Diastereoselective Attack on Chiral-at-Metal Ruthenium Allenylidene Complexes to Give Alkynyl Complexes

Matthew J. Queensen, a Nigam P. Rath, a,b Eike B. Bauer*a

^a University of Missouri - St. Louis, Department of Chemistry and Biochemistry, One University Boulevard, St. Louis, MO 63121, USA. Tel.: +1-314-516- 5311; Fax: +1-314-516- 5342. bauere@umsl.edu

^b Center for Nanoscience, University of Missouri - St. Louis, St. Louis, MO, 63121, USA.

Supporting Information

1. Spectroscopic data for the generation of complex (R_{Ru}, R_{ax}) -13	2
2. Table S1 (Crystallographic Parameters)	4
3. UV-vis spectra of selected complexes	5
4. $^{31}P\{^{1}H\}$ NMR of (R_{Ru},R_{ax}) -18 (top) and (R_{Ru},R_{ax}) -20 (bottom) for the determination of diastereomeric excesses	6
5. ¹ H and ¹³ C{ ¹ H} NMR spectra of the new complexes	7

1. Experimental and spectroscopic data for the generation of the enynyl complex (R_{Ru}, R_{ax}) -13

The reaction between (R_{Ru}, R_{ax}) -12 and 1-phenylethenolate did not result in a nucleophilic attack at the C_{γ} atom, but resulted mainly in deprotonation of the methyl group to give the neutral energyl complex (R_{Ru}, R_{ax}) -13 (Scheme S1).

Scheme S1. Enynyl formation.

The complex could not be isolated spectroscopically pure; the isolated material contained other, unidentified material. However, key NMR and IR data in addition to the FAB-MS of the crude material established the formation of (R_{Ru},R_{ax}) -13. The terminal = CH_2 unit gave two signals at 5.29 and 4.93 ppm in the 1H NMR and a diagnostic signal at 110.2 ppm in the $^{13}C\{^1H\}$ NMR in addition to signals at 113.6 and 112.1 ppm for the Ru- $C\equiv C$ carbon atoms. Also, bands at 2069 cm $^{-1}$ and 2034 cm $^{-1}$ were observed in the IR, while the band around 1950 cm $^{-1}$ diagnostic for allenylidene complexes has disappeared. These spectroscopic data closely resemble those of previously synthesized enynyl complexes. It has previously been reported that hydrogens on carbon atoms in a position alpha to the C_{γ} atom of the allenylidene chain can be considerably acidic. Such protons can be removed by bases as weak as K_2CO_3 , as shown for an allenylidene

complex [Ru(Ind)(PPh₃)₂=C=C=C(CH₂)R]⁺ which gave upon deprotonation a enynyl complex (R denotes a cyclic steroid backbone, of which the CH₂ group is a member).

Generation of (R_{Ru},R_{ax}) - $[Ru(Ind)(PPh_3)(6)\{C \equiv C - C = (CH_2)Ph\}]^+ PF_6^- [(R_{Ru},R_{ax})-13]$. A two neck round bottom flask was charged with acetophenone (0.277 g, 2.31 mmol) and THF (2 mL). The flask was then cooled to -60 °C followed by the rapid addition of freshly titrated LDA (5 mL, 0.46 M) and the solution was stirred at -60 °C for two hours and then warmed to room temperature. To a separate Schlenk tube was added (R_{Ru},R_{ax}) - $[Ru(Ind)(PPh_3)(6) = C = C = C(CH_3)Ph]^+ PF_6 = (0.232 \text{ g}, 0.228 \text{ mmol}) \text{ and THF } (10 \text{ mL}) \text{ and the } (10 \text{ mL}) \text{ and } (10 \text{ mL}) \text{$ solution was cooled to -60 °C for 10 minutes followed by the dropwise addition of the prepared acetophenone enolate (0.801 mL, 0.329 M, 0.341 mmol) over the course of 7 minutes. The solution was stirred at -60 °C for 2 hours and at room temperature for 2 hours. The solvent was removed by oil pump vacuum to yield the crude solid as a mixture of alkynyl-vinylidene and enolate attack products. The crude solid was purified by flash column chromatography (2×30 cm silica column, eluted with 2:1 v/v CH_2Cl_2 /diethyl ether) to yield (R_{Ru} , R_{ax})-13 as impure orange solid (0.129 g, 0.094 mmol, 42 %). Key NMR assignment data (δ, CDCl₃): ¹H 5.29 (s, 1H, C=CH), 4.93 (s, 1H, C=CH). 13 C{ 1 H}: 113.6 (s, C_{α}), 112.1 (s, C_{β}), 110.2 (s, PhC= 2 CH₂). $^{31}P\{^{1}H\}$: 177.98 (d, $^{3}J_{PP}$ =124.7 Hz, (*R*)-6), 55.55 (d, $^{3}J_{PP}$ =123.9 Hz, PPh₃). IR (cm⁻¹, ATR): 3428(m), 3056(w), 2069(s), 2034(s), 1683(m), 1590(m), 1464(s), 1433(s), 1325(s), 1229(s), 1092(s), 952(s), 822(s), 743(s), 693(s). MS (FAB): 1116 ($[(R_{Ru}, R_{ax})-13]^+$, 35%), 988

 $([(R_{R11},R_{ax})-13-C\equiv C-PhC=CH_2]^+, 10\%), 854([(R_{R11},R_{ax})-13-PPh_3]^+, 60\%).$

2. Table S1 (Crystallographic Parameters)

	$[(R_{Ru},R_{ax})-11]^{+}PF_{6}^{-}$	(R_{Ru},R_{ax}) -17·toluene
	·CH ₂ Cl ₂	
Empirical formula	C ₇₉ H ₆₆ Cl ₂ F ₆ NO ₂ P ₃ Ru	C ₉₁ H ₇₃ NO ₃ P ₂ Ru
Formula weight	1440.20	1391.51
Temperature	100(2) K	100(2) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	Triclinic	Orthorhombic
Space group	P1	P2 ₁ 2 ₁ 2 ₁
Unit cell dimensions a, b, c [Å]	a = 11.1558(9) Å b = 11.8706(8) Å c = 14.5713(11) Å	a = 14.1888(4) Å b = 17.6625(5) Å c = 29.0539(9) Å
Unit cell dimensions α , β , γ [deg]	α = 110.713(4)° β = 96.502(4)° γ = 107.918(4)°	$\alpha = 90^{\circ}$ $\beta = 90^{\circ}$ $\gamma = 90^{\circ}$
Volume / Z	1663.0(2) Å ³ / 1	7281.2(4) Å ³ / 4
Density (calculated)	1.438 Mg/m ³	1.269 Mg/m^3
Absorption coefficient	0.455 mm^{-1}	0.311 mm ⁻¹
F(000)	740	2896
Crystal size / mm ³	$0.219 \times 0.187 \times 0.059$	$0.432 \times 0.174 \times 0.079$
Theta range for data collection	1.945 to 28.356°	1.597 to 27.117°
Index ranges	$ \begin{vmatrix} -14 \le h \le 14, -15 \le k \le 15, \\ -19 \le l \le 19 \end{vmatrix} $	-18≤h≤18, -14≤k≤22, -37≤l≤37
Reflections collected	38508	148862
Independent reflections	15431 [R(int) = 0.0424]	16056 [R(int) = 0.0715]
Completeness to theta = 25.242°	99.9 %	99.8 %
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	0.8621 and 0.7834	0.9281 and 0.8579
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	15431 / 589 / 798	16056 / 140 / 822
Goodness-of-fit on F2	1.024	1.050
Final R indices [I>2sigma(I)]	R1 = 0.0477, wR2 = 0.1098	R1 = 0.0438, $wR2 = 0.1142$
R indices (all data)	R1 = 0.0550, $wR2 = 0.1149$	R1 = 0.0545, $wR2 = 0.1222$
Absolute structure parameter	-0.032(11)	-0.010(8)
Extinction coefficient	n/a	n/a
Largest diff. peak and hole	$0.726 \text{ and } -0.769 \text{ e.Å}^{-3}$	$0.964 \text{ and } -0.416 \text{ e.Å}^{-3}$

3. UV-vis spectra of selected complexes

$$(R_{Ru},R_{ax})$$
-11 (blue)

$$(R_{Ru},R_{ax})$$
-18 (orange)

$$(R_{Ru},R_{ax})$$
-19 (yellow)

$$(R_{Ru}, R_{ax})$$
-20 (grey)

4. ³¹P{¹H} NMR complexes for the determination of diastereomeric excesses

Integration of the $^{31}P\{^{1}H\}$ NMR spectra of (R_{Ru},R_{ax}) -18 (top) and (R_{Ru},R_{ax}) -20 (bottom) for the determination of enantiomeric excesses.

 ${}^{1}\text{H and } {}^{13}\text{C}\{{}^{1}\text{H}\} \text{ NMR spectra of } (R_{\text{Ru}},R_{\text{ax}})-[\text{Ru}(\text{Ind})(\text{PPh}_{3})(\textbf{6})\{=\text{C}=\text{C}=\text{C}(t\text{-Bu})(2-\text{napthyl})\}]^{+}\text{PF}_{6}^{-}, [(R_{\text{Ru}},R_{\text{ax}})-\textbf{11}]$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}\{^1\mathrm{H}\}$ NMR spectra of $(R_{\mathrm{Ru}},R_{\mathrm{ax}})$ -[RuCl(Ind)(PPh_3)(6)(C=C-CPh_2Me)], $[(R_{\mathrm{Ru}},R_{\mathrm{ax}})\text{-}\mathbf{14}]$

 $(R_{\text{Ru}},R_{\text{ax}})\text{-}[\text{RuCl}(\text{Ind})(\text{PPh}_3)(\textbf{6})(\text{C}\equiv\text{C}-\text{CPh}_2n\text{-Bu})],\,[(R_{\text{Ru}},R_{\text{ax}})\text{-}\textbf{15}]$

 $(R_{\text{Ru}},R_{\text{ax}})\text{-}[\text{RuCl}(\text{Ind})(\text{PPh}_3)(\mathbf{6})\{\text{C}\equiv\text{C}-\text{CPh}_2\text{CH}_2\text{C}(\text{O})\text{Ph}\}], [(R_{\text{Ru}},R_{\text{ax}})\text{-}\mathbf{17}]$

 $(R_{\rm Ru}, R_{\rm ax}) - [{\rm Ru}({\rm Ind})({\rm PPh_3})({\bf 6})\{C \equiv C - C(t - {\rm Bu})(2 - {\rm napthyl})C{\rm H_2C(O)Ph}\}], \\ [(R_{\rm Ru}, R_{\rm ax}) - {\bf 20}]$

