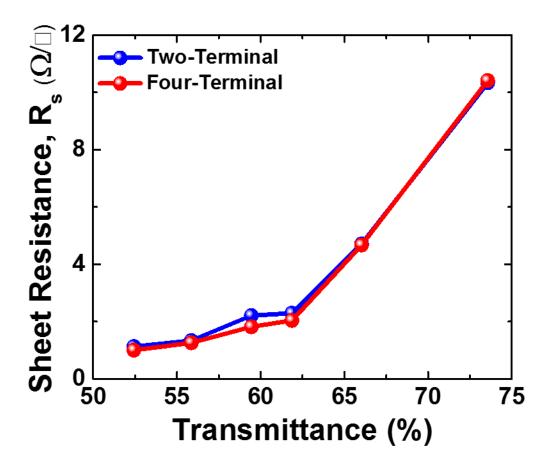
Functionalized Graphene Nanoribbon Films as a Radiofrequency and Optically Transparent Material – Supporting Information

Abdul-Rahman O. Raji,¹ Sydney Salters,^{1,2} Errol L. G. Samuel,¹ Yu Zhu,^{1,3} Vladimir Volman,^{4,*} and James M. Tour^{1,5,6,*}


¹Department of Chemistry, ⁵Department of Materials Science and NanoEngineering, ⁶Richard E. Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main Street, Houston, Texas 77005. ²Second Baptist School, 6410 Woodway Drive, Houston, Texas 77057, ³Department of Polymer Science, The University of Akron, Ohio 44325, ⁴Lockheed Martin, MS2, Mail Stop 137-101, 199 Borton Landing Road, Moorestown, New Jersey 08057

*To whom correspondence should be addressed. Email: <u>vlad.vlad@verizon.net</u>, <u>tour@rice.edu</u>

Table S1. Properties of HD-GNR films

$\mathbf{R}_{\mathrm{s}}\left(\mathbf{k}\Omega/\Box ight)$	27.7	26.0	8.1	5.8	4.3	1.7
d (nm)	42.1	88.8	138.1	174.1	202.6	213.0
σ (S/m)	857.2	432.5	1346.8	550.0	2878.4	3427.9

 R_s is the sheet resistance of the HD-GNR film. d is the thickness of the HD-GNR film. σ is the DC conductivity calculated based on the sheet resistance and the thickness of the HD-GNR film. Conductivity is thickness-independent for a bulk material. However, the density of HD-GNR films is proportional to the thickness; thus, increase in the DC conductivity is related to the increase in film density.

Figure S1. Comparison between the two-terminal and four-terminal measurements. Both methods show excellent agreement with each other. The sheet resistance with the two-terminal measurement is described in the Experimental Methods. The four-terminal measurement was carried out using Alessi four-point probe and Keithley 2010 multimeter. The four-point probe was placed directly on the HD-GNR films without any deposited metal contacts, unlike the two-terminal method. The sheet resistance was determined by $R_s = \frac{\pi}{\ln 2} \frac{V}{l}$. The film size was 7.62 cm × 2.54 cm, large enough to prevent the need for any correction due to finite size and edge effects that could arise from the four-terminal measurement.