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We provide here details on:

1. The method used to integrate the area under g1, Eq. 12 of the main text;

2. The PDFs of the diffusion coefficient used for the simulations and the corresponding
g2 − 1 functions (Fig. SI1);

3. The accuracy and precision on the first cumulant and on the PI indexes as a function
of the fitting range, for data simulated for a P (D) with σD = 1 (Figs. SI2 and SI3);

4. The accuracy and precision on the first cumulant, as a function of sample polydis-
persity σD, of the CC and MA methods, for simulated g2 − 1 functions with a noise
level ε = 0.001 (Fig. SI4);

5. The accuracy and precision of CC and MA and of the new polydispersity index as
a function of sample polydispersity σD, for simulated g2 − 1 functions with a noise
level ε = 0.01 (Fig. SI5);

6. The method used to convert the TEM and SEC size distribution data to the
intensity-weighted P (D) curves shown in Fig. 5a and 5c of the main text.

7. The fits to the experimental g2(t) for a polydisperse mixture of PSS polymers, and
a comparison of the polydispersity index as obtained by the various methods.

1 Integration of the area under g1

In order to minimize the impact of data noise on the measurement of the area under g1,
we implement Eq. 12 of the main text, proceeding as follows. First, we fit g2 to a (usually
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2-nd order) Frisken cumulant function, Eq. 10 of the main text. A normalized intensity
correlation function is obtained from

g
(n)
2 (t)− 1 = [g2(t)−B] /A , (1)

where the superscript n stands for normalized and where A and B are the amplitude and
baseline of the raw data obtained from the FC fit. If the quality of the fit is good, we also
take Γ1 from the FC fit, otherwise we perform a CC fit on g

(n)
2 (t) − 1 to obtain a better

estimate of the first cumulant. Next, we fit the tail of g
(n)
2 (t) to a stretched exponential

decay:
g
(se)
2 (t) = A′ exp [−(t/τc)

p] + 1 , (2)

with fitting range t ≥ Γ−1
1 . Note that although g

(n)
2 is normalized by construction, A′ may

be different from 1, because typically A′, τc and p are not independent fitting parameters.
This is irrelevant, since the purpose of determining g

(se)
2 (t) is just to obtain a noiseless

function that reproduces well the large-t behavior of the data, with no concern on the
physical interpretation of the fitting parameters. Once A′, τc and p have been determined,
the area under g1 is calculated from

τg1 =

∫ τcut

0

√
g
(n)
2 (t)− 1dt+

∫
∞

τcut

√
g
(se)
2 (t)− 1dt , (3)

which is the practical implementation of Eq. 12 of the main text. The first integral in the
r.h.s. of Eq. 3 is evaluated by integrating numerically the square root of the normalized,
baseline-corrected g

(n)
2 . The second integral may be calculated by numerical integration

of the fit. Alternatively, one may use the equality

∫
∞

τcut

√
g
(se)
2 (t)− 1dt =

√
A′

[
γ

(
1

p
,∞

)
− γ

(
1

p
,
τ pcut
2

)]
, (4)

where γ(s, x) =
∫ x

0
ts−1e−tdt is the lower incomplete gamma function [1], available in

many scientific calculation packages.

2 Probability distribution functions used for the sim-

ulations

Figure SI1a) shows some of the PDF of D used to generate the simulated correlation
functions. The corresponding g2 − 1 are displayed in a semi-log scale in Fig. SI1b. Note
that for a relative polydispersity σD ≤ 0.2, the intensity correlation functions are very
close to straight lines, the behavior of monodisperse samples. All the PDF have the same
first moment, D = 3 × 10−12 m2 s−1, which corresponds to a size of about 70 nm for
Brownian objects in water at room temperature. The PDFs have a log-normal shape, but
the tails are truncated at small and large D to avoid unphysical values of the diffusion
coefficient. Specifically, P (D) is obtained by normalizing the following tail-truncated
log-normal distribution:

1

D
√
2πβ

exp

[
−
(lnD − µ)2

2β2

]
f+(D)f−(D) , (5)
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Figure SI1. a): P (D) used to generate the simulated g2 − 1. Curves are labelled by σD,
the relative standard deviation of P (D). For the sake of clarity, not all the distributions
are shown. b): Intensity correlation functions generated from the PDFs shown in a) (same
line colors). For clarity, in this graph no noise has been added to g2 − 1.

where the truncating function is

f∓(D) =
1

2

[
1± tanh

(
5
D −D∓

D∓

)]
, (6)

and where the lower and upper cutoff D∓ correspond to a particle size of 10 µm and 1 nm,
respectively. The values of σD quoted in the main text are calculated using the truncated
PDF, Eq. 5.

3 Optimum fitting range for data generated from a

PDF with σD = 1

Figure SI2 shows the impact of the choice of the fitting range on the accuracy and precision
of the first cumulant, as in Fig. 2 of the main text, but for a more polydisperse sample
(σD = 1 instead of σD = 0.2 as in Fig. 2 of the main text).
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Figure SI2. Choice of the fitting range for obtaining Γ1. a): normalized first cumulant
as a function of the maximum delay time included in the fit, τcut. The curves are labelled
by the order and the kind of the fit. b) normalized uncertainty on the first cumulant,
same symbols as in a). Data are obtained by analyzing 103 simulated g2 − 1, generated
from a PD(D) with σD = 1 and using a noise level ε = 0.001.
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Figure SI3. Choice of the fitting range for obtaining the polydispersity index. a):

normalized polydispersity index σ̃2 and new polydispersity index β̃2 as a function of the
maximum delay time included in the fit, τcut. Black and red symbols: same as in Fig.
SI2; blue stars: β2 normalized by its theoretical value. b) normalized uncertainty on the
polydispersity indexes, same symbols as in a). Data are obtained by analyzing the same
simulated functions as in Fig. SI2.
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Figure SI3 shows the impact of the choice of the fitting range on the accuracy and
precision of the polydispersity indexes, as in Fig. 3 of the main text, but for a more
polydisperse sample (σD = 1 instead of σD = 0.2 as in Fig. 3 of the main text).

4 Accuracy and precision on Γ1 as a function of sam-

ple polydispersity, for data with noise ε = 0.001
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Figure SI4. Normalized Γ1 (panel a) and its normalized uncertainty (b) as a function of
sample polydispersity σD, obtained by analyzing simulated g2 − 1 functions with a noise
level ε = 0.001.

Figure SI4 shows the accuracy and precision on the first cumulant, as a function of
sample polydispersity σD, of the CC and MA methods, for simulated g2−1 functions with
a noise level ε = 0.001. The accuracy and precision on the polydispersity indexes for the
same functions are shown in Fig. 4 of the main text.

5 Accuracy and precision on Γ1 and on the PI in-

dexes, for data with noise ε = 0.01

Figure SI5 shows the impact of sample polydispersity on the accuracy and precision of Γ1

and of the polydispersity indexes, as in Fig. 4 of the main text, but for nosier correlation
functions (the noise level is here ε = 0.01, ten times larger than in Fig. 4 of the main
text, corresponding indicatively to Texp = 22 s according to Fig. 1 of the main text). The
results are similar to those for ε = 0.001, except that the range over which acceptable fit
parameters are obtained is further restricted. In particular, no method is able to measure
polydispersity with less than 100% uncertainty for σD < 0.3; the 2nd-order MA is the
best method for 0.3 ≤ σD < 0.6; β2 outperforms all other methods for σ ≥ 0.6.

5



0.8

1.0

0 1 2
10-4

10-2

100

102

 

s
, s

D

0.5
1.0
1.5

c)

~  2, HM

 CC, 4th

 MA4tha)
~

 

 CC, 2nd

 MA, 2nd

   2
, 

  2
~

b)

~
~

 
 

1

 

Figure SI5. Normalized Γ1 and polydispersity indexes as a function of sample polydis-
persity σD, obtained by analyzing simulated g2 − 1 functions with a noise level ε = 0.01.
a): first cumulant. b) polydispersity indexes. c): normalized uncertainty on the polydis-
persity indexes.

6 Conversion of the PDF obtained by TEM and SEC

to intensity-weighted P (D)

In Figure 5a, 5c of the main text the equivalent log-normal PDF of D obtained by analyz-
ing DLS data is compared to the distributions obtained by TEM or SEC. Since different
techniques probe in general different moments of the size distribution, the TEM and SEC
PDFs must be properly weighted prior to comparison with P (D). For the PMMA data,
one obtains from the TEM images NR(R), the number density of particles with radius
between R and R+ dR. Since P (D) is weighted by the scattering intensity (see Eq. 6 of
the main text), we need to multiply NR(R) by Is(q, R) = 9(qR)−6 [sin(qR)− qR cos(qR)]2,
the form factor for a homogeneous sphere [2,3]. The intensity-weighted PDF of R is thus

PR(R) =
NR(R)Is(q, R)∫

∞

0
NR(R)I(q, R)dR

. (7)

As a final step, PR(R) is transformed to a PDF of D (which we shall denote by PTEM(D))
using the Stokes-Einstein relation D(R) = kBT

6πηR
(Eq. 4 of the main text) and the standard

probability transformation law:

PTEM(D) =

[
PR(R)

∣∣∣∣
dR

dD

∣∣∣∣
]

R=R(D)

. (8)

We find a ∼ 20% discrepancy between D obtained directly from DLS and from PTEM(D),
due to the fact that the hydrodynamic radius probed by DLS is larger than the geometric

6



radius of the particles, seen in the TEM images. Since here we are interested only in
comparing the shape and width of the distributions, in Fig. 5a of the main text we have
rescaled D for the TEM data so that the average diffusion coefficient calculated from
PTEM(D) matches that obtained by DLS.

A similar series of transformations is applied to P
(M)
M (M), the mass-weighted distribu-

tion of molecular masses obtained by SEC for the PSS polymers (the superscript denotes
weighting by mass). The intensity-weighted PDF of M is given by

PM(M) =
P

(M)
M (M)M−1Ic [q, R(M)]

∫
∞

0
P

(M)
M (M)M−1Ic [q, R(M)] dM

. (9)

In the above equation, the term M−1 has been introduced to remove the mass weighting.
For the intensity weighting, we use

Ic(q, R) =
2

(qR)4

[
e−(qR)2 + (qR)2 − 1

]
, (10)

the form factor for a Gaussian coil [3]. The desired intensity-weighted PDF of D is finally
calculated from

PSEC(D) =

[
PM(M)

∣∣∣∣
dM

dD

∣∣∣∣
]

M=M(D)

. (11)

Note that in Eqs. 10 and 11 one needs the functional relation between M and D and R.
We assume a fractal-like shape of the polymer (as in the Mark-Houwink law relating the
intrinsic viscosity to M), implying D = KM b. By fitting Dhm (obtained from separate
DLS analysis on the PSS29k and PSS145k samples) vs the nominal mass to this power

law, we find b = −0.64 and K = 1.56×10−8 m2s−1(gmol−1)
b
. The law R(M) follows from

the Stokes-Einstein relation: R = kBT/
(
6πηKM b

)
. Equation 11 is applied separately

to the PDFs of the PSS29k and PSS145k samples; the PDF for the mixture is simply
obtained by normalizing the sum of those of the individual species, since each species
contributes equally to the scattering signal.

7 Analysis of the experimental g2(t) for the PSS mix-

ture

Figure SI6 shows the experimental intensity correlation function for the mixture of PSS29k
and PSS145k polymers, together with fits using 2nd and 4th order CC and MA. Although
the difference in the quality of the fits is rather small, the polydispersity values issued from
the various cumulant and moment methods differ significantly, as seen in Table SI T1.
The results of the analysis of one single correlation function, as it is the case here, should
be taken with some caution, since in the main text we have shown that the uncertainty on
the polydispersity indexes can be significant. However, some comments are in order. The
2nd order CC fit performs well, while the 4th order CC fit overestimates σD almost by a
factor of 2. This may seem surprising since for simulated data (see Fig. 4a of the main
text) σ2 for the 4th order CC was shown to be close to the expected value. However, Fig.
4b shows that for 4th order CC the uncertainty is quite large, of the order of 40% for σ2.
The anomalously large value of σ found here is therefore consistent, within uncertainty,
with the results for simulated data. This emphasises the importance of the precision with
which the polydispersity index can be obtained, especially given that a poor performance
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Figure SI6. Left axis: CC and MA fits of order 2 and 4 of the intensity correlation
function for the mixture of PSS29k and PSS145k polymers. Right axis: fit residues.

SEC CC 2nd MA 2nd CC 4th MA 4th from β2

0.80 0.68 0.60 1.58 0.61 0.71

Table SI T1 Polydispersity of the mixture of PSS29k and PSS145k, as obtained by SEC,
by CC and MA or order 2 and 4, and by the new polydispersity index β. For the latter, we
quote the relative standard deviation of the equivalent log normal distribution, obtained
through σ =

√
exp β2 − 1 (see Eq. 14 and the following discussion in the main text).

often cannot not be inferred from the fit quality. This is indeed the case here, since the
4th order CC fit is excellent in spite of the aberrant value of σ (see Fig. SI6). The 2nd
and the 4th order MA fits underestimate σ by about 25%; the polydispersity issued from
the new index β is the closest to the expected one (as estimated by SEC), consistently
with our findings for simulated data in the regime of large polydispersity, σD > 0.6.
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