Diastereoselective Attack on Chiral-at-Metal Ruthenium Allenylidene Complexes to Give Alkynyl Complexes

Matthew J. Queensen, ${ }^{\text {a }}$ Nigam P. Rath, ${ }^{\text {a,b }}$ Eike B. Bauer*a

[^0]
Supporting Information

1. Spectroscopic data for the generation of complex $\left(R_{R u}, R_{a x}\right)-13$2
2. Table S1 (Crystallographic Parameters) 4
3. UV-vis spectra of selected complexes 5
4. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of $\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)$ - $\mathbf{1 8}$ (top) and $\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)$-20
(bottom) for the determination of diastereomeric excesses 6
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the new complexes 7
6. Experimental and spectroscopic data for the generation of the enynyl complex $\left(R_{R u}, R_{a x}\right)-13$

The reaction between $\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)$ - $\mathbf{1 2}$ and 1-phenylethenolate did not result in a nucleophilic attack at the C_{γ} atom, but resulted mainly in deprotonation of the methyl group to give the neutral eneynyl complex $\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)$-13 (Scheme S 1$)$.

Scheme S1. Enynyl formation.

The complex could not be isolated spectroscopically pure; the isolated material contained other, unidentified material. However, key NMR and IR data in addition to the FAB-MS of the crude material established the formation of $\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right) \mathbf{- 1 3}$. The terminal $=\mathrm{CH}_{2}$ unit gave two signals at 5.29 and 4.93 ppm in the ${ }^{1} \mathrm{H}$ NMR and a diagnostic signal at 110.2 ppm in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR in addition to signals at 113.6 and 112.1 ppm for the $\mathrm{Ru}-C \equiv C$ carbon atoms. Also, bands at 2069 cm^{-1} and $2034 \mathrm{~cm}^{-1}$ were observed in the IR, while the band around $1950 \mathrm{~cm}^{-1}$ diagnostic for allenylidene complexes has disappeared. These spectroscopic data closely resemble those of previously synthesized enynyl complexes. It has previously been reported that hydrogens on carbon atoms in a position alpha to the C_{γ} atom of the allenylidene chain can be considerably acidic. Such protons can be removed by bases as weak as $\mathrm{K}_{2} \mathrm{CO}_{3}$, as shown for an allenylidene
complex $\left[\mathrm{Ru}(\mathrm{Ind})\left(\mathrm{PPh}_{3}\right)_{2}=\mathrm{C}=\mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{R}\right]^{+}$which gave upon deprotonation a enynyl complex (R denotes a cyclic steroid backbone, of which the CH_{2} group is a member).

Generation of $\left(\boldsymbol{R}_{\mathbf{R u}}, \boldsymbol{R}_{\mathrm{ax}}\right)-\left[\mathrm{Ru}(\mathrm{Ind})\left(\mathrm{PPh}_{3}\right)(6)\left\{\mathrm{C} \equiv \mathbf{C}-\mathbf{C}=\left(\mathbf{C H}_{2}\right) \mathbf{P h}\right\}\right]^{+} \mathbf{P F}_{\mathbf{6}}^{-}\left[\left(\boldsymbol{R}_{\mathbf{R u}}, \boldsymbol{R}_{\mathrm{ax}}\right)-13\right] . \mathrm{A}$

 two neck round bottom flask was charged with acetophenone ($0.277 \mathrm{~g}, 2.31 \mathrm{mmol}$) and THF (2 $\mathrm{mL})$. The flask was then cooled to $-60^{\circ} \mathrm{C}$ followed by the rapid addition of freshly titrated LDA $(5 \mathrm{~mL}, 0.46 \mathrm{M})$ and the solution was stirred at $-60^{\circ} \mathrm{C}$ for two hours and then warmed to room temperature. To a separate Schlenk tube was added $\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)$ -$\left[\mathrm{Ru}(\mathrm{Ind})\left(\mathrm{PPh}_{3}\right)(6)\left\{=\mathrm{C}=\mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right\}\right]^{+} \mathrm{PF}_{6}{ }^{-}(0.232 \mathrm{~g}, 0.228 \mathrm{mmol})$ and $\mathrm{THF}(10 \mathrm{~mL})$ and the solution was cooled to $-60^{\circ} \mathrm{C}$ for 10 minutes followed by the dropwise addition of the prepared acetophenone enolate $(0.801 \mathrm{~mL}, 0.329 \mathrm{M}, 0.341 \mathrm{mmol})$ over the course of 7 minutes. The solution was stirred at $-60^{\circ} \mathrm{C}$ for 2 hours and at room temperature for 2 hours. The solvent was removed by oil pump vacuum to yield the crude solid as a mixture of alkynyl-vinylidene and enolate attack products. The crude solid was purified by flash column chromatography $(2 \times 30$ cm silica column, eluted with $2: 1 \mathrm{v} / \mathrm{v} \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ diethyl ether) to yield $\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right) \mathbf{- 1 3}$ as impure orange solid ($0.129 \mathrm{~g}, 0.094 \mathrm{mmol}, 42 \%$). Key NMR assignment data ($\delta, \mathrm{CDCl}_{3}$): ${ }^{1} \mathrm{H} 5.29$ (s , $1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 4.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}: 113.6\left(\mathrm{~s}, \mathrm{C}_{\alpha}\right), 112.1\left(\mathrm{~s}, C_{\beta}\right), 110.2\left(\mathrm{~s}, \mathrm{PhC}=\mathrm{CH}_{2}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}: 177.98\left(\mathrm{~d},{ }^{3} J_{\mathrm{PP}}=124.7 \mathrm{~Hz},(R)-6\right), 55.55\left(\mathrm{~d},{ }^{3} J_{\mathrm{PP}}=123.9 \mathrm{~Hz}, \mathrm{PPh}_{3}\right) . \mathrm{IR}\left(\mathrm{cm}^{-1}, \mathrm{ATR}\right):$ 3428(m), 3056(w), 2069(s), 2034(s), 1683(m), 1590(m), 1464(s), 1433(s), 1325(s), 1229(s), 1092(s), 952(s), 822(s), 743(s), 693(s). MS (FAB): 1116 ([($\left.\left.\left.R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)-13\right]^{+}, 35 \%\right), 988$ $\left(\left[\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)-\mathbf{1 3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{PhC}=\mathrm{CH}_{2}\right]^{+}, 10 \%\right), 854\left(\left[\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)-\mathbf{1 3}-\mathrm{PPh}_{3}\right]^{+}, 60 \%\right)$.

2. Table S1 (Crystallographic Parameters)

	$\begin{aligned} & {\left[\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)-\mathbf{1 1}\right]^{+} \mathrm{PF}_{6}^{-}} \\ & \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{aligned}$	$\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)$-17•toluene
Empirical formula	$\mathrm{C}_{79} \mathrm{H}_{66} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{NO}_{2} \mathrm{P}_{3} \mathrm{Ru}$	$\mathrm{C}_{91} \mathrm{H}_{73} \mathrm{NO}_{3} \mathrm{P}_{2} \mathrm{Ru}$
Formula weight	1440.20	1391.51
Temperature	100(2) K	100(2) K
Wavelength	0.71073 A	0.71073 A
Crystal system	Triclinic	Orthorhombic
Space group	P1	$\mathrm{P} 21{ }^{2} 1^{2} 1$
Unit cell dimensions a, b, c [\AA]	$\begin{aligned} & \mathrm{a}=11.1558(9) \AA \\ & \mathrm{b}=11.8706(8) \AA \\ & \mathrm{c}=14.5713(11) \AA \end{aligned}$	$\begin{aligned} & \hline a=14.1888(4) \AA \\ & b=17.6625(5) \AA \\ & c=29.0539(9) \AA \end{aligned}$
Unit cell dimensions $\alpha, \beta, \gamma[\mathrm{deg}]$	$\begin{aligned} & \alpha=110.713(4)^{\circ} \\ & \beta=96.502(4)^{\circ} \\ & \gamma=107.918(4)^{\circ} \end{aligned}$	$\begin{aligned} & \alpha=90^{\circ} \\ & \beta=90^{\circ} \\ & \gamma=90^{\circ} \end{aligned}$
Volume / Z	1663.0(2) $\AA^{3} / 1$	7281.2(4) $\AA^{3} / 4$
Density (calculated)	$1.438 \mathrm{Mg} / \mathrm{m}^{3}$	$1.269 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.455 \mathrm{~mm}^{-1}$	$0.311 \mathrm{~mm}^{-1}$
F(000)	740	2896
Crystal size / mm ${ }^{3}$	$0.219 \times 0.187 \times 0.059$	$0.432 \times 0.174 \times 0.079$
Theta range for data collection	1.945 to 28.356°	1.597 to 27.117°
Index ranges	$\begin{aligned} & -14 \leq \mathrm{h} \leq 14,-15 \leq \mathrm{k} \leq 15, \\ & -19 \leq 1 \leq 19 \end{aligned}$	$\begin{aligned} & -18 \leq h \leq 18,-14 \leq k \leq 22, \\ & -37 \leq 1 \leq 37 \end{aligned}$
Reflections collected	38508	148862
Independent reflections	15431 [$\mathrm{R}(\mathrm{int}$) $=0.0424$]	16056 [R(int) $=0.0715$]
Completeness to theta $=25.242^{\circ}$	99.9 \%	99.8 \%
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	0.8621 and 0.7834	0.9281 and 0.8579
Refinement method	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}
Data / restraints / parameters	15431 / 589 / 798	16056 / 140 / 822
Goodness-of-fit on F2	1.024	1.050
Final R indices [$1>2$ sigma(I]]	$\mathrm{R} 1=0.0477, \mathrm{wR} 2=0.1098$	$\mathrm{R} 1=0.0438, \mathrm{wR} 2=0.1142$
R indices (all data)	$\mathrm{R} 1=0.0550, \mathrm{wR} 2=0.1149$	$\mathrm{R} 1=0.0545, \mathrm{wR} 2=0.1222$
Absolute structure parameter	-0.032(11)	-0.010(8)
Extinction coefficient	n/a	n/a
Largest diff. peak and hole	0.726 and -0.769 e. \AA^{-3}	0.964 and -0.416 e. $\AA^{\AA}{ }^{-3}$

3. UV-vis spectra of selected complexes

$\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)-11$ (blue)
$\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)-18$ (orange)
$\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)-19$ (yellow)
$\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)-20$ (grey)

4. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR complexes for the determination of diastereomeric excesses

Integration of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)$-18 (top) and $\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)$-20 (bottom) for the determination of enantiomeric excesses.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)-\left[\mathrm{Ru}(\operatorname{Ind})\left(\mathrm{PPh}_{3}\right)(6)\{=\mathrm{C}=\mathrm{C}=\mathrm{C}(t-\mathrm{Bu})(2-\right.$ napthyl $)\}]^{+} \mathrm{PF}_{6}{ }^{-},\left[\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right) \mathbf{- 1 1}\right]$

$$
\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)-\left[\mathrm{RuCl}(\mathrm{Ind})\left(\mathrm{PPh}_{3}\right)(6)\left(\mathrm{C} \equiv \mathrm{C}-\mathrm{CPh}_{2} n-\mathrm{Bu}\right)\right],\left[\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)-15\right]
$$

$$
\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)-\left[\mathrm{Ru}(\mathrm{Ind})\left(\mathrm{PPh}_{3}\right)(6)\{\mathrm{C} \equiv \mathrm{C}-\mathrm{C}(t-\mathrm{Bu})(2 \text {-napthyl }) \mathrm{C} \equiv \mathrm{CPh}\}\right],\left[\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)-19\right]
$$

$$
\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)-\left[\mathrm{Ru}(\mathrm{Ind})\left(\mathrm{PPh}_{3}\right)(\mathbf{6})\left\{\mathrm{C} \equiv \mathrm{C}-\mathrm{C}(t-\mathrm{Bu})(2 \text {-napthyl }) \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{Ph}\right\}\right],\left[\left(R_{\mathrm{Ru}}, R_{\mathrm{ax}}\right)-\mathbf{2 0}\right]
$$

[^0]: ${ }^{\text {a }}$ University of Missouri - St. Louis, Department of Chemistry and Biochemistry, One University Boulevard, St. Louis, MO 63121, USA. Tel.: +1-314-516- 5311; Fax: +1-314-5165342.bauere@umsl.edu
 ${ }^{\mathrm{b}}$ Center for Nanoscience, University of Missouri - St. Louis, St. Louis, MO, 63121, USA.

