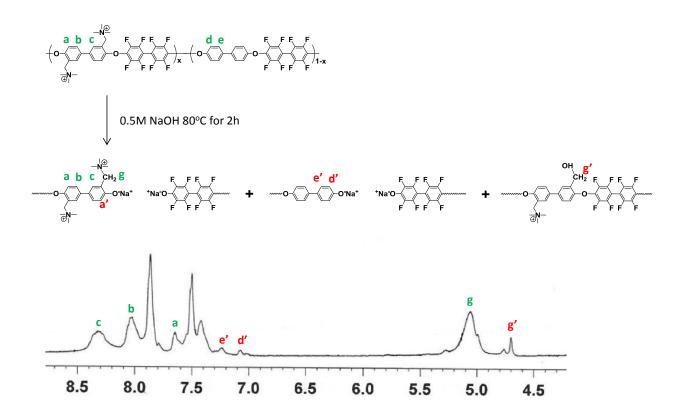
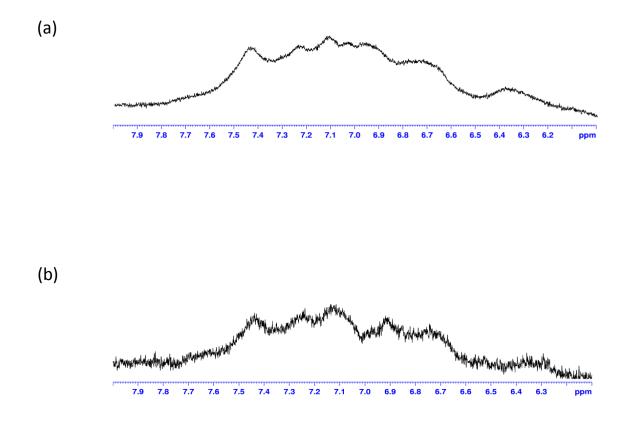
Supporting Information

Alkaline Stability of Benzyl Trimethyl Ammonium Functionalized Polyaromatics: A Computational and Experimental Study

Yoong-Kee Choe,[†] Cy Fujimoto,[‡] Kwan-Soo Lee,[§] Luke T. Dalton,[#] Kathy Ayers,[#] Neil J. Henson,^{\perp} and Yu Seung Kim [§],*


[†] National Institute of Advanced Industrial Science & Technology, Tsukuba 305-8568, Japan

[‡] Organic Materials Science, Sandia National Laboratory, Albuquerque, New Mexico 87185, United States


§ Sensors and Electrochemical Devices Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 United States

[#] Proton OnSite, Wallingford, Connecticut 06492, United States

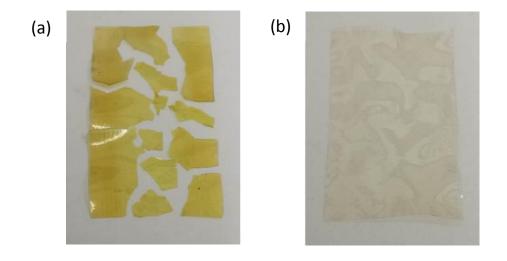

 $^{\perp}$ Physics and Chemistry of Materials, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States

Figure S1. ¹H NMR spectra of F-PAE after stability test in 0.5 M NaOH at 80°C for 2 h. The degradation % of cationic functional group was obtained by the peak integration of g'/(g+g')

Figure S2. ¹H NMR spectra of ATM-PP (a) before and (b) after stability test in 0.5 M NaOH at 80°C for 2 h.

Figure S3. Photographs of (a) F-PAE and (b) ATM-PP after stability test in 0.5 M NaOH at 80°C for 2 h.