 mmol, 1.5 equiv.) and Et₃N (6.5 mL) were added and the resulting mixture was stirred at 90 °C in a flame-dried pressure schlenk tube under argon for 40 h. The

crude product was filtered through celite and washed with ethyl acetate (3 × 10 mL) to remove solid material and Et₃N. After removing the solvent, the desired product **16** (5.58 g, 20.5 mmol, 88%) was isolated by flash column chromatography (pentane/EtOAc, 2:1) as a brown resin. ¹H NMR (300 MHz, CDCl₃): δ /ppm = 6.91 (bs, 1H), 6.71 – 6.65 (m, 2H), 3.40 (s, 3H), 1.59 (s, 6H), 1.51 (s, 6H); ¹³C NMR (75 MHz,CDCl₃): δ /ppm = 146.3, 125.5, 123.9, 123.7, 118.1, 118.0, 93.8, 91.0, 83.8, 81.7, 71.0, 65.7, 51.9, 31.6, 28.5; HRMS (ES): *m*/*z* calculated for [C₁₇H₂₁NO₂Na]⁺: 294.1465, found: 294.1475; **ATR-FTIR** (cm⁻¹): 2985, 2936, 1620, 1590, 1459, 1423, 1362, 1265, 1251, 1171, 1144, 1072, 950, 857, 831, 736, 704, 684.

1-Azido-3-(3-hydroxy-3-methylbut-1-in-1-yl)-5-(3-methoxy-3-methylbut-1-in-1-yl)benzene (17)

1-Amino-3-(3-hydroxy-3-methylbut-1-in-1-yl)-5-(3-methoxy-3-methylbut-1-in-1-yl)benzene (**16**) (3.25 g, 12.0 mmol, 1.0 equiv.) was dissolved in Et_2O (12 mL), H_2O (50 mL) and HCl (2.5 mL, 10 M aqueous solution, 25.2 mmol, 2.1 equiv.) were added and the resulting mixture was cooled to 0 °C. NaNO₂ (869 mg, 12.6 mmol, 1.05 equiv.) was added to the suspension. The resulting intense red suspension was stirred for 90 min at 0 °C. NaN₃ (819 mg, 12.6 mmol, 1.05 equiv.) was fractionally added and the

reaction mixture was stirred for 30 min at 0 °C and additional 2 h at room temperature. The mixture was extracted with Et₂O (4 × 30 mL) and the resulting organic phases dried over MgSO₄. The crude product was adsorbed on silica and purified by flash column chromatography (pentane/EtOAc, 20:1 \rightarrow 2:1). The desired product **17** (818 mg, 3.05 mmol, 21% (91% relative to conversion)) was obtained as brown oil. ¹H **NMR** (300 MHz, CDCl₃): δ /ppm = 7.24 (t, *J* = 1.4 Hz, 1H), 6.99 – 6.96 (m, 2H), 3.40 (s, 3H), 1.59 (s, 6H), 1.51 (s, 6H); ¹³C NMR (75 MHz,CDCl₃): δ /ppm = 140.4, 131.4, 124.7, 124.6, 121.8, 121.7, 95.5, 92.7, 82.6, 80.4, 71.0, 65.5, 51.9, 31.4, 28.3; **HRMS (ES):** *m*/*z* calculated for [C₁₇H₁₉N₃O₂Na]⁺: 320.1369, found: 320.1367.

4-(3-(4-(3,5-bis(trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-1-yl)-5-(3-methoxy-3-methylbut-1-in-1yl)phenyl)-2-methylbut-3-in-2-ol (18)

Azide **17** (1.07 g, 3.60 mmol, 1.0 equiv.), 0.04 M aqueous CuSO₄ solution (4.5 mL, 0.06 mmol, 5 mol%), sodium ascorbate (4.5 mL, 0.12 M aqueous solution, 0.18 mmol, 15 mol%) and 1-ethinyl-3,5-bis(trifluoromethyl)benzene (1.19 g, 5.00 mmol, 1.4 equiv.) were combined in a solvent mixture of DCM (9 mL) and *t*BuOH (9 mL) and stirred 48 h at 50 °C. The reaction mixture was diluted with water (20 mL) followed by extraction with DCM (3 × 75 mL). After washing with 26% aqueous ammonia (3 × 25 mL), the solvent was removed under reduced pressure.

This crude product was dissolved in DCM and precipitated with pentane. The desired product **18** (1.91 g, 3.56 mmol, 99%) was obtained as slight yellow solid by filtration. ¹**H NMR** (300 MHz, CDCl₃): δ /ppm = 8.38 (s, 1H), 8.36 (s, 2H), 7.87 (s, 1H), 7.82 (t, *J* = 1.4 Hz, 1H), 7.81 (t, *J* = 1.4 Hz, 1H), 7.58 (t, *J* = 1.4 Hz, 1H), 3.44 (s, 3H), 2.14 (s, 1H), 1.64 (s, 6H), 1.56 (s, 6H); ¹³**C NMR** (75 MHz, CDCl₃): δ /ppm = 146.1, 136.7, 135.3, 132.6 (q, *J* = 33.6 Hz), 132.2, 125.9 (q, *J* = 3.4 Hz), 125.3, 125.2, 123.3 (q, *J* = 272.9 Hz), 123.0, 122.9, 122.5 - 121.9 (m), 118.6, 96.6, 94.1, 82.0, 80.0, 71.0, 65.7, 52.0, 31.5, 28.3; ¹⁹**F NMR** (282 MHz, CDCl₃): δ /ppm = -62.99; **HRMS (ES)**: *m*/*z* calculated for [C₂₇H₂₃F₆N₃O₂Na]⁺: 558.1587, found: 558.1587; **ATR-FTIR** (cm⁻¹): 3282, 2988, 2941, 1601, 1587, 1458, 1442, 1405, 1373, 1336, 1300, 1278, 1246, 1167, 1134, 1076, 1064, 1040, 1001, 962, 936, 896, 872, 845, 825, 795, 717, 700, 679; **M.p.**: 210-215 °C.

4-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-ethinyl-5-(3-methoxy-3-methylbut-1-in-1-yl)phenyl)-1*H*-1,2,3triazole (19)

18 (536 mg, 1.00 mmol, 1.0 equiv) and KOH (6 mg, 0.10 mmol, 10 mol%) were suspended in toluene (25 mL) and stirred for 4 h at 130 °C. The reaction mixture was neutralized with HCI (0.10 mL, 1.0 M aqueous solution, 0.10 mmol, 1.0 equiv.) and diluted with H₂O (10 mL). The resulting mixture was extracted with DCM (4 × 50 mL) and dried over MgSO₄. After removing the solvent under reduced pressure the crude product was dissolved in DCM/MeOH (100:1) and precipitated with pentane. The desired product **19** (440 mg, 0.92 mmol, 92%) was obtained as white solid by filtration. ¹**H NMR** (400 MHz, CDCl₃): δ /ppm = 8.38 (s,

1H), 8.36 (s, 2H), 7.89 – 7.86 (m, 3H), 7.64 (t, J = 1.4 Hz, 1H), 3.44 (s, 3H), 3.22 (s, 1H), 1.56 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃): δ /ppm = 146.1, 136.8, 135.7, 132.6 (q, J = 33.7 Hz), 132.2, 125.9 (q, J = 3.3 Hz), 125.5, 124.6, 123.6, 123.4, 123.3 (q, J = 267.2 Hz), 122.5 – 122.0 (m), 118.7, 94.3, 81.9, 81.2, 80.1, 71.0, 52.0, 28.3; ¹⁹**F NMR** (376 MHz, CDCl₃): δ /ppm = -63.00; **HRMS (ES):** *m*/*z* calculated for [C₂₄H₁₇F₆N₃ONa]⁺: 500.1168, found: 500.1174; **ATR-FTIR** (cm⁻¹): 3308, 3099, 2992, 1601, 1585, 1444, 1372, 1327, 1277, 1240, 1184, 1166, 1130, 1062, 1033, 990, 888, 853, 821, 708, 699, 682, 655; **Mp.**: 193-197 °C.

(*R*,*R*)-1,2-Bis(4-(3-(4-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-yl)-5-(3-methoxy-3-methylbut-1-in-1-yl)phenyl)-1H-1,2,3-triazol-1-yl)cyclohexane (2a)

 $(R,R)\mbox{-}Diaminocyclohexane (57 mg, 0.50 mmol, 1.00 equiv.), NaHCO_3 (336 mg, 4.00 mmol, 8.00 equiv.) and CuSO_4 (16 mg, 0.10 mmol, 20 mol%) were suspended in MeOH/Et_2O/H_2O (12 mL, 3:2:1). Nonafluorobutan-1-sulfonyl azide (488 mg, 1.50 mmol, 3.00 equiv.) was added and the mixture was stirred for 24h at room temperature. A solution of "click"-alkyne$ **19** $(489 mg, 1.03 mmol, 2.05 equiv.) in CH_2Cl_2/MeOH (11 mL, 10:1) and sodium$

ascorbate (297 mg, 1.50 mmol, 3.00 equiv.) was added. The reaction mixture was stirred for additional 24 h at room temperature. After removing the solvent under reduced pressure the residue was dissolved in DCM (50 mL). After washing with NaHCO₃ solution (4 × 10 mL), aqueous ammonia (26%, 2 × 10 mL) and H₂O (10 mL), the mixture was dried over MgSO₄ and the solvent was removed under reduced pressure. The desired product **2a** (396 mg, 0.35 mmol, 70%) was isolated by flash column chromatography (DCM/EtOAc, $10:1 \rightarrow 5:1$) as a white solid. ¹H NMR (300 MHz, THF-*D*₈): δ /ppm = 9.23 (s, 2H), 8.51 (s, 4H), 8.35 (s, 2H), 8.35 (t, *J* = 1.5 Hz, 1H), 7.98 (s, 2H), 7.86 (t, *J* = 1.5 Hz, 1H), 7.85 (t, *J* = 1.5 Hz, 1H), 5.30 – 5.11 (m, 2H), 3.36 (s, 6H), 2.48 – 2.26 (m, 4H), 2.15 – 2.00 (m, 2H), 1.49 (s, 12H); ¹³C NMR (150 MHz,THF-*D*₈): δ /ppm = 146.2, 1457, 138.5, 134.42 134.3, 133.0 (q, *J* = 33.3 Hz), 129.0, 126.4 (q, *J* = 3.8 Hz), 125.9, 124.5 (q, *J* = 272.5 Hz), 122.4 – 122.2 (m), 122.2, 122.0, 121.0, 117.0, 94.0, 83.5, 71.5, 64.8, 51.9, 33.9, 28.6, 25.6; ¹⁹F NMR (282 MHz,THF-*D*₈): δ /ppm = -63.76; HRMS (ES): *m*/*z* calculated for [C₅₄H₄₄F₁₂N₁₂O₂Na]⁺: 1143.3411, found: 1143.3402; **ATR-FTIR** (cm⁻¹): 1613, 1596, 1464, 1375, 1323, 1277, 1238, 1172, 1131, 1074, 1033, 989, 896, 846, 806, 707, 682; [α]²₅₈₉ = +9.0 (*c* 0.15, CHCl₃); **Mp**: 185-195 °C.

TetrakisTriazole 2b

TMS

3-((Trimethylsilyl)ethinyl)aniline (20)

According to a procedure of *M. Erdélyi et al.*^[7] 3-iodoaniline (3.25 mL, 27.00 mmol, 1.0 equiv.), trimethylsilylacetylene (4.48 mL, 32.40 mmol, 1.2 equiv.), Cul (206 mg, 1.08 mmol, 4 mol%) and PdCl₂(PPh₃)₂ (379 mg, 0.54 mmol, 2 mol%) were dissolved in

Et₃N/DMF (70 mL, 1:1) and stirred for 4 days at room temperature. The reaction mixture was diluted with 1 M aqueous HCl solution (150 mL) and extracted with Et₂O (3 × 100 mL). The organic layers were washed with saturated NaHCO₃ solution (2 × 100 mL). The combined aqueous layer was again extracted with Et₂O (2 × 100 mL). All combined organic phases were dried over MgSO₄. The crude product was adsorbed on silica and purified by flash column chromatography (DCM). The desired product **20** (4.73 g, 25.00 mmol, 93%) was obtained as a brown oil. ¹H NMR (300 MHz, CDCl₃): δ /ppm = 7.08 (t, *J* = 7.8 Hz, 1H), 6.88 (dt, *J* = 7.8, 1.5 Hz, 1H), 6.79 (t, *J* = 1.5 Hz, 1H), 6.63 (dd, *J* = 7.8, 1.5 Hz, 1H), 3.65 (bs, 2H), 0.25 (s, 9H); ¹³C

NMR (75 MHz,CDCl₃): δ /ppm = 146.2, 129.3, 123.8, 122.5, 118.3, 115.7, 105.5, 93.5, 0.1; **HRMS (ES)**: *m*/*z* calculated for [C₁₁H₁₅NSiNa]⁺: 190.1047, found: 190.1054.

3-Azido-1-((trimethylsilyl)ethinyl)benzene (21)^[8]

³⁻((Trimethylsilyl) ethinyl)aniline (**20**) (189 mg, 1.00 mmol, 1.00 equiv.) was suspended in HCl (2.1 mL, 1 M aqueous solution, 2.10 mmol, 2.10 equiv.) and cooled to 0 °C. NaNO₂ (73 mg, 1.05 mmol, 1.05 equiv.) was added and the resulting mixture was stirred 20 min at 0 °C. NaN₃ (69 mg, 1.05 mmol, 1.05 equiv.) was fractionally added and the reaction mixture was stirred for 10 min at 0 °C and additional 20 min at room temperature. The mixture was extracted with Et₂O (3 × 5 mL) and dried over MgSO₄. The desired product **21** (210 mg, 0.98 mmol, 98%) was obtained after a filtration through silica (pentane) as brown oil. ¹H NMR (400 MHz, CDCl₃): δ /ppm = 7.27 (td, *J* = 7.7, 0.6 Hz, 1H), 7.23 (dt, *J* = 7.7, 1.4 Hz, 1H), 7.13 (ddd, *J* = 2.2, 1.4, 0.6 Hz, 1H), 6.96 (ddd, *J* = 7.7, 2.2, 1.4 Hz, 1H), 0.25 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ /ppm = 140.3, 129.7, 128.6, 124.9, 122.3, 119.5, 104.0, 95.6, 0.0.

4-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-((trimethylsilyl)ethinyl)phenyl)-1H-1,2,3-triazole (22)

Azide **21** (1.27 g, 5.90 mmol, 1.0 equiv.), 0.04 M aqueous $CuSO_4$ solution (7.4 mL, 0.06 mmol, 5 mol%), sodium ascorbate (7.4 mL, 0.12 M aqueous solution, 0.18 mmol, 15 mol%) and 1-ethinyl-3,5-bis(trifluoromethyl)benzene (1.76g, 7.38 mmol, 1.25 equiv.) were combined in a solvent mixture of DCM (15 mL) and *t*BuOH (15 mL) and stirred for 48 h at 50 °C. The reaction mixture was diluted with saturated NaCl solution (30 mL) followed by

extraction with DCM (4 × 50 mL). After washing with aqueous ammonia (26%, 3 × 25 mL) the solvent was removed under reduced pressure. The desired product **22** (2.12 g, 4.67 mmol, 79%) was obtained as yellow solid by filtration. ¹H NMR (300 MHz, CDCl₃): δ /ppm = 8.38 (s, 1H), 8.36 (s, 2H), 7.90 – 7.84 (m, 2H), 7.80 (ddd, *J* = 7.8, 2.3, 1.4 Hz, 1H), 7.56 (dt, *J* = 7.8, 1.4 Hz, 1H), 7.50 (td, *J* = 7.8, 0.6 Hz, 1H), 0.28 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ /ppm = 145.9, 136.7, 132.6, 132.5 (q, *J* = 33.6 Hz); 132.4, 130.1, 125.9 (q, *J* = 3.9 Hz), 123.7, 123.3 (q, *J* = 272.8 Hz), 122.4 – 121.8 (m), 120.6, 118.7, 103.1, 97.1, -0.1; ¹⁹F NMR (282 MHz,CDCl₃): δ /ppm = -63.0; HRMS (ES): *m*/*z* calculated for [C₂₁H₁₇F₆N₃SiNa]⁺: 476.0988, found: 476.0983; **ATR-FTIR** (cm⁻¹): 2962, 2169, 1605, 1581, 1486, 1405, 1372, 1325, 1276, 1244, 1216, 1170, 1137, 1109, 1038, 993, 878, 842, 789, 759, 711, 682, 642; **Mp.**: 126-128 °C.

4-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-ethinylphenyl)-1H-1,2,3-triazole (23)

22 (2.05 g, 4.52 mmol, 1.0 equiv.) was dissolved in MeOH (50 mL). After addition of KOH (253 mg, 4.52 mmol, 1.0 equiv.) the mixture was stirred for 12 h at room temperature. H_2O (50 mL) was added and the resulting mixture was extracted

with DCM (3 × 50 mL) and dried over MgSO₄. After removing the solvent under reduced pressure the desired product **23** (1.71 g, 4.50 mmol, >99%) was afforded as a yellow solid. ¹H NMR (300 MHz, CDCl₃): δ /ppm = 8.39 (s, 1H), 8.36 (s, 2H), 7.91 (t, *J* = 1.7 Hz, 1H), 7.87 (s, 1H), 7.83 (ddd, *J* = 7.8, 2.3, 1.4 Hz, 1H), 7.59 (dt, *J* = 7.8, 1.4 Hz, 1H), 7.53 (t, *J* = 7.8 Hz, 1H), 3.21 (s, 1H); ¹³C NMR (75 MHz,CDCl₃): δ /ppm = 146.0, 136.7, 132.9, 132.5 (q, *J* = 33.4 Hz), 132.3, 130.2, 125.9 (q, *J* = 3.7 Hz), 124.3, 124.0, 123.3 (q, *J* = 272.8 Hz), 122.1 (hept, *J* = 3.8 Hz), 121.0, 118.7, 81.9, 79.5; ¹⁹F NMR (282 MHz,CDCl₃): δ /ppm = -63.00; HRMS (ES): *m*/*z* calculated for [C₁₈H₉F₆N₃Na]⁺: 404.0593, found: 404.0599; ATR FTIR (cm⁻¹): 3261, 1607, 1582, 1485, 1407, 1371, 1325, 1275, 1241, 1177, 1125, 1104, 1087, 1039, 994, 897, 840, 789, 710, 700, 682, 651; Mp.: 144-146 °C.

(*R,R*)-1,2-bis(4-(3-(4-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-yl)phenyl)-1H-1,2,3-triazol-1-yl)cyclohexane (TetraTri 2b)

(*R*,*R*)-Diaminocyclohexane (57 mg, 0.50 mmol, 1.00 equiv.), NaHCO₃ (336 mg, 4.00 mmol, 8.00 equiv.) and CuSO₄ (16 mg, 0.10 mmol, 20 mol%) were suspended in MeOH/Et₂O/H₂O (12 mL, 3:2:1). Nonafluorobutan-1-sulfonyl azide (488 mg, 1.50 mmol, 3.00 equiv.) was added and the mixture was stirred for 24h at ambient temperature. A solution of "click"-alkyne **23** (489 mg, 1.03 mmol, 2.05 equiv.) in CH₂Cl₂/MeOH (11 mL, 10:1) and sodium ascorbate (391 mg, 1.03 mmol, 2.05 equiv.) was added. The reaction mixture was stirred for additional 24 h at room temperature. After removing

the solvent under reduced pressure, the residue was dissolved in DCM (50 mL). After washing with NaHCO₃ solution (4 × 10 mL), aqueous ammonia (26%, 2 × 10 mL) and H₂O (10 mL) the mixture was dried over MgSO₄ and the solvent was removed under reduced pressure. The desired product **2b** (312 mg, 0.34 mmol, 68%) was isolated by flash column chromatography (DCM/EtOAc, 10:1 \rightarrow 5:1) as a white solid. ¹**H NMR** (600 MHz, THF-*D*₈): δ /ppm = 9.15 (s, 2H), 8.51 (s, 4H), 8.32 (t, *J* = 1.6 Hz, 1H), 8.20 (s, 2H), 7.96 (s, 2H), 7.80 – 7.77 (m, 2H), 7.49 (t, *J* = 7.9 Hz, 2H), 5.25 – 5.16 (m, 2H), 2.45 – 2.30 (m, 4H), 2.12 – 2.02 (m, 2H); ¹³**C NMR** (150 MHz, THF-*D*₈): δ /ppm = 146.4, 146.1, 138.5, 134.6, 134.1, 133.0 (q, *J* = 33.2 Hz), 131.0, 126.4 (q, *J* = 3.7 Hz), 126.2, 124.6 (q, *J* = 272.5 Hz), 122.3 – 122.1 (m), 121.7, 121.1 – 120.9 (m), 119.8, 117.5, 64.7, 33.9; ¹⁹**F NMR** (564 MHz, THF-*D*₈): δ /ppm = -63.75; **HRMS (ES)**: *m*/*z* calculated for [C₄₂H₂₈F₁₂N₁₂Na]⁺: 951.2260, found: 951.2251; **ATR-FTIR** (cm⁻¹): 1617, 1589, 1372, 1327, 1313, 1276, 1235, 1175, 1126, 1111, 1045, 997, 896, 846, 792, 701, 682; [α]²⁰/₅₈₉: -10.0 (*c* 0.12, CHCl₃); **M.p.**: 250-252 °C.

TetrakisTriazole 2c

3-(Trifluoromethyl)-5-((trimethylsilyl)ethynyl)aniline (24)

3-(Trifluoromethyl)-5-bromo-aniline (1.432 mL, 10.0 mmol, 1.0 equiv.) and $ZnBr_2$ (3.378 g, 15 mmol, 1.5 equiv.) were suspended in THF (50 mL) and stirred for

30 min at 80 °C. After cooling to room temperature trimethylsilylacetylene (2.08 mL, 15.0 mmol, 1.5 equiv.), Cul (76 mg, 0.04 mmol, 4 mol%), Pd(PPh₃)₄ (231 mg, 0.02 mmol, 2 mol%) and Et₃N (14 mL, 100 mmol, 10 equiv.) were added. The resulting mixture was stirred for 3 days at 80 °C. The crude product was filtered through celite to remove solid material and Et₃N. After removing the solvent, the desired product **24** (2.492 g, 9.7 mmol, 97%) was isolated by flash column chromatography (pentane/EtOAc, 9:1) as a brown resin. ¹H NMR (400 MHz, CDCl₃): δ /ppm = 6.87 (s, 1H), 6.68 (s, 1H), 6.60 (s, 1H), 3.58 (s, 2H), 0.01 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ /ppm = 146.5, 132.0 (q, *J* = 32.4 Hz), 124.9, 123.8 (q, *J* = 272.3 Hz), 121.0, 119.0 (q, *J* = 4.0 Hz), 111.7 (d, *J* = 4.0 Hz), 103.8, 95.4, -0.02; ¹⁹F NMR (376 MHz,THF-*D*₈): δ /ppm = -63.23; HRMS (ES): *m*/*z* calculated for [C₁₂H₁₄F₃NSiNa]⁺: 280.0740, found: 280.0731; ATR FTIR (cm⁻¹): 3315, 2962, 2152, 1627, 1600, 1475, 1444, 1365, 1249, 1174, 1165, 1114, 999, 985, 891, 837, 721, 694.

4-(3,5-Bis(trifluoromethyl)phenyl)-1-(3-(trifluoromethyl)-5-((trimethylsilyl)ethynyl)phenyl)-1H-1,2,3 triazole (25)

F₃C N₃ TMS 3-(Trifluoromethyl)-5-((trimethylsilyl)ethynyl)aniline **24** (1.544 g, 6.0 mmol, 1.2 equiv.) was dissolved in TFA (25 mL) and cooled to 0 °C. After addition of NaNO₂ (785 mg, 11.5 mmol, 2.3 equiv.) the mixture was stirred for 30 min at 0 °C. NaN₃ (813 mg, 12.5 mmol, 2.5 equiv.) was added slowly (exothermic reaction, nitrous fumes) at 0° C and the mixture

was stirred for 2 h at room temperature. Afterwards the reaction mixture was quenched by slow addition of H_2O (25 mL), followed by extraction with pentane (3 × 30 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ solution (3 × 30 mL), concentrated under reduced pressure (volume: ~ 2 mL), and directly used as *in situ* 3,5-bis(trifluoromethyl)phenylazide.

The *in situ* azide solution, 0.04 M aqueous $CuSO_4$ solution (5.0 mL, 0.2 mmol, 5 mol%), sodium ascorbate (0.149 g, 0.75 mmol, 15 mol%) and 1-ethinyl-3,5-bis(trifluoromethyl)benzene (1.29 g, 5.0 mmol, 1.0 equiv.) were combined in a solvent mixture of DCM (15 mL) and *t*BuOH (15 mL) and stirred for 3 days at 50 °C. The reaction mixture was diluted with H₂O (30 mL) followed by extraction with DCM (4 × 50 mL). After washing with aqueous ammonia (26%, 3 × 25 mL) the

solvent was removed under reduced pressure. The desired product **25** (1.453 g, 3.24 mmol, 65%) was obtained as slight yellow solid by flash column chromatography (pentane/EtOAc, 9:1). ¹**H NMR** (400 MHz, CDCl₃): δ /ppm = 8.45 (s, 1H), 8.38 (s, 2H), 8.14 (s, 1H), 8.10 (s, 1H), 7.90 (s, 1H), 7.85 (s, 1H), 3.33 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃): δ /ppm =146.5, 137.2, 133.0, 132.5 (q, *J* = 33.7 Hz), 132.0, 129.4 (q, *J* = 3.8 Hz), 126.8, 126.1-126.0 (m), 125.8 (q, *J* = 37.4 Hz), 123.3 (q, *J* = 272.5 Hz), 122.9 (q, *J* = 273.1 Hz), 122.4 (q, *J* = 3.7 Hz), 118.6, 117.6 (q, *J* = 3.8 Hz), 81.4, 80.6. ¹⁹**F NMR** (282 MHz, CDCl₃): δ /ppm = 62.99, -63.09. **HRMS (ES):** *m*/*z* calculated for [C₁₉H₈F₉N₃Na]⁺: 472.0467; found: 472.0464; **ATR FTIR** (cm⁻¹):1602, 1305, 1276, 159, 1168, 1118, 1085, 1047, 1031, 999, 987, 889, 860, 844, 823, 806.

(1*R*,2*R*)-1,2-bis(4-(3-(4-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,3-triazol-1-yl)-5-(trifluoromethyl)-phenyl)-1H-1,2,3-triazol-1-yl)cyclohexane (2c)

(*R*,*R*)-Diaminocyclohexane (0.171 g, 1.5 mmol, 1.0 equiv.), NaHCO₃ (1.008 g, 12.0 mmol, 8.0 equiv.) and CuSO₄ (7.5 mL, 0.04 M aqueous solution, 0.3 mmol, 20 mol%) were suspended in MeOH/Et₂O (45 mL, 3:2). Nonafluorobutan-1-sulfonyl azide (0.843 mL, 4.5 mmol, 3.00 equiv.) was added and the mixture was stirred for 20 h at room temperature. A solution of "click"-alkyne **25** (1.348 g, 3.09 mmol, 1.03 equiv.) in CH₂Cl₂/MeOH (30 mL, 10:1) and sodium ascorbate (1.783 g, 9.0 mmol, 3.0 equiv.) were

added. The reaction mixture was stirred for additional 3 days at room temperature. The solvent was removed under reduced pressure and the residue was solved in DCM (100 mL). After washing with NaHCO₃ solution (4 × 30 mL), aqueous ammonia (26%, 2 × 50 mL) and H₂O (50 mL) the mixture was dried over MgSO₄ and the solvent was removed *in vacuo*. The desired product **2c** (1.265 g, 1.2 mmol, 79%) was isolated by flash column chromatography (DCM) as a yellow solid. ¹H NMR (300 MHz, acetone-D₆): δ /ppm = 9.34 (s, 2H), 8.67 (s, 2H), 8.45 (s, 2H), 8.41 (s,4H), 8.07 (s, 2H), 8.00 (s, 2H), 7.96 (s, 2H), 5.30 – 5.22 (m, 2H), 2.61 – 2.42 (m, 4H), 2.20 – 2.10 (m, 2H), 1.90 – 1.77 (m, 2H). ¹³C NMR (75 MHz, acetone-D₆): δ /ppm = 146.0,145.1, 138.5, 134.9, 133.8, 132.9 (q, *J* = 33,0 Hz), 132.7 (q, *J* = 33,3 Hz), 126.3 (q, *J* = 3,2 Hz), 126.1 (q, *J* = 4,4 Hz), 124.4 (q, *J* = 272,2 Hz), 124.3 (q, *J* = 272,2 Hz), 122.7, 122.3 (q, *J* = 4,0 Hz), 121.4, 120.3, 116.0 (q, *J* = 3,7 Hz), 65.3, 32.9, 25.3. ¹⁹F NMR (282 MHz, acetone-D₆): δ /ppm = -63.56, -63.58. HRMS (ES): *m/z* calculated for [C₄₄H₂₆F₁₈N₁₂Cl]⁻: 1099,1810; found: 1099,1835; ATR-FTIR (cm⁻¹): 1489, 1354, 1379, 1307, 1278, 1170, 1105, 1041, 898, 804, 682; [α]²⁰₅₈₉: +4.6 (*c* 0.142, CHCl₃).

BisTriazole B1

(*R*,*R*)-1,2-Bis(4-(3,5-bis(trifluoromethyl)phenyl)-1*H*-1,2,3-triazole-1-yl)cyclohexane (B1)

(R,R)-Diaminocyclohexane (150 µL, 1.25 mmol, 1.0 equiv.), NaHCO₃ (0.84 g, 10.0 mmol, 8.0 equiv.) and CuSO₄ (20 mg, 0.13 mmol, 20 mol%) were suspended in MeOH/Et₂O/H₂O (9 mL, 6:3:2). Nonafluorobutan-1-sulfonyl azide (1.22 g, 3.74 mmol, 3.00 equiv.) was added and the mixture was stirred for 8 h at room temperature. A solution of 1-ethinyl-3,5-bis(trifluoromethyl)benzene

(0.75 g, 3.13 mmol, 2.5 equiv.) and sodium ascorbate (0.75 g, 7.5 mmol, 3.0 equiv.) were added. The reaction mixture was stirred for additional 12 h at room temperature. The solvent was removed under reduced pressure and the residue was solved in DCM (30 mL). After washing with NaHCO₃ solution (4 × 10 mL), aqueous ammonia (26%, 2 × 10 mL) and H₂O (10 mL) the organic phase was dried over Na₂SO₄ and filtered. The resulting solution mixture was added dropwise into pentane and the formed solid was filtrated. The collected solid was dissolved in acetone and again precipitated by addition of the solution in pentane, providing the desired product **B1** (548.0 mg, 0.82 mmol, 66%) as a white solid. ¹H NMR (400 MHz, acetone-D₆): δ /ppm = 8.65 (s, 2H), 8.34 (br s, 4H), 7.92 (s, 2H), 5.31 – 5.18 (m, 2H), 2.50 – 2.32 (m, 4H), 2.14 – 2.05 (m, 2H), 1.84 – 1.72 (m, 2H); ¹³C NMR (100 MHz, acetone-D₆): δ /ppm = 144.8, 134.5,

132.6 (q, J = 33.2 Hz), 126.2 (d, J = 4.1 Hz), 124.3 (q, J = 272.1 Hz), 122.7 , 122.2 – 121.4 (m), 64.9, 33.3, 25.2; ¹⁹**F-NMR** (300 MHz, acetone-D₆): δ /ppm = -63.63; **HRMS (ES):** m/z calculated for [C₂₆H₁₈F₁₂N₆Na]⁺: 665.1294, found: 665.1290; **ATR-FTIR** (cm⁻¹): 1313, 1276, 1165, 1128, 1091, 898, 842, 702, 682; [α]²⁰₅₈₉: +131.0 (*c* 0.155, CHCl₃); **M.p.:** 282-284 °C.

Preparation of the silyl ketene acetals 4

General procedure for the preparation of the silyl ketene acetals

According to *Jacobsen et al.* ^[9] *n*-butyllithium (1.6 M in hexane; 1.1 equiv.) was added slowly to a solution of dry $HN(IPr)_2$ (1.2 equiv.) in THF (2.5 mL/mmol) at 0°C. The mixture was stirred for 20 min at 0°C and then cooled to -78°C. The corresponding ester (1.0 equiv.) was added at -78°C over 10 min and the reaction was stirred for additional 30 min at -78°C. NMP (0.2 mL/mmol) was added slowly, followed by a slow addition (30 min) of a *tert*-butyldimethylsilyl chloride solution (1.2 equiv., dissolved in 0.2 mL/mmol of THF). The resulting reaction mixture was stirred for additional 30 min at -78°C and warmed to room temperature over a time of 1h. Then the solvent was removed under reduced pressure and the resulting residue was dissolved in pentane (6 mL/mmol), washed with H₂O (3 mL/mmol), NaHCO₃ saturated solution (3 mL/mmol), NaCI saturated solution (3 mL/mmol) and CuSO₄ (3 mL/mmol) solutions and dried over anhydrous NaSO₄. After removing the solvent under reduced pressure, the crude product was purified by vacuum distillation to afford the desired product as a colourless liquid.

1-(*tert*-Butyldimethylsilyloxy)-1-isopropoxyethene (4a)

1-(tert-Butyldimethylsilyloxy)-1-(tert-butoxy)ethene (4b)

According to the general procedure *n*-butyllithium (1.6 M in hexane; 8.3 mL, 13.2 mmol, 1.1 equiv.), $HN(iPr)_2$ (2.0 mL,14.4 mmol, 1.2 equiv.), *tert*-butyl acetate (1.6 mL, 12 mmol, 1.0 equiv.) and *tert*-butyldimethylsilyl chloride (2.170 g, 14.4 mmol, 1.2 equiv.) were put under reaction conditions. The resulting crude product was purified by distillation (b.p.: 50-57 °C at 3 mbar) to afford the desired product (1.512 g, 6.6 mmol, 55%). The analytical data match with those previously reported.^[9] ¹**H NMR** (300 MHz, CDCl₃): δ /ppm = 3.47 (d, *J* = 1.3 Hz, 1H), 3.45 (d, *J* = 1.3 Hz, 1H), 1.35 (s, 9H), 0.93 (s, 9H), 0.19 (s, 6H).

1-(*tert*-Butyldimethylsilyloxy)-1-methoxyethene (4c)

OTBS According to the general procedure *n*-butyllithium (1.6M in hexane; 11.5 mL, 18.3 mmol, 1.10 OMe equiv.), $HN(iPr)_2$ (2.8 mL, 20.0 mmol, 1.2 equiv.), methyl acetate (1.3 mL, 16.7 mmol, 1.0 equiv.) and *tert*-butyldimethylsilyl chloride (3.000 g, 20.0 mmol, 1.20 equiv.) were added under reaction conditions. The resulting crude product was purified by distillation (b.p.: 80-85°C at 60 mbar) to afford the desired product (2.040 g, 10.8 mmol, 65%). The analytical data match with those previously reported.^[9] ¹**H NMR** (300 MHz, CDCl₃): δ /ppm = 3.53 (s, 3H), 3.22 (d, *J* = 2.6 Hz, 1H), 3.10 (d, *J* = 2.6 Hz, 1H), 2.17 (s, 1H), 0.93 (s, 9H), 0.17 (s, 3H).

Quinoline derivatives 3m and 3p

Adapting the experimental procedure reported by Ragaini *et al*¹⁰ for the synthesis of phenanthroline derivatives, two quinoline derivatives were synthesized.

4-chloroquinoline (3m)

4-Hydroxiquinoline (500 mg, 3.44 mmol, 1.0 equiv.) and POCl₃ (5.7 mL, 14.0 mmol) were refluxed for 1 h in a dried Schlenk pressure tube. The mixture was allowed to cool and very slowly added under vigorous stirring to 20 mL of cold water immersed in an ice bath. The mixture was taken to pH 13 by the addition of NaOH pellets, maintaining the temperature at 0 °C, extracted with CH₂Cl₂ (3 X 50 mL), and dried over Na₂SO₄. The solvent was removed under reduced pressure obtaining an oil, that was purified by column chromathography (pentane: AcOEt, 9:1) to afford 4chloroquinoline (**27**) (447 mg, 2.73 mmol, 85%) as a white solid. ¹H NMR (300 MHz, CDCl₃) δ /ppm = 8.79 (d, *J* = 4.7 Hz, 1H), 8.25 (dd, *J* = 8.4, 1.0 Hz, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 7.79 (ddd, *J* = 8.4, 6.9, 1.4 Hz, 1H), 7.66 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.50 (d, *J* = 4.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ /ppm = 149.9, 149.1, 142.9, 130.6, 129.9, 127.8, 126.6, 124.3, 121.4. HRMS (ES): *m/z* calculated for [C₉H₆ClNH]⁺: 164.0267, found: 164.0263; **ATR-FTIR** (cm⁻¹): 3048, 1585, 1556, 1495, 1381, 1296, 822, 752, 665.

4-Methoxyquinoline (3p)

Sodium methoxide (202 mg, 3.74 mmol, 7.0 equiv.), MeOH anhydrous were added to a dried schlenk pressure tube. 4-chloroquinoline (87 mg, 0.53 mmol, 1.0 equiv.) was then added and the resulting mixture was refluxed for 2 days. The solvent was removed under reduced pressure and the obtained residue was purified by column chromatography (pentane: AcOEt, 1:1) to afford 4-methoxyquinoline (73 mg, 0.459 mmol, 86%) as colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ /ppm = 8.76 (d, *J* = 5.3 Hz, 1H), 8.21 (ddd, *J* = 8.4, 1.4, 0.5 Hz, 1H), 8.06 (ddd, *J* = 8.5, 1.0, 0.5 Hz, 1H), 7.71 (ddd, *J* = 8.4, 6.9, 1.5 Hz, 1H), 7.51 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 6.76 (d, *J* = 5.3 Hz, 1H), 4.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ /ppm = 162.7, 151.2, 148.8, 130.1, 128.7, 125.9, 122.0, 121.5, 100.2, 55.9. HRMS (ES): *m*/*z* calculated for [C₁₀H₉NOH]⁺: 160.0757, found: 160.0759; ATR-FTIR (cm⁻¹): 2938, 1591, 1572, 1506, 1392, 1312, 1111, 988, 763.

Organocatalytic reaction

Screening of the reaction temperature and anion effects

Entry	Cat. loading (mol%)	Temp [°C]	Additive	Yield [%] ^[a]	e.r. ^[b]	
1	10	rt		76	70:30	
2	10	0 – rt		64	77:23	
3	10	-30		87	91:9	
4	5	-30		74	91:9	
5	10	-78		51	95:5	
6	5	-78		42	95:5	
7	10	-78 – rt		76	96:4	
8	5	-78 – rt		64	95:5	
9	2.5	-78 – rt		44	95:5	
10	5	-78 – rt		95 ^[c]	95:5	
11	5	-78 – rt	NaBr (1 equiv.)	91	89:11	
12	5	-78 – rt	NaBF ₄ (1 equiv.)	73	87:13	

[a] Yield of isolated product after column chromatography. [b] Enantiomeric ratio determined by HPLC using a commercially available chiral stationary-phase column (Diacel chiralcel OD-H). [c] 20 h reaction.

Note: Considering the unavailability of other TrocX acylating agents, the importance of Cl⁻ with respect to other counteranions was evaluated by adding 1 equiv. of Br⁻ (NaBr, entry 11) or the inert BF₄⁻ anion (NaBF₄, entry 12) to the reaction mixture. In the presence of these anions and the subsequent binding competation with the catalyst, the reaction proceeded well, but with notable lower enantioselectivity.

General procedure for the organocatalytic reaction

In a previously dried schlenk pressure tube, the corresponding quinoline derivative **3** (0.1 mmol) was dissolved in methyl-*tert*-butylether (MTBE) (2 mL, 0.05M). 2,2,2-Trichloroethyl chloroformate (TrocCl) (1.0 equiv.) was added at 0 °C. The resulting mixture was stirred for 30 min at 0°C and following cooled down to -78°C (dry ice/acetone bath). Catalyst **TetraTri 1a** (5 mol%) and silyl ketene acetal (2 equiv.) were added. The reaction mixture was stirred for 20 h (when used silyl ketene acetal isopropyl derivative) or 24 h (when used silyl ketene acetal *tert*-butyl derivative) and allowed to warm to ambient temperature during that time. The crude product was adsorbed on silica by adding small amount of SiO₂ and removing the solvent under reduced pressure. The crude product was purified by flash column chromatography to afford the desired product.

The racemic versions were prepared without catalyst. The reaction solution was stirred at -78 °C for 20 h and additional 24 h at ambient temperature or it was directly taken out of the -78 °C bath and stirred for 24 h at room temperature.

Products 5a-q, 6 and 7

Ethyl 2-(2-isopropoxy-2-oxoethyl)quinoline-1(2H)-carboxylate (6)

Quinoline (12.1 μ L, 0.1 mmol, 1.0 equiv.), ethyl chlroroformate (10.0 μ L, 0.1 mmol, 1.0 equiv.), **TetraTri 1a** (11.2 mg, 0.10 mmol, 10 mol%) and 1-(*tert*-butyldimethylsilyloxy)-1-isopropoxyethene (**4a**) (51 μ L, 0.2 mmol, 2.0 equiv.) were added according to the general procedure. The desired product (11.2 mg,

0.037 mmol, 37%) was isolated as colourless oil by flash column chromatography (pentane/EtOAc 20:1). The enantiomeric ratio was found to be 48:52 by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (95:5) 1.0 mL/min, λ = 300 nm, *t*r (minor): 6.8 min, *t*r (major): 7.8 min.) ¹**H NMR** (300 MHz, CDCl₃) δ /ppm = 7.58 (d, *J* = 8.1 Hz, 1H), 7.27-7.18 (m, 1H), 7.14 – 7.03 (m, 2H), 6.51 (d, *J* = 9.5 Hz, 1H), 6.11 (dd, *J* = 9.5, 5.9 Hz, 1H), 5.46 (td, *J* = 7.4, 5.9 Hz, 1H), 4.98 (hept, *J* = 6.3 Hz, 1H), 4.30 (dq, *J* = 10.7, 7.1 Hz, 1H), 4.20 (dq, *J* = 10.7, 7.1 Hz, 1H), 2.39 (d, *J* = 7.4 Hz, 2H), 1.31 (t, *J* = 7.1 Hz, 3H), 1.22 (d, *J* = 6.3 Hz, 3H), 1.20 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ /ppm = 170.0, 154.1, 134.3, 128.2, 127.8, 127.0, 126.5, 125.9, 124.9, 124.5, 68.2, 62.4, 49.5, 38.5, 21.9, 21.9, 14.6; **HRMS (ES):** *m*/*z* calculated for [C₁₇H₂₁NO₄Na]⁺: 326.1363, found: 326.1356; **ATR-FTIR** (cm⁻¹): 2981, 2938, 1703, 1490, 1374, 1315, 1267, 1106, 1033, 763.

Benzyl 2-(2-isopropoxy-2-oxoethyl)quinoline-1(2H)-carboxylate (7)

Quinoline (12.1 µL, 0.1 mmol, 1.0 equiv.), benzyl chlroroformate (15.0 µL, 0.1 mmol, 1.0 equiv.), TetraTri 1a (11.2 mg, 0.10 mmol, 10 mol%) and 1-(tertbutyldimethylsilyloxy)-1-isopropoxyethene (4a) (51 µL, 0.2 mmol, 2.0 equiv.) were Ph' ì added according to the general procedure. The desired product (21.3 mg, 0.058 mmol, 58%) was isolated as colourless oil by flash column chromatography (pentane/EtOAc 20:1). The enantiomeric ratio was found to be 42:58 by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (95:5) 1.0 mL/min, λ = 300 nm, t (minor): 10.6 min, tr (major): 12.1 min.) ¹**H NMR** (300 MHz, CDCl₃) δ /ppm = 7.59 (br. s, 1H), 7.41 – 7.28 (m, 5H), 7.26-7.17 (m, 1H), 7.10-7.05 (m, 2H), 6.51 (d, J = 9.5 Hz, 1H), 6.11 (dd, J = 9.5, 5.9 Hz, 1H), 5.50 (td, J = 7.4, 5.9 Hz, 1H), 5.31 (d, J = 12.5 Hz, 1H), 5.18 (d, J = 12.5 Hz, 1H), 4.95 (hept, J = 6.3 Hz, 1H), 2.41 (d, J = 7.4 Hz, 2H), 1.18 (d, J = 6.3 Hz, 3H), 1.17 (d, J = 6.3 Hz, 3H); ¹³**C NMR** (75 MHz, CDCl₃) δ /ppm = 169.9, 154.0, 136.2, 134.1, 132.8, 128.7, 128.3, 128.2, 128.1, 127.9, 127.0, 126.5, 125.9, 125.0, 124.7, 87.5, 68.2, 68.0, 49.7, 38.4, 21.9, 21.9; **HRMS (ES):** *m*/*z* calculated for [C₂₂H₂₃NO₄Na]⁺: 388.1519, found: 388.1519; ATR-FTIR (cm⁻¹): 2980, 2933, 1703, 1489, 1456, 1397, 1302, 1266, 1105, 1022, 963, 905, 823, 761, 697, 602, 459.

(R)-2,2,2-Trichloroethyl 2-(2-isopropoxy-2-oxoethyl)quinoline-1(2H)-carboxylate (5a)

Quinoline (12.1 μ L, 0.1 mmol, 1.0 equiv.), TrocCl (14.2 μ L, 0.1 mmol, 1.0 equiv.), **TetraTri 1a** (5.6 mg, 0.05 mmol, 5 mol%) and 1-(*tert*-butyldimethylsilyloxy)-1- isopropoxyethene (**4a**) (51 μ L, 0.2 mmol, 2.0 equiv.) were added according to the

general procedure. The desired product (38.7 mg, 0.095 mmol, 95%) was isolated by flash column chromatography (pentane/EtOAc 30:1). The enantiomeric ratio was found to be 95:5 by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (95:5) 1.0 mL/min, λ = 300 nm, *tr* (*S*): 6.7 min, *tr* (*R*): 7.6 min.) [α]²⁰₅₉: -171 (*c* 0.25, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ /ppm = 7.66 (br. s, 1H), 7.32 – 7.20 (m, 1H), 7.19 – 7.07 (m, 2H), 6.54 (d, *J* = 9.6 Hz, 1H), 6.15 (dd, *J* = 9.6, 5.9 Hz, 1H), 5.52 (td, *J* = 7.2, 5.9 Hz, 1H), 5.05 (br. s, 1H), 4.98 (hept, *J* = 6.3 Hz, 1H), 4.66 (br. s, 1H), 2.46 (d, *J* = 7.2 Hz, 2H), 1.22 (d, *J* = 6.3 Hz, 3H), 1.20 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ /ppm = 169.6, 152.4, 128.0, 127.1, 126.6, 126.0, 125.3, 95.2, 77.4, 75.6, 68.3, 50.1, 38.3, 29.9, 22.0, 21.9; HRMS (ES): *m*/*z* calculated for [C₁₇H₁₈Cl₃NO₄Na]⁺: 428.0194, found: 428.0192; ATR-FTIR (cm⁻¹): 2950, 1716, 1491, 1398, 1373, 1313, 1267, 1128, 1105, 1033, 954, 810, 773, 754, 711.

(R)-2,2,2-Trichloroethyl 2-(2-(tert-butoxy)-2-oxoethyl)quinoline-1(2H)-carboxylate (5b)

Quinoline (**3a**) (12.3 μ L, 0.1 mmol, 1.0 equiv.), TrocCl (14.2 μ L, 0.1 mmol, 1.0 equiv.), TrocCl (14.2 μ L, 0.1 mmol, 1.0 equiv.), **TetraTri 1a** (5.6 mg, 0.05 mmol, 5 mol%) and 1-(*tert*-butyldimethylsilyloxy)-1-(*tert*-butoxy)ethene (**4b**) (54 μ L, 0.2 mmol, 2.0 equiv.) were reacted according to the general procedure. The desired product (23.6 mg, 0.056 mmol, 56%) was isolated by flash column chromatography (pentane/EtOAc 20:1) as a slightly yellow oil.

Scale up: Following the general procedure, quinoline (**3a**) (123.4 μ L, 1.0 mmol, 1.0 equiv.) was reacted with TrocCl (141.9 μ L, 1.0 mmol, 1.0 equiv.). **TetraTri 1a** (28 mg, 0.025 mmol, 2.5 mol%) and 1-(*tert*-butyldimethylsilyloxy)-1-(*tert*-butoxy)ethene (**4b**) (54 μ L, 0.2 mmol, 2.0 equiv.) were added at -78°C, the reaction mixture was slowly warmed up to r.t. overnight and then further stirred for 4 days at r.t.. The desired product (298.7 mg, 0.71 mmol, 71%) was isolated by flash column chromatography (pentane/EtOAc 20:1).

The enantiomeric ratio was found to be 98:2 by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (95:5) 1.0 mL/min, λ = 300 nm, *t*r (*S*): 6.0 min, *t*r (*R*): 6.8 min.) [α]²⁰₅₈₉: -170 (*c* 1.15, CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ /ppm = 7.65 (br. s, 1H), 7.29 – 7.21 (m, 1H), 7.16 – 7.10 (m, 2H), 6.53 (d, *J* = 9.5 Hz, 1H), 6.16 (dd, *J* = 9.5, 5.8 Hz, 1H), 5.49 (dd, *J* = 13.3, 7.3 Hz, 1H), 5.07 (br. s, 1H), 4.62 (br. s, 1H), 2.41 (d, *J* = 7.3 Hz), 1.42 (s, 9H) ¹³C NMR (75 MHz, CDCl₃) δ /ppm = 169.3, 152.4, 130.3, 128.0, 127.9, 127.2, 126.5, 125.8, 125.3, 125.2, 95.2, 81.1, 75.6, 50.2, 39.9, 28.1. HRMS (ES): *m*/*z* calculated for [C₁₈H₂₀Cl₃NO₄Na]⁺: 442.0350, found: 442.0344; **ATR-FTIR** (cm⁻¹): 2978, 1717, 1491, 1395, 1368, 1315, 1271, 1145, 1121, 754, 711.

(*R*)-2,2,2-Trichloroethyl 2-(2-methoxy-2-oxoethyl)quinoline-1(2H)-carboxylate (5c)

CI2C

ì

Quinoline (**3a**) (13.2 μL, 0.11 mmol, 1.0 equiv.), TrocCl (15.2 μL, 0.11 mmol, *I*e 1.0 equiv.), **TetraTri 1a** (6.2 mg, 0.06 mmol, 5 mol%) and 1-*(tert-*butyldimethylsilyloxy)-1-methoxyethene (**4c**) (41.4 mg, 0.22 mmol, 2.0 equiv.)

were reacted according to the general procedure. The desired product (31.8 mg, 0.084 mmol, 76%) was isolated by flash column chromatography (pentane/EtOAc 20:1) as a colourless oil. The enantiomeric ratio

was found to be 89:11 by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (95:5) hexane 1.0 mL/min, λ = 300 nm, *t*r (*S*): 10.2 min, *t*r (*R*): 14.5 min). [α]²⁰₅₈₉: -102 (*c* 0.20, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ /ppm = 7.66 (br. s, 1H), 7.33 – 7.20 (m, 1H), 7.16- 7.10 (m, 2H), 6.54 (d, *J* = 9.6 Hz, 1H), 6.14 (dd, *J* = 9.5, 5.9 Hz, 1H), 5.51 (dd, *J* = 13.3, 7.2 Hz, 1H), 5.06 (br. s, 1H), 4.67 (br. s, 1H), 3.64 (s, 3H), 2.50 (d, *J* = 7.2 Hz, 3H).¹³C NMR (75 MHz, CDCl₃) δ /ppm = 170.6, 151.5, 133.1, 132.2, 128.1, 127.0, 126.6, 126.0, 125.4, 110.1, 95.2, 75.6, 52.0, 50.0, 37.7. HRMS (ES): *m*/*z* calculated for [C₁₅H₁₄Cl₃NO₄Na]⁺: 399.9881, found: 399.9875; ATR-FTIR (cm⁻¹): 2953, 1732, 1715, 1491, 1396, 1315, 1267, 1122, 1034, 754, 711.

(R)-2,2,2-Trichloroethyl 2-(2-isopropoxy-2-oxoethyl)-4-methylquinoline-1(2H)-carboxylate (5d)

4-Methylquinoline (13.2 μ L, 0.1 mmol, 1.0 equiv.), TrocCl (14.2 μ L, 0.1 mmol, 1.0 equiv.), **TetraTri 1a** (5.6 mg, 0.05 mmol, 5 mol%) and 1-(*tert*-butyldimethylsilyloxy)-1-isopropoxyethene (**4a**) (51 μ L, 0.2 mmol, 2.0 equiv.) were reacted according to the general procedure. The desired product (36.1 mg,

0.086 mmol, 86%) was isolated by flash column chromatography (pentane/EtOAc 20:1) as a colourless oil. The enantiomeric ratio was found to be 92:8 by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (98:2) 1.0 mL/min, λ = 300 nm, *t*r (*S*): 8.0 min, *t*r (*R*): 9.0 min). [α]²⁰₅₈₉: -120 (*c* 0.16, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ /ppm = 7.65 (br. s, 1H), 7.29 (dd, *J* = 7.5, 1.6 Hz, 1H), 7.29-7.25 (m, 1H), 7.18 (td, *J* = 7.5, 1.3 Hz, 1H), 5.95 (d, *J* = 5.6 Hz, 1H), 5.44 (q, *J* = 6.6 Hz, 1H), 5.07 (s, 1H), 4.98 (hept, *J* = 6.3 Hz, 1H), 4.58 (s, 1H), 2.41 (d, *J* = 6.9 Hz, 2H), 2.08 (m, 3H), 1.22 (d, *J* = 6.0 Hz, 3H), 1.20 (d, *J* = 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ /ppm = 169.8, 152.2, 131.3, 128.9, 128.8, 127.8, 126.6, 125.2, 124.4, 123.5, 95.3, 75.6, 68.2, 49.8, 47.8, 22.0, 21.9, 18.6. HRMS (ES): *m*/*z* calculated for [C₁₈H₂₀Cl₃NO₄Na]⁺: 442.0356, found: 442.0339; **ATR-FTIR** (cm⁻¹): 2980, 1721, 1491, 1396, 1373, 1315, 1269, 1227, 1144, 1105, 754, 714.

(R)-2,2,2-Trichloroethyl 2-(2-(tert-butoxy)-2-oxoethyl)-4-methylquinoline-1(2H)-carboxylate (5e)

4-Methylquinoline (13.2 μ L, 0.1 mmol, 1.0 equiv.), TrocCl (14.2 μ L, 0.1 mmol, 1.0 equiv.), **TetraTri 1a** (5.6 mg, 0.05 mmol, 5 mol%) and 1-(*tert*-butyldimethylsilyloxy)-1-(*tert*-butoxy)ethene (**4b**) (51 μ L, 0.2 mmol, 2.0 equiv.) were added according to the general procedure. The desired product (22.9 mg,

0.054 mmol, 54%) was isolated by flash column chromatography (pentane/EtOAc 30:1). The enantiomeric ratio was found to be 98:2 by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (95:5) 1.0 mL/min, λ = 300 nm, *t*r (*S*): 5.8 min, *t*r (*R*): 6.5 min.) [α]²⁰₅₈₉: -218 (*c* 0.25, CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ /ppm = 7.50 (s, 1H), 7.05 (d, *J* = 7.5 Hz, 1H), 6.98 – 6.89 (m, 1H), 6.48 (d, *J* = 10.1 Hz, 1H), 6.13 (s, 1H), 5.46 (q, *J* = 6.8 Hz, 1H), 5.14 (br. s, 1H), 4.51 (br. s, 1H), 2.47-2.35 (m, 2H), 2.31 (s, 3H), 1.42 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ /ppm = 169.4, 152.4, 135.0, 128.7, 128.6, 127.1, 127.0, 126.9, 126.0, 125.9, 95.3, 81.1, 75.6, 50.2, 39.0, 28.2, 21.0; HRMS (ES): *m*/*z* calculated for [C₁₈H₂₀Cl₃NO₄Na]⁺: 456.0507, found: 456.0505; **ATR-FTIR** (cm⁻¹): 2961, 1707, 1498, 1392, 1367, 1290, 1276, 1255, 1226, 1151, 1138, 1035, 815, 711.

(R)-2,2,2-Trichloroethyl 2-(2-isopropoxy-2-oxoethyl)-6-methylquinoline-1(2H)-carboxylate (5f)

6-Methylquinoline (13.4 μ L, 0.1 mmol, 1.0 equiv.), TrocCl (14.2 μ L, 0.1 mmol, 1.0 equiv.), **TetraTri 1a** (5.6 mg, 0.05 mmol, 5 mol%) and 1-(*tert*-butyldimethylsilyloxy)-1-isopropoxyethene (**4a**) (51 μ L, 0.2 mmol, 2.0 equiv.) were reacted according to the general procedure. The desired product (33.6 mg,

0.080 mmol, 80%) was isolated by flash column chromatography (pentane/EtOAc 30:1). The enantiomeric ratio was found to be 97:3 by chiral HPLC (Chiralpak AD-H, hexane/isopropanol (98:2) 1.0 mL/min, λ = 300 nm, *t*r (*R*): 9.9 min, *t*r (*S*): 12.2 min.) [α]²⁰₅₈₉: -251 (*c* 0.35, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ /ppm = 7.52 (br. s, 1H), 7.06 (d, *J* = 9.0 Hz, 1H), 6.93 (d, *J* = 1.6 Hz, 1H), 6.49 (d, *J* = 9.6 Hz, 1H), 6.13 (dd, *J* = 8.6, 5.9 Hz, 1H), 5.49 (q, *J* = 7.0 Hz, 1H), 5.25 - 4.40 (m, 2H), 4.98 (hept, *J* = 6.3 Hz, 1H), 2.44 (br. s, 2H), 2.32 (s, 3H), 1.22 (d, *J* = 6.3 Hz, 3H), 1.20 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ /ppm = 169.5, 152.3, 135.0, 128.6, 128.6, 128.6, 127.0, 126.9, 126.0, 125.9, 95.2, 75.4, 68.1, 49.9, 25.7, 21.8, 21.8, 20.8; HRMS (ES): *m*/*z* calculated for [C₁₈H₂₀Cl₃NO₄Na]⁺: 442.0350, found: 442.0344; ATR-FTIR (cm⁻¹): 2980, 1716, 1496, 1467, 1454, 1429, 1395, 1313, 1267, 1259, 1230, 1182, 1159, 954, 927, 916, 900, 881, 815, 752.

(R)-2,2,2-Trichloroethyl 2-(2-isopropoxy-2-oxoethyl)-3-methylquinoline-1(2H)-carboxylate (5g)

3-Methylquinoline (13.4 μL, 0.1 mmol, 1.0 equiv.), TrocCl (14.2 μL, 0.1 mmol, 1.0 equiv.), T_{Cl₃C} 3-Methylquinoline (13.4 μL, 0.1 mmol, 1.0 equiv.), TrocCl (14.2 μL, 0.1 mmol, 1.0 equiv.), **TetraTri 1a** (5.6 mg, 0.05 mmol, 5 mol%) and 1-(*tert*-butyldimethylsilyloxy)-1-isopropoxyethene (**4a**) (51 μL, 0.2 mmol, 2.0 equiv.) were reacted according to the general procedure. The desired product (38.9 mg, 0.092 mmol, 92%) was isolated by flash column chromatography (pentane/EtOAc 20:1) as colourless oil. The enantiomeric ratio was found to be 72:28 by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (95:5) 1.0 mL/min, λ = 300 nm, *t* (*S*): 6.0 min, *t* (*R*): 6.9 min.) [α]²⁰₅₈₉: -12 (*c* 0.25, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ/ppm = 7.61 (s, 1H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.12 (td, *J* = 7.4, 1.2 Hz, 1H), 7.06 (dd, *J* = 7.5, 1.6 Hz, 1H), 6.28 – 6.27 (m, 1H), 5.34-5.31 (m, 1H), 5.09 (d, *J* = 11.6 Hz, 1H), 4.96 (hept, *J* = 6.3 Hz, 1H), 4.55 (br. s, 1H), 2.41-2.36 (m, 1H), 2.32 (d, *J* = 9.5 Hz, 2H), 1.98 (d, *J* = 1.4 Hz, 3H), 1.22 (d, *J* = 6.3 Hz, 3H), 1.20 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ/ppm = 169.8, 152.4, 128.2, 127.1, 127.0, 125.7, 125.4, 121.7, 110.1, 95.2, 75.7, 68.4, 54.4, 36.4, 22.0, 21.8, 20.7. HRMS (ES): *m/z* calculated for [C₁₈H₂₀Cl₃NO₄Na]⁺: 442.0356, found: 442.0349; **ATR-FTIR** (cm⁻¹): 2980, 1720, 1489, 1396, 1373, 1315, 1263, 1250, 1139, 1105, 1045, 1032, 816, 756, 716.

(R)-2,2,2-Trichloroethyl 2-(2-isopropoxy-2-oxoethyl)-6-nitroquinoline-1(2H)-carboxylate (5i)

6-Nitroquinoline (17.4 mg, 0.1 mmol, 1.0 equiv.), TrocCl (14.2 μ L, 0.1 mmol, 1.0 equiv.), **TetraTri 1a** (5.6 mg, 0.05 mmol, 5 mol%) and 1-(*tert*-butyldimethylsilyloxy)-1-isopropoxyethene (**4a**) (51 μ L, 0.2 mmol, 2.0 equiv.) were reacted according to the general procedure. The desired product

(24.5 mg, 0.054 mmol, 54%) was isolated by flash column chromatography (pentane/EtOAc 9:1) as a

yellow solid. The enantiomeric ratio was found to be 94:6 by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (95:5) 1.0 mL/min, λ = 300 nm, *t*r (*S*): 14.9 min, *t*r (*R*): 16.9 min). [α]²⁰₅₈₉: -260 (*c* 0.44, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ /ppm = 8.12 (dd, *J* = 9.1, 2.7 Hz, 1H), 8.01 (d, *J* = 2.7 Hz, 1H), 7.88 (d, *J* = 9.1 Hz, 1H), 6.62 (d, *J* = 9.7 Hz, 1H), 6.31 (dd, *J* = 9.7, 5.9 Hz, 1H), 5.57 (td, *J* = 7.6, 5.9 Hz, 1H), 5.02 (d, *J* = 11.8 Hz, 1H), 4.98 (hept, *J* = 6.3 Hz, 1H), 4.75 (d, *J* = 11.8 Hz, 1H), 2.49 (d, *J* = 7.6 Hz, 2H), 1.21 (d, *J* = 6.3 Hz, 3H), 1.20 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ /ppm = 169.0, 151.9, 144.5, 139.3, 130.3, 127.5, 125.1, 124.7, 123.2, 121.8, 94.7, 75.9, 68.7, 50.6, 38.9, 21.9, 21.7. HRMS (ES): *m*/*z* calculated for [C₁₇H₁₇Cl₃N₂O₆Na]⁺: 473.0050, found: 473.0046; ATR-FTIR (cm⁻¹): 2982, 1717, 1520, 1487, 1344, 1267, 1236, 1209, 1128, 1103, 1047, 800, 746, 714.

(R)-2,2,2-Trichloroethyl 6-bromo-2-(2-isopropoxy-2-oxoethyl)quinoline-1(2H)-carboxylate (5j)

6-Bromoquinoline (13.1 μ L, 0.1 mmol, 1.0 equiv.), TrocCl (14.2 μ L, 0.1 mmol, 1.0 equiv.), **TetraTri 1a** (5.6 mg, 0.05 mmol, 5 mol%) and 1-(*tert*-butyldimethylsilyloxy)-1-isopropoxyethene (**4a**) (51 μ L, 0.2 mmol, 2.0 equiv.) were reacted according to the general procedure. The desired product (29.8 mg,

0.062 mmol, 62%) was isolated by flash column chromatography (pentane/EtOAc 30:1). The enantiomeric ratio was found to be 95:5 by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (98:2) 1.0 mL/min, λ = 300 nm, *t*r (*S*): 9.3 min, *t*r (*R*): 9.9 min.) [α]²⁰₅₈₉: -164 (*c* 0.20, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ /ppm = 7.55 (br. s, 1H), 7.36 (dd, *J* = 8.7, 2.3 Hz, 1H), 6.47 (d, *J* = 9.7 Hz, 1H), 6.20 (dd, *J* = 9.7, 5.7 Hz, 1H), 5.51 (td, *J* = 7.3, 5.6 Hz, 1H), 5.02 (br. s), 4.98 (hept, *J* = 6.3 Hz, 1H), 4.65 (br. s, 1H), 2.45 (d, *J* = 7.3 Hz, 2H), 1.58 (s, 1H), 1.22 (d, *J* = 6.3 Hz, 3H), 1.20 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ /ppm = 169.2, 153.5, 152.0, 145.2, 130.7, 130.6, 129.1, 129.0, 124.9, 124.8, 124.8, 94.9, 75.5, 68.3, 49.9, 21.8, 21.7; HRMS (ES): *m*/*z* calculated for [C₁₇H₁₇BrCl₃NO₄H]⁺: 483.9479, found: 483.9477; **ATR-FTIR** (cm⁻¹): 2980, 1716, 1485, 1390, 1375, 1309, 1282, 1267, 1234, 1199, 1105, 1098, 1033, 813, 765.

(R)-2,2,2-Trichloroethyl 5-bromo-2-(2-isopropoxy-2-oxoethyl)quinoline-1(2H)-carboxylate (5k)

5-Bromoquinoline (20.8 mg, 0.1 mmol, 1.0 equiv.), TrocCl (14.2 μ L, 0.1 mmol, 1.0 equiv.), **TetraTri 1a** (5.6 mg, 0.05 mmol, 5 mol%) and 1-(*tert*-butyldimethylsilyloxy)-1-isopropoxyethene (**4a**) (51 μ L, 0.2 mmol, 2.0 equiv.) were reacted according to the general procedure. The desired product (32.1 mg,

0.066 mmol, 66%) was isolated by flash column chromatography (pentane/EtOAc 30:1). The enantiomeric ratio was found to be 95:5 by chiral HPLC (Chiralpak AD-H, hexane/isopropanol (98:2) 1.0 mL/min, λ = 300 nm, *t*r (*R*): 11.5 min, *t*r (*S*): 17.3 min.). [α]²⁰₅₈₉: -153 (*c* 0.25, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ /ppm = 7.60 (br. s, 1H), 7.38 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.11 (t, *J* = 8.1 Hz, 1H), 6.92 (d, *J* = 9.7 Hz, 1H), 6.28 (dd, *J* = 9.8, 6.0 Hz, 1H), 5.53 (td, *J* = 7.4, 6.0 Hz, 1H), 5.03 (br. s, 1H), 5.00 (hept, *J* = 6.3 Hz, 1H), 4.64 (br. s, 1H), 2.44 (d, *J* = 7.4 Hz, 2H), 1.60 (s, 1H), 1.22 (d, *J* = 6.3 Hz, 3H), 1.20 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ /ppm = 169.2, 152.0, 129.4, 129.4, 128.4, 126.7, 126.6, 124.8, 124.7, 121.3, 94.9, 75.6, 68.3, 49.5, 37.8, 21.8, 21.7; HRMS (ES): *m/z* calculated for [C₁₇H₁₇Cl₃NO₄Na]⁺: 507.9284, found:

507.9274; **ATR-FTIR** (cm⁻¹): 2985, 1754, 1493, 1372, 1316, 1285, 1272, 1222, 1203, 1108, 1090, 1041, 831, 772.

(*R*)-2,2,2-Trichloroethyl 6-chloro-2-(2-isopropoxy-2-oxoethyl)quinoline-1(2H)-carboxylate (5I)

 6-Chloroquinoline (16.3 mg, 0.1 mmol, 1.0 equiv.), TrocCl (14.2 μ L, 0.1 mmol, 1.0 equiv.), **TetraTri 1a** (5.6 mg, 0.05 mmol, 5 mol%) and 1-(*tert*-butyldimethylsilyloxy)-1-isopropoxyethene (**4a**) (51 μ L, 0.2 mmol, 2.0 equiv.) were reacted according to the general procedure. The desired product (27.5 mg,

0.062 mmol, 62%) was isolated by flash column chromatography (pentane/EtOAc 30:1). The enantiomeric ratio was found to be 95:5 by chiral HPLC (Chiralpak AD-H, hexane/isopropanol (98:2) 1.0 mL/min, λ = 300 nm, *t*r (*R*): 12.6 min, *t*r (*S*): 15.8 min.). [α]²⁰₅₈₉: -158 (*c* 0.75, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ /ppm = 7.60 (br. s, 1H), 7.21 (dd, *J* = 8.7, 2.5 Hz, 1H), 7.11 (d, *J* = 2.5 Hz, 1H), 6.48 (d, *J* = 9.6 Hz, 1H), 6.21 (dd, *J* = 9.6, 5.8 Hz, 1H), 5.52 (td, *J* = 6.3, 5.8 Hz, 1H), 5.01 (br. s, 1H), 4.98 (hept, *J* = 6.3 Hz, 1H), 4.63 (s, 1H), 2.56 - 2.35 (m, 2H), 1.58 (s, 1H), 1.22 (d, *J* = 6.3 Hz, 3H), 1.20 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ /ppm = 169.4, 152.2, 138.6, 127.9, 127.8, 126.4, 126.3, 126.2, 125.0, 125.0, 95.1, 75.7, 68.7, 50.1, 29.9, 21.9, 21.9; HRMS (ES): *m*/*z* calculated for [C₁₇H₁₇Cl₄NO₄Na]⁺: 463.9780, found: 463.9776; ATR-FTIR (cm⁻¹): 2980, 2918, 1716, 1485, 1392, 13751309, 1284, 1234, 1101, 817, 752, 669, 626.

(R)-2,2,2-Trichloroethyl 4-chloro-2-(2-isopropoxy-2-oxoethyl)quinoline-1(2H)-carboxylate (5m)

4-Chloroquinoline (13.0 μ L, 0.1 mmol, 1.0 equiv.), TrocCl (14.2 μ L, 0.1 mmol, 1.0 equiv.), **TetraTri 1a** (5.6 mg, 0.05 mmol, 5 mol%) and 1-(*tert*-butyldimethylsilyloxy)-1-isopropoxyethene (**4a**) (51 μ L, 0.2 mmol, 2.0 equiv.) were reacted according to the general procedure. The desired product (30.2 mg,

0.069 mmol, 69%) was isolated by flash column chromatography (pentane/EtOAc 20:1) as yellow oil. The enantiomeric ratio was found to be 89:11 by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (98:2) 1.0 mL/min, λ = 300 nm, *t*r (*S*): 7.1 min, *t*r (*R*): 7.9 min.) [α]²⁰₅₈₉: +0.5 (*c* 0.55, CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ /ppm = 7.65 (br. s, 1H), 7.62 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.35 (t, *J* = 7.8 Hz, 1H), 7.24 (dd, *J* = 7.8, 0.8 Hz, 1H), 6.31 (d, *J* = 6.5 Hz, 1H), 5.57 (q, *J* = 7.1 Hz, 1H), 5.05 (br. s, 1H), 4.98 (hept, *J* = 6.3 Hz, 1H), 4.70 (br. s, 1H), 2.48 (d, *J* = 7.0 Hz, 1H), 1.22 (d, *J* = 6.3 Hz, 3H), 1.21 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ /ppm = 169.2, 152.1, 129.6, 129.4, 129.4, 125.6, 125.6, 125.6, 124.8, 110.2, 95.1, 75.7, 68.6, 50.9, 38.0, 22.0, 21.9. HRMS (ES): *m*/*z* calculated for [C₁₇H₁₇Cl₄NO₄Na]⁺: 461.9809, found: 461.9795; ATR-FTIR (cm⁻¹): 2982, 1722, 1601, 1483, 1385, 1317, 1269, 1229, 1144, 1103, 1042, 756, 716.

(R)-6-Methyl 1-(2,2,2-trichloroethyl) 2-(2-isopropoxy-2-oxoethyl)quinoline-1,6(2H)-dicarboxylate (5n)

Methyl quinoline-6-carboxylate (18.7 mg, 0.1 mmol, 1.0 equiv.), TrocCl (14.2 μL, 0.1 mmol, 1.0 equiv.), **TetraTri 1a** (5.6 mg, 0.05 mmol, 5 mol%) and 1-(*tert*-butyldimethylsilyloxy)-1-isopropoxyethene (**4b**) (51 μL, 0.2 mmol, 2.0 equiv.) were reacted according to the general procedure. The desired

product (33.0 mg, 0.071 mmol, 71%) was isolated by flash column chromatography (pentane/EtOAc 10:1). The enantiomeric ratio was found to be 94:6 by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (95:5) 1.0 mL/min, λ = 300 nm, *t*r (*S*): 24.8 min, *t*r (*R*): 35.4 min.) [α]²⁰₅₈₉: -202 (*c* 0.25, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ /ppm = 7.92 (dd, *J* = 8.6, 2.1 Hz, 1H), 7.87 - 7.70 (m, 2H), 6.58 (d, *J* = 9.6 Hz, 1H), 6.20 (dd, *J* = 9.6, 5.9 Hz, 1H), 5.53 (td, *J* = 7.3, 5.9 Hz, 1H), 5.03 (d, *J* = 11.9 Hz, 1H), 4.97 (hept, *J* = 6.3 Hz, 1H), 4.70 (d, *J* = 11.9 Hz, 1H), 3.91 (s, 3H), 2.47 (d, *J* = 7.3 Hz, 2H), 1.62 (s, 1H), 1.21 (d, *J* = 6.3 Hz, 3H), 1.20 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ /ppm = 169.2, 166.4, 152.0, 129.2, 129.2, 128.0, 128.0, 126.7, 126.7, 125.4, 94.8, 75.6, 68.3, 52.2, 50.2, 38.5, 21.8, 21.7; HRMS (ES): *m*/*z* calculated for [C₁₉H₂₀Cl₃NO₆Na]⁺: 486.0248, found: 486.00243; **ATR-FTIR** (cm⁻¹): 2982, 2953, 1716, 1606, 1573, 1492, 1442, 1392, 1375, 1269, 1228, 1199, 1130, 1105, 1033, 808, 763, 752, 713.

(R)-2,2,2-Trichloroethyl 2-(2-isopropoxy-2-oxoethyl)-6-methoxyquinoline-1(2H)-carboxylate (50)

6-methoxyquinoline (13.8 μ L, 0.1 mmol, 1.0 equiv.), TrocCl (14.2 μ L, 0.1 mmol, 1.0 equiv.), **TetraTri 1a** (5.6 mg, 0.05 mmol, 5 mol%) and 1-(*tert*-butyldimethylsilyloxy)-1-isopropoxyethene (**4a**) (51 μ L, 0.2 mmol, 2.0 equiv.) were reacted according to the general procedure. The desired product

(38.3 mg, 0.088 mmol, 88%) was isolated by flash column chromatography (pentane/EtOAc 20:1) as colourless oil. The enantiomeric ratio was found to be 95:5 by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (95:5) 1.0 mL/min, λ = 300 nm, *t*r (*S*): 9.7 min, *t*r (*R*): 14.0 min.) [α]²⁰₅₈₉: -145 (*c* 0.42, CHCl₃). ¹**H NMR** (300 MHz, CDCl₃) δ /ppm = 7.61-7.50 (m, 1H), 6.80 (dd, *J* = 8.8, 2.3 Hz, 1H), 6.65 (d, *J* = 2.9 Hz, 1H), 6.49 (d, *J* = 9.6 Hz, 1H), 6.19-6.14 (m, 1H), 5.13 (br. s, 1H), 5.13 (br. s, 1H), 4.97 (hept, *J* = 6.3 Hz, 1H), 4.50 (br. s, 1H), 3.80 (s, 3H), 2.44 (br. s, 2H), 1.21 (d, *J* = 6.3 Hz, 3H), 1.20 (d, *J* = 6.3 Hz, 3H); ¹³**C NMR** (75 MHz, CDCl₃) δ /ppm = 169.6, 157.0, 152.5, 132.8, 130.1, 129.4, 128.1, 126.0, 113.5, 111.2, 95.3, 75.7, 68.3, 55.6, 50.0, 37.7, 22.0, 21.9. **HRMS (ES):** *m*/*z* calculated for [C₁₈H₂₀Cl₃NO₅Na]⁺: 458.0299, found: 458.0308; **ATR-FTIR** (cm⁻¹): 2980, 1717, 1497, 1396, 1375, 1265, 1119, 1107, 1034, 808, 714.

2,2,2-Trichloroethyl 2-(2-isopropoxy-2-oxoethyl)-4-oxo-3,4-dihydroquinoline-1(2H)-carboxylate (5p)

4-Methoxyquinoline (14.1 μ L, 0.1 mmol, 1.0 equiv.), TrocCl (14.2 μ L, 0.1 mmol, 1.0 equiv.), **TetraTri 1a** (5.6 mg, 0.05 mmol, 5 mol%) and 1-(*tert*-butyldimethylsilyloxy)-1-isopropoxyethene (**4a**) (51 μ L, 0.2 mmol, 2.0 equiv.) were reacted according to the general procedure. The desired product (31.2 mg,

0.074 mmol, 74%) was isolated by flash column chromatography (pentane/EtOAc 20:1) as a colourless oil.

The enantiomeric ratio was found to be 20:80 by chiral HPLC (Chiralpak OD-H, hexane/isopropanol (95:5) 1.0 mL/min, λ = 300 nm, *t*r (*S*): 12.1 min, *t*r (*R*): 15.0 min.) [α]²⁰₅₈₉: -46 (*c* 0.96, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ /ppm 8.01 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.81 (d, *J* = 8.3 Hz, 1H), 7.58 (ddd, *J* = 8.6, 7.3, 1.7 Hz, 1H), 7.26 (td, *J* = 7.6, 1.1 Hz, 1H), 5.53 (tdd, *J* = 7.6, 5.9, 1.7 Hz, 1H), 5.09 (d, *J* = 11.9 Hz, 1H), 4.98 (hept, *J* = 6.3 Hz, 1H), 4.71 (d, *J* = 11.9 Hz, 1H), 3.13 (dd, *J* = 17.9, 5.9 Hz, 1H), 2.78 (dd, *J* = 17.9, 1.7 Hz, 1H), 2.67 – 2.45 (m, 2H), 1.19 (d, *J* = 6.3 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃): δ /ppm = 192.2, 169.3, 152.1, 139.0, 134.9, 134.2, 127.2, 125.4, 125.2, 125.2, 75.8, 68.7, 51.6, 42.9, 37.2, 21.7. HRMS (ES): *m*/*z* calculated for [C₁₇H₁₈Cl₃NO₅Na]⁺: 444.0148, found: 444.0146; **ATR-FTIR** (cm⁻¹): 2980, 1724, 1687, 1601, 1481, 1460, 1387, 1315, 1302, 1269, 1223, 1132, 1105, 1041, 820, 764, 714.

(R)-2,2,2-Trichloroethyl 6-(2-isopropoxy-2-oxoethyl)phenanthridine-5(6H)-carboxylate (5q)

Phenanthridine (17.9 mg, 0.1 mmol, 1.0 equiv.), TrocCl (14.2 μ L, 0.1 mmol, 1.0 equiv.), **TetraTri 1a** (5.6 mg, 0.05 mmol, 5 mol%) and 1-(*tert*-butyldimethylsilyloxy)-1-isopropoxyethene (**4a**) (51 μ L, 0.2 mmol, 2.0 equiv.) were reacted according to the general procedure. The desired product (40.1 mg,

0.088 mmol, 88%) was isolated by flash column chromatography (pentane/EtOAc 20:1). The enantiomeric ratio was found to be 90:10 by chiral HPLC (Chiralpak AD-H, hexane/isopropanol (90:10) 1.0 mL/min, λ = 300 nm, *t*r (*R*): 9.7 min, *t*r (*S*): 12.0 min). [α]²⁰₅₈₉: -112 (*c* 0.45, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ /ppm = 7.88 - 7.76 (m, 2H), 7.69 (br. s, 1H), 7.46 - 7.27 (m, 5H), 6.07 (dd, *J* = 8.5, 6.6 Hz, 1H), 5.12 (br. s, 1H), 4.99 (hept, *J* = 6.3 Hz, 1H) 4.44 (br. s, 1H), 2.68 - 2.33 (m, 2H), 1.64 (s, 1H), 1.23 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ /ppm = 169.4, 152.0, 130.3, 128.6, 128.1, 127.9, 126.3, 126.1, 123.8, 123.8, 95.3, 75.5, 68.3, 39.3, 25.7, 21.9, 21.8; HRMS (ES): *m/z* calculated for [C₂₁H₂₀Cl₃NO₄Na]⁺: 478.0350, found: 478.0345; **ATR-FTIR** (cm⁻¹): 2987, 1742, 1699, 1442, 1398, 1321, 1296, 1249, 1141, 1103, 1074, 1047, 1026, 750, 732.

NMR Titration

CI Troc	Equiv.	HTriazole /(ppm)	ΔHTriazole /(ppm)	[CI-]free /(mol/L)
6	0	9.19	0	0.0000
1.0 equiv. X equiv.	0.1	9.19	0	0.0005
	0.2	9.19	0	0.0010
ł	0.3	9.19	0	0.0015
	0.5	9.19	0	0.0025
	0.8	9.2	0.01	0.0040
	1	9.2	0.01	0.0050
	2	9.22	0.03	0.0100
	_к3	9.25	0.06	0.0150
	5	9.29	0.1	0.0250
	10	9.36	0.17	0.0500

TetraTri 1b (0.005 M) in [D8]THF + 10 eq. 1-((2,2,2-trichloroethoxy)carbonyl)quinolin-1-ium chloride 6

(R,R)-1a - Cl⁻-Anion Complex

Full spectra:

An increase of the equivalents of salt are shown from the bottom to the top of the figure.

Absolute configuration

1) CD Spectrum of product (R)-5b

The CD measurement was carried out on a J-815 (JASCO) spectrometer at room temperature. A 0.133 mM solution in THF of a sample of **5b** with 98:2 e.r. was employed, providing the spectrum shown below:

Conformation analysis / CD simulation of 5b with DFT

A conformational search was performed for (*S*)-**5b** with the SCAN program for general conformational search of the Tinker¹¹ package using the MM3 force field.¹² A few missing torsional parameters, all in relation to atom type 9 ("NSP2"), were added by choosing suitable parameters of similar atom type combinations:

Additional MM3 parameters (Tinker format) for the first conformational search

angle	6	3	9	0.9	900	112.50				
torsion	2	1	9	3	2.30	0 0.0 1	-1.200	180.0 2	0.800 (0.0 3
torsion	2	1	9	2	2.30	0 0.0 1	-1.200	180.0 2	0.800 0	0.0 3
torsion	6	3	9	1	-0.60	0 0.0 1	4.200	180.0 2	0.000 0	0.0 3
torsion	6	3	9	2	-0.60	0 0.0 1	4.200	180.0 2	0.000 0	0.0 3
torsion	9	1	2	2	0.25	0 0.0 1	-0.650	180.0 2	0.600 0	0.0 3
torsion	9	1	2	5	0.00	0 0.0 1	0.000	180.0 2	0.800 0	0.0 3
torsion	9	3	6	1	3.53	0 0.0 1	2.300	180.0 2	-3.530 (0.0 3

From the conformers obtained in the MM3 search, 143 structures were selected as unique by geometrical comparison (RSMD>=1.5Å) and DFT geometry optimizations were performed on these with TURBOMOLE¹³, using the TPSS meta-GGA functional,¹⁴ the triple zeta basis set def2-TZVP,¹⁵ and the dispersion correction of Grimme et al.¹⁶ with BJ damping¹⁷ (TPSS-D3/def2-TZVP).

After optimization of the 143 conformations with DFT, 88 unique conformers were selected using an energy (Δ E>0.1 kcal/mol), dipole moment (Δ µ>0.1 D) and geometry (RSMD>=1.8Å) criterion. A calculation of vibrational normal modes was done for all minima and the contribution of translations, rotations and normal vibrations to the free enthalpy at 298 K (G₂₉₈) added to the electronic energy to obtain the relative free energy Δ G(298K).¹⁸ The 88 conformers were sorted according to Δ G(298K) and the CD spectra of conformers within a range of Δ G(298K) = 0-5 kcal/mol calculated with TD-DFT using the B3LYP functional¹⁹ and the same basis set (B3LYP/def2-TZVP).

It turned out that one conformer (No. 093) is the most stable one by more than 0.8 kcal/mol on the free energy scale. The CD spectra of that and 8 more conformers in the range of $\Delta G(298K) = 0-1.5$ kcal/mol look qualitatively very similar and have the inverse signature of the experimentally obtained CD spectrum of compound (*R*)-**5b**. We consider this as clear evidence for our stereochemical assignment.

Structures and CD spectra of the more stable conformers of the (S)-enantiomer of product 5b

2) Derivatization to β -amino ester 28 and comparison of the optical rotation:

2,2,2-Trichloroethyl (S)-2-(2-isopropoxy-2-oxoethyl)-3,4-dihydroquinoline-1(2H)-carboxylate (26)

An enantioenriched sample of **5a** (147 mg, 0.36 mmol, 1.0 equiv., 93:7 e.r.), was reacted with Et₃SiH (115 μ L, 0.72 mmol, 2 equiv.) in the presence of Pd/C (10 wt) (38.3 mg, 0.036 mmol, 10 mol%) in MeOH at r.t. After 1 h another portion of Et₃SiH (115 μ L, 0.72 mmol, 2 equiv.) was added. The reaction was stirred vigorously for another 2 h. Then the mixture was filtrated through celite®, washed three times with AcOEt, and the solvent evaporated under reduced pressure. The desired product **26** (88.5 mg, 0.22 mmol, 60%) was isolated by flash column chromatography (pentane/EtOAc 20:1 \rightarrow 10:1) as colourless oil. The enantiomeric ratio was found to be 93:7 by chiral HPLC (Chiralpak OD-H, heptane/isopropanol (95:5) 1.0 mL/min, λ = 230 nm, *tr* (*S*): 7.0 min, *tr* (*R*): 8.5 min.). [α]²⁰₅₈₉: -4.2 (*c* 0.125, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ /ppm = 7.57 (d, *J* = 7.9 Hz, 1H), 7.20 (td, *J* = 8.2, 7.6, 2.2 Hz, 1H), 7.15 - 7.03 (m, 2H), 5.10 - 4.90 (m, 3H), 4.65 (br d, *J* = 10.5 Hz, 1H), 2.79 - 2.59 (m, 3H), 2.50 - 2.27 (m, 2H), 1.71 (dq, *J* = 13.3, 6.6 Hz, 1H), 1.19 (d, *J* = 6.3 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ /ppm = 170.3, 152.9, 135.7, 128.0, 126.4, 125.2, 95.5, 75.4, 68.1, 51.2, 38.9, 29.0, 24.9, 21.9; HRMS (ES): *m/z* calculated for [C₁₇H₂₀³⁵Cl₃NO₄Na]⁺: 430.0350, found: 430.0343.

Isopropyl (S)-2-(1,2,3,4-tetrahydroquinolin-2-yl)acetate (27)

26 (86.4 mg, 0.21 mmol, 1 equiv.) was treated with Zn powder (138.2 mg, 2.11 mmol, 10 equiv.) and AcOH (62.9 μ L, 1.10 mmol, 5.2 equiv.) in THF/H₂O (1:1, 2 mL) at room temperature for 2.5 h. Then, an aq. sat. solution of K₂CO₃ was added, the reaction pressure. The crude mixture was used directly for the next step without further purification. ¹H NMR (300 MHz, CDCl₃) δ /ppm = 7.04 - 6.89 (m, 2H), 6.63 (td, *J* = 7.4, 1.2 Hz, 1H), 6.51 (dd, *J* = 7.9, 1.2 Hz, 1H), 5.06 (p, *J* = 6.3 Hz, 1H), 4.69 - 4.31 (m, 1H), 3.79 - 3.65 (m, 1H), 2.85 (ddd, *J* = 15.9, 10.0, 5.7 Hz, 1H), 2.73 (dt, *J* = 15.9, 5.1 Hz, 1H), 2.52-2.45 (m, 2H), 1.96 (dtd, *J* = 12.9, 5.4, 3.2 Hz, 1H), 1.71 (dddd, *J* = 12.9, 10.0, 8.9, 5.5 Hz, 1H), 1.26 (d, *J* = 6.3 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ /ppm = 172.0, 144.2, 129.4, 127.0, 121.0, 117.5, 114.7, 68.2, 48.0, 41.4, 28.2, 25.8, 22.0; HRMS (ES): *m/z* calculated for [C₁₄H₁₉NO₂·H]⁺: 235.1521, found: 235.1528.

Methyl (S)-2-(1,2,3,4-tetrahydroquinolin-2-yl)acetate (28)^[20]

The crude product **27** was dissolved in MeOH (5mL) and K_2CO_3 (282.0 mg, 2.05 mmol, ~ 10 equiv.) was added. After stirring for 12 h, brine was added and the mixture extracted with AcOEt (3 x 10 mL), the organic layers collected and the

solvent removed under reduced pressure. The desired product **28** (23.1 mg, 0.113 mmol, 53%/2-steps) was isolated by flash column chromatography (pentane \rightarrow pentane/EtOAc 9:1) as yellow oil. The enantiomeric ratio was found to be 93:7 by chiral HPLC (Chiralpak OD-H, heptane/isopropanol (90:10) 1.0 mL/min, λ = 254 nm, *t*r (*R*): 8.1 min, *t*r (*S*): 10.5 min.). $[\alpha]_{589}^{20}$: +83.5 (*c* 0.23, CHCl₃) (Lit.^[20a] (*S*)-**28** with 98.8:1.2 e.r. = $[\alpha]_{589}^{20}$: +104.7 (*c* 1.0, CHCl₃)). ¹H NMR (300 MHz, CDCl₃) δ /ppm = 7.04 - 6.90 (m, 2H), 6.63 (td, *J* = 7.3, 1.2 Hz, 1H), 6.51 (dd, *J* = 7.9, 1.1 Hz, 1H), 4.48 (s, 1H), 3.80 - 3.65 (m, 1H), 3.72 (s, 3H), 2.93

- 2.78 (m, 1H), 2.73 (dt, J = 16.4, 5.3 Hz, 1H), 2.59 - 2.49 (m, 2H), 1.97 (dtd, J = 12.9, 5.4, 3.2 Hz, 1H), 1.72 (dddd, J = 13.0, 10.0, 8.8, 5.5 Hz, 1H); ¹³**C NMR** (75 MHz, CDCl₃) δ /ppm = 172.9, 144.1, 129.3, 127.0, 121.0, 117.5, 114.7, 51.9, 47.9, 40.8, 28.1, 25.7. **HRMS (ES):** m/z calculated for $[C_{12}H_{15}NO_2 \cdot H]^+$: 206.1176, found: 206.1186.

HPLC-Data

Product 5a

OD-H; Hexane : *i*PrOH = 95:5

OD-H; Hexane : *i*PrOH = 95:5

OD-H; Hexane : *i*PrOH = 95:5

OD-H; Hexane : *i*PrOH = 98:2

Product 5e

OD-H; Hexane : *i*PrOH = 95:5

AD-H; Hexane : *i*PrOH = 98:2

OD-H; Hexane : *i*PrOH = 99:1

0

1 2 _____

Ó

2.5

OD-H; Hexane : *i*PrOH = 95:5

7.5

14.8157.42948.060212.15444.00916.8728.02951.940269.91555.991

Meas. Ret. Time Height Height % Area

10

12.5

15

Area %

17.5

min

OD-H; Hexane : *i*PrOH = 95:5

AD-H; Hexane : *i*PrOH = 98:2

AD-H; Hexane : *i*PrOH = 98:2

OD-H; Hexane : *i*PrOH = 98:2

OD-H; Hexane : *i*PrOH = 95:5

OD-H; Hexane : *i*PrOH = 95:5

AD-H; Hexane : *i*PrOH = 90:10

Product 26

2

8.515 MM

OD-H; Heptane : *i*PrOH = 95:5

2.05485

7.0420

Obtained from the reduction of a 93:7 e.r. sample of 5a

Obtained from the reduction of a 74:26 e.r. sample of 5a

0.2561

31.57327

Product 28

OD-H; Heptane : *i*PrOH = 90:10

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	50	
1	8.097	MM	0.1709	218.17741	21.28272	24.9909	
2	10.497	MM	0.2447	654.84979	44.60128	75.0091	

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 13C (ppm)

120 110 100 13C (ppm)

110 100 90 13C (ppm) o

110 100 90 13C (ppm) ò

References

- ^[1] The acetone- D_6 supplied from Deutero GmBH included an impurity at 3.76 ppm.
- ^[2] Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. **1997**, 62, 7512-7515.
- ^[3] Deactivated Silica was prepared by treatment of silica gel 60 (0.040-0.063 mm) with Et₃N, followed by washing sequences with DCM/MeOH (5:1) and EtOAc.
- ^[4] Pinkerton, D. M.; Banwell, M. G.; Willis, A. C. Org. Lett. **2009**, *11*, 4290-4293.
- ^[5] Ghosh, A. K.; Bischoff, A.; Cappiello, J. *Eur. J. Org. Chem.* **2003**, *5*, 821-832.
- ^[6] Xu, H.; Wolf, C. *Chem. Commun.* **2009**, 3035-3037.
- ^[7] Erdélyi, M.; Gogoll, A. J. Org. Chem. 2001, 66, 4165-4169.
- ^[8] Tomioka, H.; Sawai, S. *Org. Biomol. Chem.* **2003**, *1*, 4441-4450.
- ^[9] Wenzel, A. G.; Jacobsen, E. N. *J. Am. Chem. Soc.* **2002**, *124*, 12964-12965.
- ^[10] Ferretti, F.; Ragaini, F.; Lariccia, R.; Gallo, E.; Cenini, S. Organometallics **2010**, *29*, 1465-1471.
- ^[11] See http://dasher.wustl.edu/tinker
- [^{12]} a) Allinger, N. L.; Yuh, Y. H.; Lii, J.-H. *J. Am. Chem. Soc.* **1989**, *111*, 8551-8566. b) Lii, J.-H.; Allinger, N. L. *J. Am. Chem. Soc.* **1989**, *111*, 8566-8575. c) Lii, J.-H.; Allinger, N. L. *J. Am. Chem. Soc.* **1989**, *111*, 8576-8582.
- ^[13] TURBOMOLE V6.5 2013, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
- ^[14] Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. *Phys. Rev. Lett.* **2003**, *91*, 146401.
- ^[15]Weigend, F.; Ahlrichs, R. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297-3305.
- ^[16]Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.
- ^[17] Grimme, S.; Ehrlich, S.; Goerigk, L. *J. Comput. Chem.* **2011**, *32*, 1456-1465.
- ^[18] For low vibrational frequencies (<100 cm⁻¹) a rigid rotor approximation was used to compute the entropic contribution to Δ G: Grimme, S. *Chem. Eur. J.* **2012**, *18*, 9955-9964.
- ^[19] a) Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 5648-5652. b) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. *J. Phys. Chem.* **1994**, *98*, 11623-11627.

^[20] (a) Katayama, S.; Ae, N.; Nagata, R. *Tetrahedron: Asymmetry* **1998**, *9*, 4295-4299. (b) Wang, X.-B.;
Wang, D.W.; Lu, S.-M.; Yu, C.-B.; Zhou, Y.-G. *Tetrahedron: Asymmetry* **2009**, *20*, 1040-1045. (c) Diaz, G.;
Diaz, M. A. N.; Reis, M. A. *J. Braz. Chem. Soc.* **2013**, *24*, 1497-1503.