Supporting Information

Synthesis of Phosphoramidates: A Facile Approach Based on the C-N Bond Formation via Ir-catalyzed Direct C-H Amidation
Hyunwoo Kim, ${ }^{\dagger \dagger}$ Juhyeon Park, ${ }^{\dagger, \hbar}$ Jeung Gon Kim, ${ }^{*, \dagger}$ and Sukbok Chang ${ }^{*, \dagger, \dagger}$
\dagger Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea \ddagger Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 305-701, Korea

Table of Contents S1
I. General Methods S2
II. Procedures for the Preparation of Starting Materials S2

1. General Procedure for the Preparation of Aromatic Amides S2
2. General Procedure for the Preparation of Arylpryidines S3
3. General Procedure for the Preparation of Azides S3
III. Procedure for the Optimization Study S7
IV. Procedure for the Ir-Catalyzed C-H Amination with Azides S8
4. Ir-Catalyzed Amination of Amides with Azides S8
5. Ir-Catalyzed Amination of Ketones with Azides S15
6. Ir-Catalyzed Amination of Pyridines with Azides S18
V. Procedure of Mechanistic Studies S21
VI. References S22
Appendix I S23Spectral Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR of Compounds Obtained in this Study

I. General Methods

Unless otherwise stated, all commercial reagents were used without additional purification. Analytical thin layer chromatography (TLC) was performed on Merck pre-coated silica gel 60 F254 plates. Visualization on TLC was achieved by the use of UV light (254 nm), exposure to iodine vapor, or treatment with acidic anisaldehyde or phosphomolybdic acid, ninhydrin or ceric ammonium molydate stain followed by heating. Column chromatography was undertaken on silica gel (400-630 mesh) using a proper eluent system. ${ }^{1} \mathrm{H}$ NMR was recorded on Agilent Technologies DD2 (600 MHz). Chemical shifts were quoted in parts per million (ppm) referenced to the appropriate solvent peak or 0.0 ppm for tetramethylsilane. The following abbreviations were used to describe peak splitting patterns when appropriate: br (broad), s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublet), td (triplet of doublet), ddd (doublet of doublet of doublet), m (multiplet). Coupling constants, J, were reported in hertz unit (Hz). ${ }^{13} \mathrm{C}$ NMR was recorded on Agilent Technologies DD2 (150 MHz) and was fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to the appropriate solvent peak. ${ }^{31} \mathrm{P}$ NMR was recorded on Agilent Technologies DD2 (243 MHz). Chemical shifts were reported in ppm referenced to external $\mathrm{PPh}_{3}(-6.00 \mathrm{ppm})$. Infrared (IR) spectra were recorded on Bruker Alpha FT-IR Spectrometer. Frequencies are given in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$ and only selected absorbance is reported. High resolution mass spectra were obtained from the Korea Basic Science Institute (Daegu) by using EI or FAB method, or from KAIST Research Analysis Center by using ESI method. 1,2-Dichloroethane was dried via activated alumina column. Dichloro(η^{5-} pentamethylcyclopentadienyl)iridium(III) dimer (98\%) was purchased from Strem Chemicals Co., Ltd.

II. Procedures for the Preparation of Starting Materials

1. General Procedure for the Preparation of Aromatic Amides ${ }^{1}$

To a solution of acyl chloride (5.0 mmol) in dichloromethane $(20 \mathrm{~mL})$ were added dropwise appropriate alkylamine (6.0 mmol) and triethylamine $(0.61 \mathrm{~g}, 6.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under N_{2} atmosphere. After stirring for 5 h at room temperature, the reaction mixture was quenched with $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times, dried over MgSO_{4}, and evaporated under reduced pressure to afford crude product, which was purified by recrystallization (n-hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

2. General Procedure for the Preparation of Arylpyridines ${ }^{2}$

To a solution of 2-bromopyridine ($0.32 \mathrm{~g}, 2.0 \mathrm{mmol}$) in toluene (7 mL), ethanol (1.5 mL), and $\mathrm{H}_{2} \mathrm{O}$ (7 $\mathrm{mL})$ was added $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.6 \mathrm{~g}, 15 \mathrm{mmol})$ followed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.069 \mathrm{~g}, 0.060 \mathrm{mmol})$ and appropriate arylboronic acid (2.6 mmol) under argon in a 50 mL two-necked flask. The reaction mixture was refluxed for 12 h , and then cooled to room temperature. To the reaction mixture was added aqueous $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$, extracted by EtOAc for three times, dried over MgSO_{4}, and evaporated in vacuum to afford the crude product, which was purified by flash chromatography on silica gel with nhexane/EtOAc to give quantitative yield of corresponding aryl pyridines

3. General Procedure for the Preparation of Azides ${ }^{3}$

(Procedure A)

3-1. Preparation of dialkylphosphorochloridate

3-1-1. Procedure A

To a stirred solution of an appropriate alcohol (10 mmol) and triethylamine $(1.2 \mathrm{~g}, 12 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$ was added phosphorus oxychloride $(766.7 \mathrm{mg}, 5.0 \mathrm{mmol})$ dropwise at room temperature. After stirring the reaction mixture for 5 h at room temperature, insoluble residues were filtered through Celite. The filtrate was diluted with diethyl ether (30 mL) and washed 3 times with water (20 mL). The collected aqueous layer was back-extracted with diethyl ether (10 mL) 2 times. Collected organic layer was dried over MgSO_{4}, filtered and evaporated under reduced pressure. The isolated product was used in the further reaction without further purifications.

3-1-2. Procedure B

To a stirred solution of an appropriate alcohol (3.0 mmol) and triethylamine (3.3 mmol) in
dichloromethane (3 mL) was added alkyl dichlorophosphate (3.0 mmol) dropwise at room temperature. After stirring the reaction mixture for 5 h at room temperature, insoluble residues were filtered through Celite. The solvent was evaporated under reduced pressure and the residue was purified by chromatography on silica gel.

3-2. Preparation of dialkylphosphoroazidate

To a stirred solution of an appropriate dialkylphosphorochloridate (2.0 mmol) in acetone (5 mL) was added sodium azide (3.0 mmol) in one portion at room temperature. The resulting solution was stirred for 10 h during which time white salt precipitated. The insoluble residues were filtered through Celite. The filtrate was dried under reduced pressure, diluted with diethyl ether (20 mL) and then washed 3 times with water (20 mL). The collected aqueous layer was back-extracted with diethyl ether (10 mL) twice. Collected organic layer was dried over MgSO_{4}, filtered and evaporated under reduced pressure. The isolated product was used without further purifications.

Ethyl phenyl phosphorazidate

 15.9 (d, $J=6.7 \mathrm{~Hz}$); ${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.57$; $\mathbf{I R}\left(\mathrm{cm}^{-1}\right) 3066,2986,2161,1591,1194$, 939, 772; High Resolution MS (FAB): Calculated for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 228.0538$, Found: 228.0539 .

Ethyl (4-methoxyphenyl) phosphorazidate

Colorless liquid ($401 \mathrm{mg}, 78 \%$); ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13$ - 7.10 (m , $2 \mathrm{H}), 6.85-6.81(\mathrm{~m}, 2 \mathrm{H}), 4.30-4.23(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.39-1.34(\mathrm{~m}$, 3H); ${ }^{13}$ C NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.2,143.3(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 120.9(\mathrm{~m}$, 2C), 114.7 (2C), $65.6(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 55.4(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 15.8 ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.95$; IR (cm^{-1}) 2985, 2839, 2161, 1596, 1252, 1191, 942, 754; High Resolution MS (FAB): Calculated for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 258.0644$, Found: 258.0641.

Naphthalen-2-yl phenyl phosphorazidate

Colorless liquid (390 mg, 60\%); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88-7.80(\mathrm{~m}$, $3 \mathrm{H}), 7.78-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.31$ $(\mathrm{m}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 149.9(\mathrm{~d}, J=7.7$ $\mathrm{Hz}), 147.5(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 133.8,131.4,130.4,130.1$ (2C), 127.8, 127.7, 127.1, $126.2,126.1,120.3(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{C}), 119.7(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 117.1(\mathrm{~d}, J=5.1 \mathrm{~Hz}) ;{ }^{31} \mathbf{P}$ NMR (243 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-10.23$; IR (cm^{-1}) 2165, 1591, 1270, 1191, 956, 751; High Resolution MS (FAB): Calculated for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 326.0695$, Found: 326.0694.

4-Chlorophenyl phenyl phosphorazidate

Colorless liquid ($570 \mathrm{mg}, 92 \%$); ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.36$ (m, 2H), $7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.7(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 148.3(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}), 130.1$ (2C) $130.0(2 \mathrm{C}), 126.2,120.6(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{C}), 120.1(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 2 \mathrm{C}) ;{ }^{31} \mathbf{P}$ NMR (243 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-10.25$; IR (cm^{-1}) 2167, 1589, 1269, 1182, 1092, 960, 785;

High Resolution MS (FAB): Calculated for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 310.0148$, Found: 310.0145.
(1R,2R,5R)-5-Isopropyl-2-methylcyclohexyl phenyl phosphorazidate

Colorless liquid ($617 \mathrm{mg}, 92 \%$); 1:1 mixture of diastereomer; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.37-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 3 \mathrm{H}), 4.44-4.35(\mathrm{~m}, 1 \mathrm{H}), 2.28-$ $2.16(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.28$ $-1.15(\mathrm{~m}, 1 \mathrm{H}), 1.04-0.95(\mathrm{~m}, 1 \mathrm{H}), 0.93-0.71(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta[150.1(J=7.5 \mathrm{~Hz})+150.0(J=7.5 \mathrm{~Hz})], 129.8(2 \mathrm{C}), 125.7(\mathrm{~m}), 120.3(J=5.0 \mathrm{~Hz}), 120.2$ $(J=4.6 \mathrm{~Hz}),[82.3(J=7.7 \mathrm{~Hz})+82.1(J=7.6 \mathrm{~Hz})], 48.3(\mathrm{~m}),[42.5+42.3], 33.8,31.6,[25.7+25.5]$, [22.9 $(J=1.1 \mathrm{~Hz})+22.8(J=1.1 \mathrm{~Hz})],[21.8+21.8],[20.8+20.7],[15.6+15.5]) ;{ }^{31} \mathbf{P} \mathbf{N M R}(243 \mathrm{MHz}$, CDCl_{3}) $\delta-6.14$; IR (cm^{-1}) 2927, 2870, 2159, 1592, 1196, 953, 772; High Resolution MS (FAB): Calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$: 338.1634 Found: 338.1632.
(3S,5S,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl phenyl phosphorazidate

Colorless liquid ($429 \mathrm{mg}, 99 \%, 0.76 \mathrm{mmol}$ scale); $1: 1$ mixture of diastereomer; ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.32$ $(\mathrm{m}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 4.54-4.46(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.92$
$(\mathrm{m}, 2 \mathrm{H}), 1.83-1.62(\mathrm{~m}, 5 \mathrm{H}), 1.60-1.47(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.43$
$(\mathrm{m}, 1 \mathrm{H}), 1.39-1.15(\mathrm{~m}, 9 \mathrm{H}), 1.15-1.05(\mathrm{~m}, 6 \mathrm{H}), 1.05-0.93$ $(\mathrm{m}, 4 \mathrm{H}), 0.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H}), 0.63$ $(\mathrm{s}, 3 \mathrm{H}), 0.61-0.56(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.0(J=7.9 \mathrm{~Hz}), 129.9(2 \mathrm{C}), 125.7(J$ $=1.7 \mathrm{~Hz}), 120.2(J=5.2 \mathrm{~Hz}, 2 \mathrm{C}),[81.0(J=6.9 \mathrm{~Hz})+81.0(J=6.9 \mathrm{~Hz})], 56.4,56.3,54.1,44.7,42.6$, $39.9,39.5,[36.7+36.7], 36.1,35.8,[35.7(J=4.0 \mathrm{~Hz})+35.6(J=4.0 \mathrm{~Hz})], 35.4,35.3,31.9,29.2(J=$ $4.8 \mathrm{~Hz}),[28.5+28.4], 28.2,28.0,24.2,23.8,22.8,22.5,21.2,18.7,12.2,12.0,{ }^{31} \mathbf{P}$ NMR (243 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-6.52$, -6.55 ; IR $\left(\mathrm{cm}^{-1}\right) 2930,2160,1592,1198,950,774$; High Resolution MS (FAB): Calculated for $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}: 570.3825$, Found: 570.3822.

III. Procedure for the Optimization Study

To a screw capped vial with a spinvane triangular-shaped Teflon spinbar were added N-tertbutylbenzamide (1a, 0.20 mmol), diphenyl phosphoryl azide (2a), catalyst, additive, and solvent (0.5 mL) under atmospheric conditions. The reaction mixture was stirred in a pre-heated aluminium reaction block at the indicated temperature for 24 h . The reaction mixture was cooled to room temperature in case of heating, filtered through a plug of celite and then washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The solvent were removed under reduced pressure and the crude yield was measured by ${ }^{1} \mathrm{H}$ NMR using an internal standard $\left(\mathrm{CH}_{2} \mathrm{Br}_{2}\right)$.

Table S1. Optimization of Reaction Parameters

Entry	Catalytic system (mol \%)	Additive (mol \%)	$\begin{gathered} \mathbf{2 a} \\ \text { (equiv) } \end{gathered}$	Solvent	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)
1	$\left[\mathrm{IrCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5) / \mathrm{AgNTf}_{2}$ (20)	-	1.2	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	60	28
2	$\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5) / \mathrm{AgNTf}_{2}(20)$	-	1.2	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	60	n.r.
3	$\left[\mathrm{Ru}\left(\mathrm{p} \text {-cymene) } \mathrm{Cl}_{2}\right]_{2}(5) / \mathrm{AgNTf}_{2}(20)\right.$	-	1.2	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	60	<1
4	$\mathrm{Pd}(\mathrm{OAc})_{2}(5)$	-	1.2	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	60	n.r.
5	$\left[\mathrm{IrCp}^{*} \mathrm{Cl}_{2}\right]_{2}$ (5) / AgNTf_{2} (20)	NaOAc (30)	1.2	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	60	99
6	$\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5) / \mathrm{AgNTf}_{2}(20)$	NaOAc (30)	1.2	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	60	<1
7	$\left[\mathrm{Ru}\left(\mathrm{p} \text {-cymene) } \mathrm{Cl}_{2}\right]_{2}(5) / \mathrm{AgNTf}_{2}(20)\right.$	NaOAc (30)	1.2	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	60	n.r.
8	$\mathrm{Pd}(\mathrm{OAc})_{2}(5)$	NaOAc (30)	1.2	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	60	n.r.
9	$\left[\mathrm{IrCp}^{*} \mathrm{Cl}_{2}\right]_{2}(2.5) / \mathrm{AgNTf}_{2}$ (10)	NaOAc (30)	1.2	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	60	13
10	$\left[\operatorname{IrCp}^{*} \mathrm{Cl}_{2}\right]_{2}(1) / \mathrm{AgNTf}_{2}(4)$	NaOAc (30)	1.2	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	60	6

IV. Procedure for the Ir-Catalyzed C-H Amination with Azides

1. Ir-Catalyzed Amination of Amides with Azides (Scheme 2, 3a-3e, 3t \& Scheme 4)

To a screw capped vial with a spinvane triangular-shaped Teflon stir bar were added amide (0.20 mmol), azide (0.24 mmol), $\left[\mathrm{IrCp}^{*}{ }^{*} \mathrm{Cl}_{2}\right]_{2}(8.0 \mathrm{mg}, 0.010 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{AgNTf}_{2}(16 \mathrm{mg}, 0.040 \mathrm{mmol}$, $20 \mathrm{~mol} \%$), NaOAc ($4.9 \mathrm{mg}, 0.060 \mathrm{mmol}, 30 \mathrm{~mol} \%$) and 1,2-dichloroethane (0.50 mL) under atmospheric conditions. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h , filtered through a pad of celite and then washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. Organic solvents were removed under reduced pressure and the residue was purified by chromatography on silica gel (n-hexane/EtOAc or n hexane/ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the desired product.

Diphenyl (2-(tert-butylcarbamoyl)phenyl)phosphoramidate (Scheme 2, 3a)

Brown liquid ($84 \mathrm{mg}, 99 \%$); ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.92$ (d, $J=11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ $-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.14(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.95-6.90(\mathrm{~m}$, $1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.6,150.5(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 2 \mathrm{C}), 141.1,132.2,129.7$ (4C), 126.8, 125.2 (2C), 121.1, 120.7 (d, $J=9.4 \mathrm{~Hz}), 120.4$ (d, $J=$ $5.1 \mathrm{~Hz}, 4 \mathrm{C}), 119.4,52.0,28.7$ (3C); ${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-7.97$; IR (cm^{-1}) $3316,3066,2969$, 1635,1487, 1454, 1391, 1207, 1184, 935, 750; High Resolution MS (EI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}$ $[M]^{+}: 424.1552$, Found: 424.1554.

Diphenyl (2-(tert-butylcarbamoyl)-5-methoxyphenyl)phosphoramidate (Scheme 2, 3b)

White solid ($77 \mathrm{mg}, 85 \%$); m.p. $114-116{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.47(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 9 \mathrm{H}), 7.21(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.92$ $(\mathrm{s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.6$, $162.5,150.5$ ($\mathrm{d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{C}$), 143.5, 129.7 (4C), 128.2, 125.2 (2C),
$120.4(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 4 \mathrm{C}), 112.8(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 107.6,103.9,55.4,51.8,28.8(3 \mathrm{C}) ;{ }^{31} \mathbf{P}$ NMR (243 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-8.02$; IR (cm^{-1}) 3333, 2967, 2930, 1629, 1487, 1264, 1206, 1185, 934, 766; High Resolution MS (EI): Calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}[\mathrm{M}]^{+}: 454.1658$, Found: 454.1655.

Diphenyl (2-(tert-butylcarbamoyl)-5-(trifluoromethyl)phenyl)phosphoramidate (Scheme 2, 3c)

White solid (62 mg, 63\%); m.p. $146-148{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.00-9.88(\mathrm{~m}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.10$ $-6.00(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.5,150.3$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{C}), 141.7,133.9(\mathrm{q}, J=32.7 \mathrm{~Hz}), 129.8$ (4C), 127.4, $125.4(2 \mathrm{C}), 123.4(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 4 \mathrm{C}), 123.3(\mathrm{q}, J=272.9 \mathrm{~Hz}), 120.3(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 117.5(\mathrm{q}, J=3.1$ $\mathrm{Hz}), 116.2,52.5,28.6(3 \mathrm{C}) ;{ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-8.87$; IR (cm^{-1}) 3328, 3068, 2967, 1647, 1333, 1183, 932, 767; High Resolution MS (ESI): Calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}: 515.1323$, Found: 515.1335.

Diphenyl (2-(tert-butylcarbamoyl)-3-fluorophenyl)phosphoramidate (Scheme 2, 3d)

White solid ($84 \mathrm{mg}, 95 \%$); m.p. $92-94{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 10.49(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.28(\mathrm{~m}$, $5 \mathrm{H}), 7.26(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{dd}, J=12.3,8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 164.6,160.9(\mathrm{~d}, J=245.1 \mathrm{~Hz}), 150.4(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{C}), 143.6$ (m), 132.3 (d, $J=12.6 \mathrm{~Hz}$), 129.7 (4C), 125.3 (2C), 120.4 (d, $J=4.8 \mathrm{~Hz}, 4 \mathrm{C}), 115.3,108.9$ (m), 108.6 $(\mathrm{d}, J=25.8 \mathrm{~Hz}), 52.3,28.7(3 \mathrm{C}) ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-8.30 ; \mathbf{I R}\left(\mathrm{cm}^{-1}\right) 3461,3056,2997$, 2968, 1645, 1482, 1285, 1184, 933, 767; High Resolution MS (EI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{FN}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}]^{+}$: 442.1458, Found: 442.1460.

Diphenyl (2-(((3s,5s,7s)-adamantan-1-yl)carbamoyl)phenyl)phosphoramidate (Scheme 2, 3e)

Colorless liquid ($87 \mathrm{mg}, 86 \%$); ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.96(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.26$ $(\mathrm{m}, 4 \mathrm{H}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.13(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.93-6.87(\mathrm{~m}$, $1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 6 \mathrm{H}), 1.69(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.4,150.5(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{C}), 141.0,132.2,129.7$ (4C), $126.9,125.2(2 \mathrm{C}), 121.1,120.8(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 120.4(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{C}), 119.3,52.8,41.4$ (3C), 36.3 (3C), 29.4 (3C); ${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-7.96; IR (cm^{-1}) 3067, 2905, 2849, 1634, 1488, 1269, 1185, 936, 751; High Resolution MS (ESI): Calculated for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}: 525.1919$, Found: 525.1934.

Diphenyl (1-acetylindolin-7-yl)phosphoramidate (Scheme 2, 3t)

Light brown solid ($80 \mathrm{mg}, 98 \%$); m.p. $109-111{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.98(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.24$ $(\mathrm{m}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.16-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.3,150.6(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{C}), 135.2,132.9$ (d, $J=12.0 \mathrm{~Hz}), 129.6(4 \mathrm{C}), 129.2,126.7,125.0(2 \mathrm{C}), 120.4$ (d, $J=4.7 \mathrm{~Hz}, 4 \mathrm{C}), 120.3,119.2,51.3$, 28.8, 24.2; ${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-6.86; IR (cm^{-1}) 3066, 2854, 2698, 1627, 1486, 1187, 933, 751; High Resolution MS (EI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}]^{+}$: 408.1239, Found: 408.1240.

Diethyl (2-(tert-butylcarbamoyl)phenyl)phosphoramidate (Scheme 3, 4a)

Brown liquid ($47 \mathrm{mg}, 71 \%$); ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.26(\mathrm{~d}, J=$ $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.95-6.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~s}$, $1 \mathrm{H}), 4.17-4.07(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.34-1.29(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.8,141.8,132.2,126.7,120.3,120.2(\mathrm{~d}, J=9.5 \mathrm{~Hz})$, 118.7, 62.9 (d, $J=5.4 \mathrm{~Hz}, 2 \mathrm{C}), 52.0,28.8$ (3C), 16.1 (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{C})$; ${ }^{31} \mathbf{P}$ NMR (243 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-8.89$; IR (cm^{-1}) 3395, 2983, 1638, 1525, 1251, 1189, 974, 754; High Resolution MS (EI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}]^{+}$: 328.1552, Found: 328.1550.

Ethyl phenyl (2-(tert-butylcarbamoyl)phenyl)phosphoramidate (Scheme 3, 4b)

Brown liquid (39 mg, 52\%); ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.57(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}$, $2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.98(\mathrm{~s}, 1 \mathrm{H}), 4.39-4.13(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.7,150.6(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 141.4,132.2,129.6$ (2C), 126.7, 124.8, 120.7, 120.5 (d, $J=9.6 \mathrm{~Hz}$), 120.3 (d, $J=4.7 \mathrm{~Hz}, 2 \mathrm{C}), 119.1,63.7(\mathrm{~d}, J=5.5 \mathrm{~Hz})$, $52.0,28.7(3 \mathrm{C}), 16.1(\mathrm{~d}, J=6.7 \mathrm{~Hz}) ;{ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.13$; IR $\left(\mathrm{cm}^{-1}\right) 3299$, 2971, 1635, 1584, 1257, 1163, 927, 753; High Resolution MS (EI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}]^{+}: 376.1552$, Found: 376.1553.

Ethyl (4-methoxyphenyl) (2-(tert-butylcarbamoyl)phenyl)phosphoramidate (Scheme 3, 4c)

Brown liquid (42 mg, 51\%); ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.50(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.06(\mathrm{~m}$, $2 H), 6.92-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.74(\mathrm{~m}, 2 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 4.29-4.13(\mathrm{~m}$, $2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.7,156.6,144.2(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 141.5,132.2,126.7$, 121.2 (d, $J=4.4 \mathrm{~Hz}, 2 \mathrm{C}), 120.7,120.5(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 119.1,114.6$ (2C), $63.7(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 55.5,52.0,28.7(3 \mathrm{C}), 16.1(\mathrm{~d}, J=6.8 \mathrm{~Hz}) ;{ }^{31} \mathbf{P} \mathbf{N M R}$ ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-2.62$; IR (cm^{-1}) 3293, 2970, 1635, 1584, 1252, 1194, 958, 753; High Resolution MS (EI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}[\mathrm{M}+\mathrm{X}]^{+}: 406.1658$, Found: 406.1656.

Naphthalen-2-yl phenyl (2-(tert-butylcarbamoyl)phenyl)phosphoramidate (Scheme 3, 4d)

Light yellow viscous liquid ($76 \mathrm{mg}, 80 \%$); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $10.05(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.45$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-$ $7.27(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H})$, $1.35(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.6,150.5(\mathrm{~d}, J=6.8 \mathrm{~Hz})$, $148.1(\mathrm{~d}, ~ J=7.0 \mathrm{~Hz}), 141.1,133.9,132.3,131.0,129.8,129.7$ (2C), 127.7, $127.6,126.9,126.6,125.5,125.2,121.2,120.8(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 120.4(\mathrm{~d}, J$ $=4.6 \mathrm{~Hz}, 2 \mathrm{C}), 120.3(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 119.4,117.0(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 52.0,28.7(3 \mathrm{C}) ;{ }^{31} \mathbf{P} \mathbf{N M R}(243 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-7.77$; IR $\left(\mathrm{cm}^{-1}\right) 3319,2968,1633,1585,1265,1153,968,747$; High Resolution MS (FAB):

4-chlorophenyl phenyl (2-(tert-butylcarbamoyl)phenyl)phosphoramidate (Scheme 3, 4e)

Light yellow liquid ($58 \mathrm{mg}, 64 \%$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.99(\mathrm{~d}$, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,150.3$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}), 149.0,140.9,132.3,130.5,129.7$ (2C), 129.7 (2C), 126.8, $125.3,121.8(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{C}), 121.3,120.6(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 120.3(\mathrm{~d}, J=$ $4.9 \mathrm{~Hz}, 2 \mathrm{C}), 119.3,52.1,28.7$ (3C); ${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-7.84$; IR $\left(\mathrm{cm}^{-1}\right) 3318,2969,1636,1534,1266,1188,1071,940,753$; High Resolution MS (FAB): Calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$: 459.1240, Found: 459.1237.
N-tert-butyl-2-((5,5-dimethyl-2-oxido-1,3,2-dioxaphosphinan-2-yl)amino)benzamide (Scheme 3, 4f)

Brown solid ($45 \mathrm{mg}, 66 \%$); m.p. $144-146{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.58(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 1 \mathrm{H})$, $7.34-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}), 4.07-4.02(\mathrm{~m}, 2 \mathrm{H})$, $4.00-3.93(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.0,141.4(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 132.4,126.9,120.8,120.1(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 119.3,77.4(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 2 \mathrm{C}), 52.0,32.4(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 28.7(3 \mathrm{C}), 21.7,20.7 ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.74$; IR (cm^{-1}) 3348, 3066, 2976, 2962, 1634, 1479, 1192, 1053, 954, 750; High Resolution MS (EI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}]^{+}: 340.1552$, Found: 340.1548 .

Bis(4-methoxyphenyl) (2-(tert-butylcarbamoyl)phenyl)phosphoramidate (Scheme 3, 4g)

Brown viscous liquid ($74 \mathrm{mg}, 76 \%$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.83(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.32$ $(\mathrm{m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.6,156.8,144.1(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{C}), 141.2,132.2$, $126.8,121.3(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 4 \mathrm{C}), 121.0,120.6(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 119.3$ (2C), 114.6 (4C), 55.5 (2C), 52.0, 28.7 (3C); ${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-6.95$; IR (cm^{-1}) 3309,

2965, 1635, 1596, 1250, 1176, 939, 751; High Resolution MS (FAB): Calculated for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}$ $[\mathrm{M}+\mathrm{H}]^{+}: 485.1842$, Found: 485.1838.
N-(tert-butyl)-2-((4-oxidodinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-yl)amino)benzamide (Scheme 3, 4h)

Light brown solid (103 mg, 99\%); m.p. $244-246{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 10.04(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.75$ (d, $J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.37(\mathrm{~m}$, $4 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.05-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 1.34(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 168.4147 .3(\mathrm{~d}, J=10.8 \mathrm{~Hz}), 146.0(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 141.0(\mathrm{~d}, J=$ $4.2 \mathrm{~Hz}), 132.4,132.3(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{C}), 131.9,131.7,131.2(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{C}), 128.4(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, 2C), 127.0, 126.9, $126.8,126.7(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{C}), 125.7(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{C}), 121.7,121.6(\mathrm{~d}, J=1.8$ $\mathrm{Hz}), 121.2,120.8(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 120.2,120.2(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 119.6,51.9,28.3(3 \mathrm{C}) ;{ }^{31} \mathbf{P} \mathbf{N M R}(243$ $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.52$; IR (cm^{-1}) 3318, 3051, 2963, 1540, 1272, 1204, 961, 747; High Resolution MS (EI): Calculated for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}]^{+}: 522.1708$, Found: 522.1707.
(1R,2R,5R)-5-Isopropyl-2-methylcyclohexyl phenyl (2-(tert-butylcarbamoyl)phenyl)phosphoramidate (Scheme 4, 5a)

White solid (43 mg, 44\%); m.p. $78-80^{\circ} \mathrm{C}$; Mixture of diastereomers (major : minor $=2: 1$); Major : ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.49(\mathrm{~d}, J$ $=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.22$ $(\mathrm{m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.85(\mathrm{~m}$, $1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 4.43-4.34(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 2 \mathrm{H})$, $1.42(\mathrm{~s}, 9 \mathrm{H}), 1.47-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.15(\mathrm{~m}, 1 \mathrm{H}), 1.03-0.95(\mathrm{~m}, 1 \mathrm{H}), 0.85-0.80(\mathrm{~m}, 1 \mathrm{H}), 0.86$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.74(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $168.7,150.9(J=6.9 \mathrm{~Hz}), 141.7(J=2.3 \mathrm{~Hz}), 132.0,129.4(2 \mathrm{C}), 126.6,124.7,120.6(J=9.9 \mathrm{~Hz}), 120.5$, $120.4(J=4.7 \mathrm{~Hz}, 2 \mathrm{C}), 119.3(J=2.3 \mathrm{~Hz}), 79.8(J=6.4 \mathrm{~Hz}), 51.9,48.5(J=7.5 \mathrm{~Hz}), 42.3,34.0,31.5$, 28.7 (3C), 25.3, 22.8, 21.9, 20.9, 15.5; ${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.22$; Minor : ${ }^{1} \mathbf{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.55(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}$, $2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.85(\mathrm{~m}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 4.43-4.34(\mathrm{~m}$, $1 \mathrm{H}), 2.30-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.47-1.33(\mathrm{~m}, 2 \mathrm{H})$, $1.21-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.03-0.95(\mathrm{~m}, 1 \mathrm{H}), 0.85-0.80(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 0.72(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.7,150.8(J=6.9 \mathrm{~Hz}), 141.8(J$ S13
$=2.3 \mathrm{~Hz}), 132.0,129.5(2 \mathrm{C}), 126.5,124.7,120.5,120.4(J=4.7 \mathrm{~Hz}, 2 \mathrm{C}), 120.3(J=9.9 \mathrm{~Hz}), 119.2(J$ $=2.3 \mathrm{~Hz}), 79.9(J=6.4 \mathrm{~Hz}), 51.9,48.4(J=7.5 \mathrm{~Hz}), 42.7,34.0,31.5,28.7(3 \mathrm{C}), 25.5,22.8,21.9,20.9$, 15.6; ${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.68$; IR (cm^{-1}) 3304, 2926, 1639, 1596, 1257, 1162, 942, 753;

High Resolution MS (EI): Calculated for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}]^{+}: 486.2647$, Found: 486.2646.
(3S,5S,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl phenyl (2-(tert-butylcarbamoyl)phenyl)phosphoramidate (1R,2R,5R)-5-Isopropyl-2-methylcyclohexyl phenyl (2-(tert-butylcarbamoyl)phenyl)phosphoramidate (Scheme 4, 5b)

White solid ($85 \mathrm{mg}, 59 \%$); m.p. $103-105{ }^{\circ} \mathrm{C} ; 1: 1$ Mixture of diastereomers; ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.52-9.46(\mathrm{~m}$, $1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23$ $(\mathrm{m}, 2 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.86$ $(\mathrm{m}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 4.52-4.45(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 2 \mathrm{H})$, $1.83-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.47(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.40(\mathrm{~m}$, $1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.37-1.27(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.17(\mathrm{~m}, 4 \mathrm{H}), 1.15-0.91(\mathrm{~m}, 11 \mathrm{H}), 0.88(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H}), 0.62(\mathrm{~s}, 3 \mathrm{H}), 0.61-0.56(\mathrm{~m}, 1 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.7,[150.8(J=7.0 \mathrm{~Hz})+150.8(J=7.0 \mathrm{~Hz})],[141.7(J=2.3 \mathrm{~Hz})+$ $141.6(J=2.3 \mathrm{~Hz})],[132.1+132.0], 129.5(2 \mathrm{C}), 126.7,124.7,120.5(J=9.5 \mathrm{~Hz}), 120.5,120.4(J=4.5$ $\mathrm{Hz}, 2 \mathrm{C}),[119.2(J=2.3 \mathrm{~Hz})+119.2(J=2.3 \mathrm{~Hz})],[78.6(J=5.8 \mathrm{~Hz})+78.6(J=5.8 \mathrm{~Hz})], 56.4,56.3$, $[54.2+54.1], 51.9,44.7,42.6,39.9,39.5,[36.8+36.8], 36.1,[35.9(J=4.0 \mathrm{~Hz})+35.8(J=4.0 \mathrm{~Hz})]$, $35.7,35.4,35.3,31.9,[29.4(J=4.6 \mathrm{~Hz})+29.3(J=4.6 \mathrm{~Hz})], 28.7(3 \mathrm{C}), 28.5,28.2,28.0,24.2,23.8$, 22.8, 22.5, 21.2, 18.6, [12.2 + 12.2], 12.1; ${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.17$; IR (cm^{-1}) 3296, 2929, 1638, 1595, 1164, 928, 752; High Resolution MS (FAB): Calculated for $\mathrm{C}_{44} \mathrm{H}_{67} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}$: 719.4917, Found: 719.4914.

2. Ir-Catalyzed Amination of Ketones with Azides (Scheme 2, 3f-3m)

To a screw capped vial with a spinvane triangular-shaped Teflon stir bar were added ketone (0.20 mmol), azide (0.24 mmol), $\left[\mathrm{IrCp}^{*} \mathrm{Cl}_{2}\right]_{2}(8.0 \mathrm{mg}, 0.010 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{AgNTf}_{2}(16 \mathrm{mg}, 0.040 \mathrm{mmol}$, $20 \mathrm{~mol} \%), \mathrm{LiCO}_{3}(2.2 \mathrm{mg}, 0.030 \mathrm{mmol}, 15 \mathrm{~mol} \%), \mathrm{AcOH}(1.8 \mathrm{mg}, 0.030 \mathrm{mmol}, 15 \mathrm{~mol} \%)$ and $1,2-$ dichloroethane (0.50 mL) under atmospheric conditions. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h , filtered through a pad of celite and then washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3$). Organic solvents were removed under reduced pressure and the residue was purified by chromatography on silica gel (n hexane/ EtOAc or n-hexane $/ \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the desired product.

Diphenyl (2-pivaloylphenyl)phosphoramidate (Scheme 2, 3f)

Colorless liquid ($75 \mathrm{mg}, 91 \%$); ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.07(\mathrm{~d}, J=$ $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}$, 1H), $7.33-7.28$ (m, 4H), 7.26 - 7.22 (m, 4H), $7.19-7.14$ (m, 2H), 7.03 - $6.98(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.0,150.4$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{C}$), 140.7 (d, $J=1.3 \mathrm{~Hz}$), 132.7, 129.8 (4C), 129.7, 125.3 (2C), 123.4 (d, $J=8.8 \mathrm{~Hz}$), 120.5, 120.3 (d, $J=4.8 \mathrm{~Hz}, 4 \mathrm{C}), 120.0$ (d, $J=1.9 \mathrm{~Hz}$), 45.1, 28.6 (3C); ${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-8.18$; IR (cm^{-1}) 3068 , 2969, 1637, 1487, 1450, 1388, 1281, 1184, 936, 756; High Resolution MS (EI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{P}[\mathrm{M}]^{+}: 409.1443$, Found: 409.1445 .

Diphenyl (2-acetylphenyl)phosphoramidate (Scheme 2, 3g)

White solid ($72 \mathrm{mg}, 98 \%$); m.p. $88-90^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $10.63(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H})$, $7.15(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.2,150.4(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{C}), 142.7,135.0,132.0,129.8$
(4C), 125.3 (2C), 121.2 (d, $J=9.2 \mathrm{~Hz}), 120.9,120.3$ (d, $J=4.7 \mathrm{~Hz}, 4 \mathrm{C}), 118.9$ (d, $J=1.6 \mathrm{~Hz}$), 28.1;
${ }^{31} \mathbf{P}$ NMR $\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-8.53$; IR $\left(\mathrm{cm}^{-1}\right) 3059,1646,1485,1181,941$, 759; High Resolution MS (EI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{P}[\mathrm{M}]^{+}: 367.0973$, Found: 367.0974.

Diphenyl (2-benzoylphenyl)phosphoramidate (Scheme 2, 3h)

Yellow liquid (48 mg, 55\%); ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.76(\mathrm{~d}, J=$ $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.50$ $(\mathrm{m}, 3 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 8 \mathrm{H}), 7.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.01 - $6.96(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.5,150.4(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{C}), 142.7,138.6,134.4,134.3,132.1,129.8$ (4C), 129.6 (2C), $128.2(2 \mathrm{C}), 125.4(2 \mathrm{C}), 122.2(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 120.6,120.3(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 4 \mathrm{C}), 119.2(\mathrm{~d}, J=1.3 \mathrm{~Hz})$; ${ }^{31} \mathbf{P}$ NMR $\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-8.40$; IR $\left(\mathrm{cm}^{-1}\right) 3062,1630,1486,1282,1183,934,750$; High Resolution MS (EI): Calculated for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{P}[\mathrm{M}]^{+}: 429.1130$, Found: 429.1127.

Diphenyl (2-acetyl-5-methoxyphenyl)phosphoramidate (Scheme 2, 3i)

White solid (79 mg, 99\%); m.p. $83-85^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $11.02(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=8.9,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}$, $4 \mathrm{H}), 7.26(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.16(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{dd}, J=8.9,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.6$, $164.6,150.4$ ($\mathrm{d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{C}$), 145.5, 134.0, 129.8 (4C), 125.4 (2C), 120.3 $(\mathrm{d}, J=4.8 \mathrm{~Hz}, 4 \mathrm{C}), 115.1(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 108.0,102.7,55.5,27.7 ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ 8.55; IR (cm^{-1}) 3068, 2941, 1634, 1488, 1270, 1187, 933, 756; High Resolution MS (EI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{P}[\mathrm{M}]^{+}: 397.1079$, Found: 397.1078.

Ethyl 4-acetyl-3-((diphenoxyphosphoryl)amino)benzoate (Scheme 2, 3j)

Yellow liquid ($57 \mathrm{mg}, 65 \%$); ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.50(\mathrm{~d}$, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=8.2,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.67(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.26(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.17(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{~s}$, $3 \mathrm{H}), 1.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.9$, $165.2,150.3(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{C}), 142.5,135.8,131.9,129.8(4 \mathrm{C}), 125.4(2 \mathrm{C}), 123.7(\mathrm{~d}, J=8.6 \mathrm{~Hz})$, $121.5,120.3(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{C}), 119.92(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 61.7,28.4,14.2 ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta-9.16$; IR (cm^{-1}) 3069, 2982, 1719, 1655, 1487, 1300, 1234, 1184, 933, 763; High Resolution MS (EI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{6} \mathrm{P}[\mathrm{M}]^{+}: 439.1185$, Found:439.1183.

Diphenyl (2-acetyl-5-bromophenyl)phosphoramidate (Scheme 2, 3k)

Colorless solid ($71 \mathrm{mg}, 80 \%$); m.p. $116-118{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.67(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J$ $=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.18(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.5,150.2(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{C}), 143.9,133.0,129.9,129.9$ (4C), 125.5 (2C), $124.2,121.9(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 120.3(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 4 \mathrm{C}), 119.9(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 28.1$; ${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-9.34$; IR (cm^{-1}) 3069, 1641, 1488, 1283, 1183, 928, 753; High Resolution MS (EI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrNO}_{4} \mathrm{P}[\mathrm{M}]^{+}: 445.0079$, Found: 445.0078.

Diphenyl (4-oxo-4H-chromen-5-yl)phosphoramidate (Scheme 2, 31)

Brown liquid ($60 \mathrm{mg}, 76 \%$); ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.31$ (d, $J=11.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 4 \mathrm{H})$, $7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.17(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{~d}$, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.4,157.5,154.9,150.34$ (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{C}), 142.7(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 134.6,129.8$ (4C), 125.4 (2C), 120.3 $(\mathrm{d}, J=4.8 \mathrm{~Hz}, 4 \mathrm{C}), 112.8(2 \mathrm{C}), 112.3(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 109.9 ;{ }^{31} \mathbf{P} \mathbf{N M R}\left(243 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-8.89$; IR $\left(\mathrm{cm}^{-1}\right) ; 3067,1638,1483,1262$, 1183, 931,760; High Resolution MS (EI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NO}_{5} \mathrm{P}$ $[\mathrm{M}]^{+}: 393.0766$, Found: 393.0767.

Diphenyl (4-oxo-2-phenyl-4H-chromen-5-yl)phosphoramidate (Scheme 2, 3m)

Light yellow solid (84 mg, 90\%); m.p. $140-142{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.49(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.17(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 182.0,163.1,157.3(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 150.4(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{C})$, $142.6(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 134.6,131.9,131.0,129.8$ (4C), 129.1 (2C), 126.3 (2C), 125.4 (2C), $120.4(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{C}), 112.8(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 111.3(\mathrm{~d}, J=10.4 \mathrm{~Hz}), 109.8,107.2$;
${ }^{31} \mathbf{P}$ NMR (243 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-8.72$; IR (cm^{-1}) 3059, 1632, 1484, 1282, 1183, 931, 766; High Resolution MS (EI): Calculated for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{P}[\mathrm{M}]^{+}: 469.1079$, Found: 469.1078.

3. Ir-Catalyzed Amination of Pyridines with Azides (Scheme 2, 3n-3s \& 3u)

To a screw capped vial with a spinvane triangular-shaped Teflon stir bar were added ketone (0.20 $\mathrm{mmol})$, azide $(0.24 \mathrm{mmol}),\left[\mathrm{IrCp}^{*} \mathrm{Cl}_{2}\right]_{2}(8.0 \mathrm{mg}, 0.010 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{AgNTf}_{2}(16 \mathrm{mg}, 0.040 \mathrm{mmol}$, $20 \mathrm{~mol} \%)$ and 1,2-dichloroethane $(0.50 \mathrm{~mL})$ under atmospheric conditions. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h , filtered through a pad of celite and then washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. Organic solvents were removed under reduced pressure and the residue was purified by chromatography on silica gel (n-hexane/EtOAc or n-hexane/ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the desired product.

Diphenyl (2-(pyridin-2-yl)phenyl)phosphoramidate (Scheme 2, 3n)

Brown liquid ($45 \mathrm{mg}, 56 \%$); ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 11.60(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.71(\mathrm{~m}$, $3 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.19-$ $7.14(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 157.5$, 150.6 (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{C}$), 146.9, 139.4, 137.7, 130.3, 129.6 (4C), 128.7, $125.1(2 \mathrm{C}), 123.9(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 122.0,121.9,121.8,120.3(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 4 \mathrm{C}), 119.5 ;{ }^{31} \mathbf{P}$ NMR (243 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta-7.50$; IR (cm^{-1}) 3062, 1487, 1185, 931, 751; High Resolution MS (ESI): Calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}: 425.1031$, Found: 425.1021.

Diphenyl (5-methoxy-2-(pyridin-2-yl)phenyl)phosphoramidate (Scheme 2, 3o)

Yellow liquid ($59 \mathrm{mg}, 68 \%$); ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.09(\mathrm{~d}, J=$ $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.61(\mathrm{~m}$, $2 \mathrm{H}), 7.30(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 8 \mathrm{H}), 7.16-7.07(\mathrm{~m}, 3 \mathrm{H})$, $6.62(\mathrm{dd}, J=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.1,157.6,150.6(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{C}), 146.7,141.3,137.3,129.6(4 \mathrm{C})$,
$129.6,125.1(2 \mathrm{C}), 120.9,120.8,120.4(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 4 \mathrm{C}), 116.6(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 108.2,104.4(\mathrm{~d}, J=$ 1.6 Hz), 55.34; ${ }^{31}$ P NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-7.69$; IR (cm^{-1}) 3065, 1487, 1277, 1185, 929, 771; High Resolution MS (EI): Calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}]^{+}: 432.1239$, Found: 432.1237.

Diphenyl (2-(pyridin-2-yl)-5-(trifluoromethyl)phenyl)phosphoramidate (Scheme 2, 3p)

Colorless liquid ($71 \mathrm{mg}, 75 \%$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.69$ (d, J $=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.80(\mathrm{~m}, 1 \mathrm{H})$, $7.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.4,150.4(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{C}), 147.3,140.0$, $137.8,132.0(\mathrm{q}, J=32.4 \mathrm{~Hz}), 129.7(4 \mathrm{C}), 129.1,126.6(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 125.2(2 \mathrm{C}), 123.73(\mathrm{q}, J=$ $272.5 \mathrm{~Hz}), 122.6,122.3,120.3(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 4 \mathrm{C}), 118.1(\mathrm{q}, J=3.6 \mathrm{~Hz}), 116.4 ;{ }^{31} \mathbf{P} \mathbf{N M R}(243 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-8.52$; IR $\left(\mathrm{cm}^{-1}\right) 3065,1488,1333,1185,931,771$; High Resolution MS (EI): Calculated for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}]^{+}: 470.1007$, Found: 470.1005.

Diphenyl (5-methyl-2-(pyridin-2-yl)phenyl)phosphoramidate (Scheme 2, 3q)

Colorless liquid ($67 \mathrm{mg}, 80 \%$) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.77(\mathrm{~d}, J$ $=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 8 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 3 \mathrm{H})$, $6.88(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.7$, 150.7 ($\mathrm{d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{C}$), 146.9, 140.7, 139.5, 137.3, 129.6 (4C), 128.5, $125.1(2 \mathrm{C}), 122.8,121.4,121.3,121.1(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 120.4(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 4 \mathrm{C}), 120.1,21.6 ;{ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-7.44$; IR (cm^{-1}) 3059, 2950, 1274, 1185, 927, 753; High Resolution MS (EI): Calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}]^{+}: 416.1290$, Found: 416.1287.

Diphenyl (5-formyl-2-(pyridin-2-yl)phenyl)phosphoramidate (Scheme 2, 3r)

129.7, 129.3, $128.8(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 125.3(2 \mathrm{C}), 122.7(\mathrm{~d}, J=13.5 \mathrm{~Hz}), 121.9,121.1,120.3(\mathrm{~d}, J=4.6$
$\mathrm{Hz}, 4 \mathrm{C}) ;{ }^{31} \mathbf{P}$ NMR (243 MHz, CDCl_{3}) $\delta-8.21$; IR (cm^{-1}) 3062, 2849, 1693, 1486, 1184, 926, 766; High Resolution MS (ESI): Calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}: 453.0980$, Found: 453.0995.

Diphenyl benzo[h]quinolin-10-ylphosphoramidate (Scheme 2, 3s)

Yellow solid (51 mg, 60\%); m.p. $113-115{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 14.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.78-8.71(\mathrm{~m}, 1 \mathrm{H}), 8.19-8.14(\mathrm{~m}$, $1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.65(\mathrm{~m}$, $1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}$, $1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.11(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.8(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{C}), 147.8,145.5,140.7,136.3,135.4,129.7$ (4C), 129.1, 128.8, 127.1, 125.3, 125.1 (2C), 121.2, 120.8, 120.5 (d, $J=4.5 \mathrm{~Hz}, 4 \mathrm{C}), 117.1$ (d, $J=$ $10.4 \mathrm{~Hz}), 116.0(\mathrm{~d}, J=3.2 \mathrm{~Hz}) ;{ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-7.45$; IR ($\left.\mathrm{cm}^{-1}\right) 3429,3241,1485$, 1188, 950, 755; High Resolution MS (EI): Calculated for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}]^{+}: 426.1133$, Found: 426.1130 .

Diphenyl (quinolin-8-ylmethyl)phosphoramidate (Scheme 2, 3u)

Yellow solid ($32 \mathrm{mg}, 41 \%$); m.p. $81-83{ }^{\circ} \mathbf{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.85-8.82(\mathrm{~m}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{dd}, J=$ $7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 2 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H})$, $4.80-4.74(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.8(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{C}), 149.2,129.4$ (4C), 136.7, 136.5, 128.8, 128.4, 127.6 (2C), 126.4, 124.6 (2C), 121.1, 120.2 ($\mathrm{d}, J=4.7 \mathrm{~Hz}, 4 \mathrm{C}$), 44.0; ${ }^{31} \mathbf{P}$ NMR ($243 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.54$; IR (cm^{-1}) 3216, 2063, 2922, 1589, 1487, 1189, 924, 766; High Resolution MS (EI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}[\mathrm{M}]^{+}: 390.1133$, Found: 390.1135

VI. Experimental Procedures of Mechanistic Studies

Kinetic Isotope Effects: Initial Rate Comparison Test

To a J-Young NMR tube were added N-tert-butylbenzamide (1a, $35 \mathrm{mg}, 0.20 \mathrm{mmol}$) or N-tert-butyl-d_{5}-benzamide ($\mathbf{1 a}-d_{5}, 37 \mathrm{mg}, 0.20 \mathrm{mmol}$), diphenyl phosphoryl azide ($52 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$), $\left[\mathrm{IrCp}^{*} \mathrm{Cl}_{2}\right]_{2}$ $(8.0 \mathrm{mg}, 0.010 \mathrm{mmol}, 5.0 \mathrm{~mol} \%), \mathrm{AgNTf}_{2}(16 \mathrm{mg}, 0.040 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{NaOAc}(4.9 \mathrm{mg}, 0.060$ $\mathrm{mmol}, 30 \mathrm{~mol} \%)$ and 1,2-dichloroethane $\left(d_{4}\right)(0.5 \mathrm{~mL})$ under atmospheric conditions. The NMR tube was gently shaken to insure through mixing and started to measure its conversion over 190 min at 25 ${ }^{\circ} \mathrm{C}$ using an internal standard (dibromomethane). The KIE value ($k_{\mathrm{H}} / k_{\mathrm{D}}=2.7$) was determined by comparing the relative initial rates.

Figure S1. Initial rate of N-tert-butylbenzamide (1a, blue diamond) or N-tert-butylbenzamide- d_{5} (1ad_{5}, red square).

VII. References

(1) Ryu, J.; Shin, K.; Park, S. H.; Kim, J. Y.; Chang, S. Angew. Chem., Int. Ed. 2012, 51, 9904.
(2) Kim, J. Y.; Park, S. H.; Ryu, J.; Cho, S. H.; Kim, S. H; Chang, S. J. Am. Chem. Soc. 2012, 134, 9110.
(3) Kim, S. H.; Jung, D. Y.; Chang S. J. Org. Chem. 2007, 72, 9769.

Appendix I

Spectral Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR of
Compounds Obtained in this Study

Ethyl phenyl phosphorazidate

Ethyl (4-methoxyphenyl) phosphorazidate

Naphthalen-2-yl phenyl phosphorazidate

4-Chlorophenyl phenyl phosphorazidate

$\begin{array}{lllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$
$\stackrel{N}{\circ}$
$\stackrel{0}{i}$
i

(1R,2R,5R)-5-Isopropyl-2-methylcyclohexyl phenyl phosphorazidate

(3S,5S,8R,9S,10S,13R,14S,17R)-10,13-Dimethyl-17-((R)-6-methylheptan-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl phenyl phosphorazidate

$\begin{array}{lllllllllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

Diphenyl (2-(tert-butylcarbamoyl)phenyl)phosphoramidate (Scheme 2, 3a)

Diphenyl (2-(tert-butylcarbamoyl)-5-methoxyphenyl)phosphoramidate (Scheme 2, 3b)

[^0]Diphenyl (2-(tert-butylcarbamoyl)-5-(trifluoromethyl)phenyl)phosphoramidate (Scheme 2, 3c)

Diphenyl (2-(tert-butylcarbamoyl)-3-fluorophenyl)phosphoramidate (Scheme 2, 3d)

ois

Diphenyl (2-(((3s,5s,7s)-adamantan-1-yl)carbamoyl)phenyl)phosphoramidate (Scheme 2, 3e)

Diphenyl (2-pivaloylphenyl)phosphoramidate (Scheme 2, 3f)

$\stackrel{\infty}{\infty}$

Diphenyl (2-acetylphenyl)phosphoramidate (Scheme 2, 3g)

Diphenyl (2-benzoylphenyl)phosphoramidate (Scheme 2, 3h)

$\underset{i}{\circ}$

[^1]Diphenyl (2-acetyl-5-methoxyphenyl)phosphoramidate (Scheme 2, 3i)

$\stackrel{\sim}{\infty}$

Ethyl 4-acetyl-3-((diphenoxyphosphoryl)amino)benzoate (Scheme 2, 3j)

Diphenyl (2-acetyl-5-bromophenyl)phosphoramidate (Scheme 2, 3k)

Diphenyl (4-oxo-4H-chromen-5-yl)phosphoramidate (Scheme 2, 31)

Diphenyl (4-oxo-2-phenyl-4H-chromen-5-yl)phosphoramidate (Scheme 2, 3m)

Diphenyl (2-(pyridin-2-yl)phenyl)phosphoramidate (Scheme 2, 3n)

Diphenyl (5-methoxy-2-(pyridin-2-yl)phenyl)phosphoramidate (Scheme 2, 30)

+

Diphenyl (2-(pyridin-2-yl)-5-(trifluoromethyl)phenyl)phosphoramidate (Scheme 2, 3p)

Diphenyl (5-methyl-2-(pyridin-2-yl)phenyl)phosphoramidate (Scheme 2, 3q)

Diphenyl (5-formyl-2-(pyridin-2-yl)phenyl)phosphoramidate (Scheme 2, 3r)

Diphenyl benzo[h]quinolin-10-ylphosphoramidate (Scheme 2, 3s)

Diphenyl (1-acetylindolin-7-yl)phosphoramidate (Scheme 2, 3t)

Diphenyl (quinolin-8-ylmethyl)phosphoramidate (Scheme 2, 3u)

Diethyl (2-(tert-butylcarbamoyl)phenyl)phosphoramidate (Scheme 3, 4a)

Ethyl phenyl (2-(tert-butylcarbamoyl)phenyl)phosphoramidate (Scheme 3, 4b)

Ethyl (4-methoxyphenyl) (2-(tert-butylcarbamoyl)phenyl)phosphoramidate (Scheme 3, 4c)

Naphthalen-2-yl phenyl (2-(tert-butylcarbamoyl)phenyl)phosphoramidate (Scheme 3, 4d)

4-chlorophenyl phenyl (2-(tert-butylcarbamoyl)phenyl)phosphoramidate (Scheme 3, 4e)

N-tert-butyl-2-((5,5-dimethyl-2-oxido-1,3,2-dioxaphosphinan-2-yl)amino)benzamide (Scheme 3, 4f)

Bis(4-methoxyphenyl) (2-(tert-butylcarbamoyl)phenyl)phosphoramidate (Scheme 3, 4g)

io

N-(tert-butyl)-2-((4-oxidodinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-yl)amino)benzamide (Scheme 3, 4h)

$\stackrel{\text { L }}{\infty}$
$\begin{array}{lllllllllllllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 \\ f 1 & (\mathrm{ppm}) & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40\end{array}$
(1R,2R,5R)-5-Isopropyl-2-methylcyclohexyl phenyl (2-(tert-butylcarbamoyl)phenyl)phosphoramidate (Scheme 4, 5a)

(3S,5S,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl phenyl (2-(tert-butylcarbamoyl)phenyl)phosphoramidate (1R,2R,5R)-5-Isopropyl-2-methylcyclohexyl phenyl (2-(tert-butylcarbamoyl)phenyl)phosphoramidate (Scheme 4, 5b)

[^2]
[^0]: $\begin{array}{llllllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^1]: $\begin{array}{llllllllllllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40\end{array}$

[^2]:

