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Figure S1. Variable-temperature, variable-frequency ac magnetic susceptibility

measurements of 2 (top) and 3 (bottom) under an applied dc field of 0.2 Tesla. Only a small

frequency dependence in " was observed for these compounds.
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Figure S2. Arrhenius plot of the relaxation rate vs. inverse temperature for 2 (top) and 3

(bottom). The frequency dependence was too small to be meaningful for the Arrhenius analysis.
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Figure S3. Magnetization of 1 with zoomed-in inset showing the highest temperature at which
hysteresis is observed.
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Figure S4. Magnetization of 2 with zoomed-in inset showing the highest temperature at which

hysteresis is observed.
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Figure S5. Magnetization of 3 with zoomed-in inset showing the highest temperature at which
hysteresis is observed.
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Figure S6. The Boltzmann population for 1 is calculated using S = 2, D = -1.643 cm™,
E/D = 0.021, and isotropic g = 1.99. The black numbers represent the Ms quantum
numbers in the high-field limit. At low temperatures (< 20 K) it is seen that the + 2 states
are the most populated. Variable-temperature HF-EPR allows for definitive assignment
of the sign of D by observing changes in the EPR peak intensities upon cooling and then
comparing these changes with the simulated energy level diagram and the calculated
Boltzmann population.
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