
Supporting Information

Robust, Highly Thermally Stable, Core-Shell Nanostructured Metal Oxide Aerogels as High-Temperature Thermal Superinsulators, Adsorbents and Catalysts

Guoqing Zu, ^a Jun Shen,^a,* Wenqin Wang,^a Liping Zou,^a Ya Lian,^a Zhihua Zhang,^a Bin Liu,^b Fan Zhang^b

^aShanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Pohl Institute of Solid State Physics, Tongji University, Shanghai 200092, P.R. China

^bAerospace Research Institute of Special Material and Processing Technology, Beijing 100074, P.R. China

Figure S1. SEM images of typical pristine and core-shell nanostructured (a) Al_2O_3 , (b) ZrO_2 and (c) TiO_2 aerogels before and after heat treatment at high temperatures.

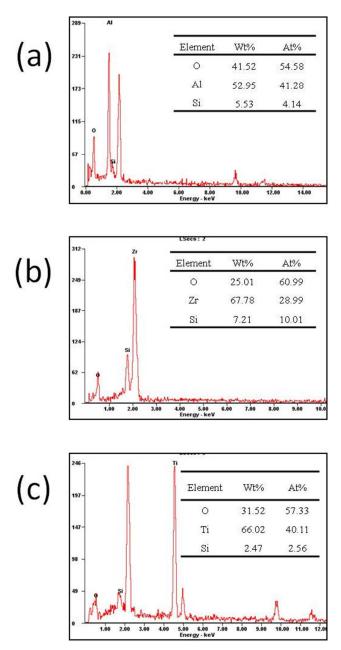


Figure S2. EDX elements analysis for core-shell nanostructured (a) Al_2O_3 , (b) ZrO_2 and (c) TiO_2 aerogels.