A Facile Access to Enantioenriched Isoindolines via One-Pot Sequential Cu(I)-Catalyzed Asymmetric 1,3-DipolarCycloaddition/OxidationZhao-Lin He, Tang-Lin Liu, Haiyan Tao, and Chun-Jiang Wang*
Table of Contents
I. General Remarks S2
II. Ligand Screening for one pot and sequential catalytic asymmetric 1,3-DC/ oxidation reaction S2-S3
III. General Procedure for $\mathrm{Cu}(\mathrm{I}) /\left(S, R_{p}\right)$-PPFOMe-Catalyzed Asymmetric 1,3- Dipolar Cycloaddition/ Oxidation S3-S16
IV. The Absolute Configuration Determination of $(1 R, 3 R)-\mathbf{5 b}$ S16
V. Proposed Relative Configuration of Intermediate in This One-Pot Sequential Catalytic Asymmetric 1,3-DC/Oxidation S17-S18
VI. The Relative Configuration Determination of Racemic endo-9 S19
VII. References S19
VIII. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra S20-S62
IX. HPLC Chromatograms S63-S102

I. General Remarks.

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a VARIAN Mercury 300 MHz or Bruker 400 MHz spectrometer in $\mathrm{CDCl}_{3} .{ }^{13} \mathrm{C}$ NMR spectra were recorded on a VARIAN Mercury 75 MHz or Bruker 100 MHz spectrometer in CDCl_{3}. Commercially obtained reagents were used without further purification. All reactions were monitored by TLC with silica gel-coated plates. Diastereomeric ratios were determined from crude ${ }^{1} \mathrm{H}$ NMR or HPLC analysis. Enantiomeric excesses were determined by HPLC, using a chiralpak AD-H column, a chiralpak AS-H column or a chiralcel OD-H column with hexane and i-PrOH as solvents. $\left(S, R_{p}\right)$-L6 were prepared according to the literature procedure. ${ }^{1}$ The racemic adducts were attained by using $\mathrm{Cu}(\mathrm{CN})_{4} \mathrm{BF}_{4} / \mathrm{PPh}_{3}$ as the catalyst. The absolute $(1 R, 3 R)-5 \mathbf{b}$ achieved by $\mathrm{Cu}(\mathrm{CN})_{4} \mathrm{BF}_{4} /\left(S, R_{p}\right)$-PPFOMe was determined unequivocally according to the X-ray diffraction analysis, and those of other adducts were deduced on the basis of these results. ${ }^{2}$

II. Ligand Screening for One Pot and Sequential Catalytic Asymmetric

1,3-DC/Oxidation Reaction

(S)-TF-BiphamPhos

L1: R = H; L2: R = Br

Scheme 1. Screened chiral ligands.

 2	$\begin{gathered} \mathrm{i} /[\mathrm{M}] / \mathrm{L}(3 \mathrm{~mol} \%) \\ \mathrm{Et}_{3} \mathrm{~N}(15 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt} \\ \hline \mathrm{ii} / \text { Silica gel } \end{gathered}$			 $5 a$	 dr)
entry	L	[M]	time/h	yield (\%) ${ }^{\text {b }}$	ee (\%) ${ }^{\text {c }}$
1	L1	AgOAc	6	81	20
2	L1	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}$	6	87	9
3	L2	AgOAc	6	86	27
4	L2	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}$	6	85	37
5	L3	AgOAc	4	76	9
6	L3	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}$	4	85	71
7	L4	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}$	4	69	69
8	L5	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}$	4	74	22
9	L6	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}$	4	85	78
10	L7	AgOAc	12	31	2
11	L7	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}$	12	34	4
12	L8	AgOAc	4	65	7
13	L8	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}$	4	50	13
14	L9	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}$	4	70	66
15	L10	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}$	4	71	51
16	L11	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}$	4	82	14
17	L12	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}$	4	78	63
18	L13	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}$	4	67	71
19	L14	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}$	4	75	37
20	L15	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}$	4	82	65
21	L16	$\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}$	4	78	13

${ }^{a}$ All reactions were carried out with 0.26 mmol of $\mathbf{4 a}$ and 0.20 mmol of $\mathbf{2}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{b}$ Isolated yield. ${ }^{c}$ Determined by HPLC analysis.

III. General Procedure for $\mathbf{C u}(\mathbf{I}) /\left(S, R_{p}\right)$-PPFOMe-Catalyzed Asymmetric 1,3-

Dipolar Cycloaddition/Oxidation

Under argon atmosphere, (S, R_{p})-PPFOMe ($3.1 \mathrm{mg}, 0.0072 \mathrm{mmol}$) and $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}(1.9 \mathrm{mg}, 0.006 \mathrm{mmol})$ were dissolved in toluene (2 mL), and stirred at room temperature for about 1 h . Then, imine substrate (0.26 mmol), and naphthoquione (0.2 mmol) were added sequentially, after that the mixture was dropped to $-20^{\circ} \mathrm{C}$, TEA ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was added. Once starting material was
consumed (monitored by TLC), The reaction mixture was treated with silica gel for a short time, then the organic solvent was removed and the residue was purified by column chromatography to give the product, which was then directly analyzed by chiral HPLC to determine the enantiomeric excess.

(1R,3R)-methyl 1-benzyl-4,9-dioxo-3-phenyl-2,3,4,9-tetrahydro-1H-benzo[f] isoindole-1-carboxylate

The title compound was prepared according to the general procedure as described above in 86% yield. m.p. $118-121{ }^{\circ} \mathrm{C} ;[\alpha]^{25}=+128.2$ (c 1.36, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 300 \mathrm{MHz}\right) \delta 8.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.76-7.68 (m, 2H), 7.34-7.15 (m, 10H), 4.88 ($\mathrm{s}, 1 \mathrm{H}$), 3.85 ($\mathrm{s}, 3 \mathrm{H}$), 3.63 (d, $J=14.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.46(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.80(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 75 \mathrm{MHz}\right)$ $\delta 182.4,181.6,172.6,150.6,146.4,141.2,135.6,133.8,132.7,130.3,128.4,128.2$, 127.9, 127.7, 127.1, 126.4, 126.3, 75.4, 67.1, 52.9, 41.9; ${ }^{13}$ C NMR (DMSO-d ${ }_{6}$, TMS, $100 \mathrm{MHz}) \delta 182.0,180.8,171.8,149.6,146.4,142.2,135.8,134.4,134.3,131.8$, 131.6, 129.7, 127.8, 127.7, 127.1, 126.6, 125.9, 125.8, 74.5, 66.4, 52.3, 40.7; IR (KBr) $v 3382,3061,3026,2957,2848,2167,1740,1635,1593,1494,1454,1635,1297$, 1247, 1045, 909, 774, 736, $702 \mathrm{~cm}^{-1}$. HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO}_{4}{ }^{+}: 424.1543$, found 424.1537. The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (Chiralpak AS-H, i-propanol/hexane $=20 / 80$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}) ; \mathrm{t}_{\mathrm{r}}=11.59$ and 33.88 min .

(1R,3R)-methyl 1-benzyl-3-(4-chlorophenyl)-4,9-dioxo-2,3,4,9-tetrahydro-1H-

benzo[f]isoindole-1-carboxylate

The title compound was prepared according to the general procedure as described above in 89% yield. m.p. $112-115{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+97.4$ (c $1.60, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 300 \mathrm{MHz}\right) \delta 8.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.79-7.68 (m, 2H), 7.31-7.19 (m, 7H), $7.12(\mathrm{~m}, 2 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.63$ $(\mathrm{d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 75 \mathrm{MHz}\right) \delta$ $182.3,181.5,172.5,150.0,146.4,139.8,135.4,133.9,133.6,132.6,130.7,130.2$, $129.2,128.5,128.3,127.6,127.1,126.5,126.3,75.3,66.3,52.9,41.6$; IR (KBr) v 3380, 1741, 1667, 1637, 1594, 1491, 1339, 1219, 1089, $704 \mathrm{~cm}^{-1}$. HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{ClNO}_{4}^{+}: 458.1154$, found. 458.1148 . The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (Chiralpak AS-H, i-propanol/hexane $=$ $40 / 60$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=8.07$ and 20.86 min .

(1R,3S)-methyl 1-benzyl-3-(2-chlorophenyl)-4,9-dioxo-2,3,4,9-tetrahydro-1H-benzo[f]isoindole-1-carboxylate

The title compound was prepared according to the general procedure as described above in 87% yield. m.p. $129-132{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=+75.4$ (c 1.54, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 300 \mathrm{MHz}\right) \delta 8.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.90-7.71 (m, 2H), 7.35-7.32 (m, 1H), 7.24-7.15 (m, 8H), 5.36 (s, 1H), $3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.63(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, TMS, 75 MHz) δ 182.1, 181.1, 172.2, 150.2, 147.3, 138.6, 135.2, 133.7, 133.1, 132.6, $132.5,130.0,129.3,129.0,128.8,128.2,127.1,127.0,126.4,126.3,75.1,62.6,52.7$, 41.4; ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$, TMS, 100 MHz) δ 181.9, 180.5, 171.7, 149.4, 147.2, 139.6, 135.7, 134.6, 134.5, 132.0, 131.7, 131.6, 129.8, 129.7, 128.8, 128.7, 127.8, 127.2, 126.8, 126.0, 125.9, 74.5, 62.0, 52.4, 40.5; IR (KBr) v 3374, 2951, 2168, 1740,

1637, 1593, 1496, 1474, 1438, 1368, 1340, 1297, 1253, 1050, 906, 798, 755, 742, 705 cm^{-1}. HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{ClNO}_{4}^{+}: 458.1154$, found. 458.1150 . The product was analyzed by HPLC to determine the enantiomeric excess: 94\% ee (Chiralpak AS-H, i-propanol/hexane $=30 / 70$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=8.79$ and 26.77 min.

(1R,3R)-methyl 1-benzyl-3-(3-chlorophenyl)-4,9-dioxo-2,3,4,9-tetrahydro-1H-benzo[f]isoindole-1-carboxylate

The title compound was prepared according to the general procedure as described above in 87% yield. m.p. $176-179{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=+59.0$ (c 1.52, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 300 \mathrm{MHz}\right) \delta 8.15(\mathrm{~m}, 1 \mathrm{H}), 7.88(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~m}$, $1 \mathrm{H})$, 7.21-7.19 (m, 7H), 7.11-7.10 (m, 1H), $4.85(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~d}, J=$ $14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.80(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right.$, $75 \mathrm{MHz}) \delta 182.3,181.4,172.4,149.9,146.5,143.4,135.4,134.2,133.9,132.7,130.2$, $129.5,128.4,128.1,128.0,127.2,126.5,126.4,126.1,75.3,66.5,52.9,41.6 ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$, TMS, 100 MHz) δ 181.9, 180.7, 171.7, 148.9, 146.6, 144.8, 135.7, 134.5, 134.4, 132.4, 131.7, 131.6, 129.6, 127.8, 127.6, 127.1, 126.6, 126.4, 125.9, 125.8, 74.6, 65.8, 52.2, 40.5; IR (KBr) v 3382, 2168, 1741, 1637, 1594, 1433, 1369, 1340, 1297, 1249, 1048, 777, 740, 705, $587 \mathrm{~cm}^{-1}$. HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{ClNO}_{4}{ }^{+}$: 458.1154, found. 458.1146. The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (Chiralpak AS-H, i-propanol/hexane $=30 / 70$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=9.51$ and 31.36 min .

(1R,3R)-methyl 1-benzyl-4,9-dioxo-3-(4-(trifluoromethyl)phenyl)-2,3,4,9-tetrahydro-1 H-benzo[f]isoindole-1-carboxylate

The title compound was prepared according to the general procedure as described above in 87% yield. m.p. $187-190{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=+72.6$ (c 1.84, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 300 \mathrm{MHz}\right) \delta 8.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.80-7.68 (m, 2H), 7.55-7.47 (m, 4H), 7.22-7.10 (m, 5H), 4.92 (s, 1H), 3.86 (s, 3H), $3.65(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, TMS, 100 $\mathrm{MHz}) \delta 182.3,181.5,172.4,149.8,146.7,145.2,135.3,134.0,133.9,132.7,130.2$, $129.9\left(J_{\mathrm{C}-\mathrm{F}}=32.4 \mathrm{~Hz}\right), 128.4,128.3,127.3,126.6,126.4,125.3\left(J_{\mathrm{C}-\mathrm{F}}=3.7 \mathrm{~Hz}\right), 124.0$ $\left(J_{\mathrm{C}-\mathrm{F}}=270.3 \mathrm{~Hz}\right), 75.4,66.6,53.0,41.6$; IR (KBr) v 3384, 2953, 1742, 1668, 1637, $1618,1594,1496,1436,1369,1325,1249,1219,1165,1124,1067,1017,849,735$, 704, $642,601 \mathrm{~cm}^{-1}$. HRMS: calcd. for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{4}{ }^{+}: 492.1409$, found. 492.1417. The product was analyzed by HPLC to determine the enantiomeric excess: 92% ee (Chiralpak AD-H, i-propanol/hexane $=30 / 70$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=$ 8.85 and 10.63 min .

($1 R, 3 R$)-methyl 1-benzyl-4,9-dioxo-3-(p-tolyl)-2,3,4,9-tetrahydro-1H-benzo[f] isoindole-1-carboxylate

The title compound was prepared according to the general procedure as described above in 93% yield. m.p. $176-178{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=+156.3$ (c 1.62, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 300 \mathrm{MHz}\right) \delta 8.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.86-7.67 (m, 2H), 7.21-7.07 (m, 9H), 4.85 (s, 1H), $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~d}, J=13.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.44(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.80(\mathrm{br}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, TMS, 75 MHz) δ 182.4, 181.6, 172.6, 150.7, 146.3, 138.3, 137.5, 135.6, 133.7, 132.7, $130.3,129.1,128.1,127.5,127.0,126.4,126.3,75.3,66.8,52.8,41.8,21.1$; IR (KBr) $v 3381,3029,2951,1740,1634,1593,1453,1339,1297,1246,1045,816,771,735$, $704 \mathrm{~cm}^{-1}$. HRMS: calcd. for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+}: 438.1670$, found. 438.1695 . The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (Chiralpak AS-H, i-propanol $/$ hexane $=30 / 70$, flow rate $1.2 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=7.57$ and 20.44 min.

($1 R, 3 R$)-methyl 1-benzyl-4,9-dioxo-3-(o-tolyl)-2,3,4,9-tetrahydro-1H-benzo[f] isoindole-1-carboxylate

The title compound was prepared according to the general procedure as described above in 81% yield. m.p. $135-138{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=+107.4$ (c 1.50, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 300 \mathrm{MHz}\right) \delta 8.17(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.79-7.67 (m, 2H), 7.19-7.12 (m, 9H), 4.92 (s, 1H), $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.58$ (d, $J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.46(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.80(\mathrm{br}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, TMS, 75 MHz) δ 182.2, 181.4, 172.4, 151.8, 147.2, 139.1, 135.7, 133.7, 132.7, 130.3, $127.9,127.6,127.2,126.9,126.4,126.2,75.1,62.7,52.8,41.9,19.1 ;$ IR (KBr) v 3358, 3029, 2950, 1740, 1667, 1593, 1219, 1050, $735 \mathrm{~cm}^{-1}$. HRMS: calcd. for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+}$: 438.1670, found. 438.1693. The product was analyzed by HPLC to determine the enantiomeric excess: 93\% ee (Chiralcel OD-H, i-propanol/hexane $=30 / 70$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=6.33$ and 15.03 min .

(1R,3R)-methyl 1-benzyl-4,9-dioxo-3-(m-tolyl)-2,3,4,9-tetrahydro-1H-benzo[f] isoindole-1-carboxylate

The title compound was prepared according to the general procedure as described above in 86% yield. m.p. $179-182{ }^{\circ} \mathrm{C} ;[\alpha]^{25}=+113.5$ (c 1.48, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 300 \mathrm{MHz}\right) \delta 8.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.76-7.69 (m, 2H), 7.19-7.06 (m, 9H), 4.84 (s, 1H), 3.84 (s, 3H), 3.62 (d, $J=14.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.45(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 75 \mathrm{MHz}\right) \delta$ $182.5,181.6,172.6,150.8,146.4,141.2,138.0,135.6,133.8,133.7,132.8,130.3$, 128.7, 128.5, 128.3, 128.2, 127.0, 126.4, 126.3, 124.8, 75.4, 67.1, 52.8, 41.9, 21.4; IR (KBr) v 3383, 3026, 2951, 1741, 1667, 1643, 1593, 1454, 1339, 1296, 1246, 1169, 1044, 733, $704 \mathrm{~cm}^{-1}$. HRMS: calcd. for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{NO}_{4}^{+}: 438.1670$, found. 438.1695. The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (Chiralpak AS-H, i-propanol/hexane $=30 / 70$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=$ 7.95 and 19.35 min .

(1R,3R)-methyl 1-benzyl-3-(4-methoxyphenyl)-4,9-dioxo-2,3,4,9-tetrahydro-1H-benzo[f]isoindole-1-carboxylate

The title compound was prepared according to the general procedure as described above in 81% yield. m.p. $143-145^{\circ} \mathrm{C} ;[\alpha]^{25}=+215.9$ (c $1.44, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 300 \mathrm{MHz}\right) \delta 8.16(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.78-7.66 (m, 2H), 7.23-7.15 (m, 7H), $6.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.80(\mathrm{br}$,
$1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 75 \mathrm{MHz}\right) \delta 182.5,181.6,172.7,159.1,150.6,146.1$, $135.6,133.7,133.4,132.7,130.2,128.8,128.2,127.0,126.4,126.3,113.7,75.2,66.5$, 55.1, 52.9, 41.8; IR (KBr) v 3381, 3029, 2952, 2837, 1740, 1633, 1593, 1511, 1454, $1367,1338,1301,1246,1174,1034,915,833,771,736,712,641,586,554 \mathrm{~cm}^{-1}$. HRMS: calcd. for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{NO}_{5}{ }^{+}: 454.1649$, found. 454.1641 . The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (Chiralpak AS-H, i-propanol/hexane $=30 / 70$, flow rate $1.2 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=13.51$ and 39.34 min.

(1R,3R)-methyl 1-benzyl-3-(2-methoxyphenyl)-4,9-dioxo-2,3,4,9-tetrahydro-1H-benzo[f]isoindole-1-carboxylate

The title compound was prepared according to the general procedure as described above in 85% yield. m.p. $149-152{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=+49.3\left(c \quad 0.93, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 300 \mathrm{MHz}\right) \delta 8.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.87-7.69 (m, 2H), 7.22-7.13 (m, 6H), 6.92-6.89 (m, 2H), 6.77 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.87(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=14.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.69(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 75 \mathrm{MHz}\right) \delta 182.4,181.5,172.6,159.6$, $150.6,146.3,142.9,135.6,133.8,133.7,132.7,130.3,129.3,128.2,127.1,126.4$, $126.3,120.1,113.5,113.2,75.4,67.0,55.0,52.9,41.8$; $\operatorname{IR}(\mathrm{KBr})$ v 3382, 3027, 2950, $1740,1634,1593,1508,1495,1453,1434,1368,1337,1296,1245,1169,1045,860$, 819, 771, 731, $704 \mathrm{~cm}^{-1}$. HRMS: calcd. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{5}+\mathrm{H}^{+}: 456.1806$, found. 456.1790. The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (Chiralpak AS-H, i-propanol/hexane $=30 / 70$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}) ; \mathrm{t}_{\mathrm{r}}=11.87$ and 33.47 min .

(1R,3R)-methyl 1-benzyl-3-(naphthalen-2-yl)-4,9-dioxo-2,3,4,9-tetrahydro-1H-benzo[f]isoindole-1-carboxylate

The title compound was prepared according to the general procedure as described above in 79% yield. m.p. $198-201{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}=+43.1$ (c $\left.1.46, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 300 \mathrm{MHz}\right) \delta 8.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.77-7.67 (m, 5H), 7.47-7.42 (m, 3H), 7.22-7.17 (m, 6H), $5.05(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$, $3.66(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, TMS, 75 MHz$) \delta 182.5,181.6,172.6,150.5,146.4,138.6,135.6,133.7,133.1,133.0$, $132.7,130.3,128.3,128.0,127.6,127.1,126.9,126.4,126.3,126.0,125.9,125.4$, $75.4,67.2,52.9,41.9 ;$ IR (KBr) v 3382, 3060, 2951, 2360, 1741, 1633, 1593, 1496, $1454,1434,1336,1296,1244,1169,1125,1045,860,818,770,731,703,668 \mathrm{~cm}^{-1}$. HRMS: calcd. for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+}: 474.1700$, found. 474.1689 . The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (Chiralpak AS-H, i-propanol/hexane $=30 / 70$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=12.75$ and 28.66 \min.

(1R,3S)-methyl 1-benzyl-3-(furan-2-yl)-4,9-dioxo-2,3,4,9-tetrahydro-1H-benzo[f] isoindole-1-carboxylate

The title compound was prepared according to the general procedure as described above in 76% yield. m.p. $155-158{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 300 \mathrm{MHz}\right) \delta 8.18(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 5 \mathrm{H}), 6.28(\mathrm{~m}, 1 \mathrm{H})$, $6.21(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=13.5$
$\mathrm{Hz}, 1 \mathrm{H}), 2.79(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 75 \mathrm{MHz}\right) \delta$ 182.2, 181.6, 172.8, $152.9,148.3,146.7,142.2,135.5,133.9,132.6,130.5,128.1,127.0,126.6,126.3$, 110.6, 107.5, 75.7, 59.4, 42.0; IR (KBr) v 3374, 2926, 1736, 1637, 1594, 1436, 1337, 1293, 1270, 1148, 1046, 770, 732, $702 \mathrm{~cm}^{-1}$. HRMS: calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NO}_{5}^{+}: 414.1336$, found. 414.1330. The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (Chiralpak AS-H, i-propanol/hexane $=30 / 70$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda$ $=220 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=11.18$ and 14.19 min .

(1R,3R)-methyl 1-benzyl-3-cyclohexyl-4,9-dioxo-2,3,4,9-tetrahydro-1H-benzo[f] isoindole-1-carboxylate

The title compound was prepared according to the general procedure as described above in 70% yield. m.p. $138-141{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+83.7$ (c 1.28, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 300 \mathrm{MHz}\right) \delta 8.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.77-7.73 (m, 2H), 7.14-7.13 (m, 3H), 7.05-7.03 (m, 2H), $3.81(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.59(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.70$ $(\mathrm{m}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.12(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}\right.$, $75 \mathrm{MHz}) \delta 182.4,172.9,151.1,146.9,135.6,133.7,133.6,132.9,132.7,130.1,128.2$, $127.0,126.4,74.8,68.5,52.6,41.6,41.0,30.6,26.5,26.2,26.1,26.0$; $\operatorname{IR}(\mathrm{KBr}) v$ $3358,2977,1735,1594,1424,1215,1047,878,773,669,626 \mathrm{~cm}^{-1}$. HRMS: calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO}_{4}^{+}: 430.2018$, found. 430.2012 . The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (Chiralcel AS-H, i-propanol/hexane $=$ $20 / 80$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=7.28$ and 10.16 min .

(1R,3R)-methyl 1-methyl-4,9-dioxo-3-phenyl-2,3,4,9-tetrahydro-1H-benzo[f]

isoindole-1-carboxylate

The title compound was prepared according to the general procedure as described above in 82% yield. m.p. $95-98{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=+31.5\left(c 1.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, TMS, 300 MHz) $\delta 8.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.70(\mathrm{~m}$, $2 \mathrm{H}), 7.44(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.27(\mathrm{~m}, 3 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{br}$, $1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 75 \mathrm{MHz}\right) \delta$ 182.2, 181.8 172.9, 148.8, 148.4, 141.0, 133.7, 132.8, 128.5, 127.9, 127.6, 126.3, 71.0, 66.5, 52.7, 24.4; IR (KBr) v 3368, 2951, 1740, 1634, 1593, 1492, 1454, 1372, 1332, 1267, 1171, 1106, 1027, 901, 776, 730, 716, 704, 641, $554 \mathrm{~cm}^{-1}$. HRMS: calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{4}{ }^{+}: 348.1230$, found. 348.1220. The product was analyzed by HPLC to determine the enantiomeric excess: 89% ee (Chiralcel OD-H, i-propanol/hexane $=20 / 80$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda$ $=220 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=17.20$ and 30.03 min .

($1 R, 3 R$)-methyl 1-ethyl-4,9-dioxo-3-phenyl-2,3,4,9-tetrahydro-1H-benzo[f] isoindole-1-carboxylate

The title compound was prepared according to the general procedure as described above in 90% yield. m.p. $102-105^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=+5.5\left(c 1.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, TMS, 300 MHz) $\delta 8.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.70(\mathrm{~m}$, $2 \mathrm{H}), ~ 7.42-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.70(\mathrm{br}, 1 \mathrm{H}), 2.35-2.31(\mathrm{~m}$, $1 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 1 \mathrm{H}), 0.96-0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 75\right.$ $\mathrm{MHz}) \delta 182.0,181.9,173.3,150.3,146.4,141.4,133.7,132.9,132.8,128.6,128.0$, 127.6, 126.4, 126.3, 75.7, 67.3, 52.7, 29.6, 8.0; IR (KBr) v 3374, 2966, 1736, 1632, $1594,1492,1456,1368,1334,1290,1261,1170,1082,1026,772,742,715,701 \mathrm{~cm}^{-1}$. HRMS: calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{4}{ }^{+}: 362.1387$, found. 362.1382. The product was analyzed by HPLC to determine the enantiomeric excess: 94% ee (Chiralpak AS-H, i-propanol/hexane $=20 / 80$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=17.17$ and 33.97
min.

(1R,3R)-methyl 4,9-dioxo-3-phenyl-1-propyl-2,3,4,9-tetrahydro-1H-benzo[f]

isoindole-1-carboxylate

The title compound was prepared according to the general procedure as described above in 77% yield. m.p. $91-94{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=+6.3\left(c 1.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, TMS, 300 MHz$) \delta 8.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.67(\mathrm{~m}$, $2 \mathrm{H}), 7.41-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{br}, 1 \mathrm{H}), 2.39-2.24(\mathrm{~m}, 1 \mathrm{H})$, 2.15-2.05 (m, 1H), 1.52-1.45 (m, 1H), 1.23-1.14 (m, 1H), 0.98-0.93 (t, J = 7.2 Hz, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 75 \mathrm{MHz}\right) \delta 182.0,181.9,173.3,150.0,146.7,141.3$, 133.7, 132.9, 132.8, 128.6, 128.0, 127.6, 126.4, 126.3, 75.2, 67.3, 52.7, 38.9, 17.1, 14.2; $\operatorname{IR}(\mathrm{KBr}) ~ v ~ 3375,3065,3030,2958,2929,2872,1736,1633,1594,1493,1455$, $1434,1368,1333,1289,1249,1170,1109,1044,1028,941,777,747,715,701,645$, $574 \mathrm{~cm}^{-1}$. HRMS: calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{4}{ }^{+}: 376.1530$, found. 376.1525 . The product was analyzed by HPLC to determine the enantiomeric excess: 90% ee (Chiralpak AS-H, i-propanol/hexane $=20 / 80$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=23.21$ and 43.83 min .

(1R,3R)-methyl 1-isobutyl-4,9-dioxo-3-phenyl-2,3,4,9-tetrahydro-1H-benzo[f]

isoindole-1-carboxylate

The title compound was prepared according to the general procedure as described above in 74% yield. m.p. $112-115{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}=+26.5$ (c 1.56, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 300 \mathrm{MHz}\right) \delta 8.12(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$,
7.77-7.70 (m, 2H), 7.41-7.29 (m, 5H), $5.65(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{br}, 1 \mathrm{H})$, $2.25-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 75 \mathrm{MHz}\right) \delta$ 182.1, 173.5, 149.9, 147.2, 141. 3, 133.8, $133.7,133.0,132.8,128.6,128.0,127.6,126.5,126.3,75.3,67.0,52.7,44.8,24.5$, 24.4, 24.3; IR (KBr) v 3380, 2954, 1735, 1668, 1631, 1594, 1492, 1455, 1367, 1329, 1220, 1169, 1125, 1029, 715, $701 \mathrm{~cm}^{-1}$. HRMS: calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{4}^{+}: 390.1700$, found. 390.1703. The product was analyzed by HPLC to determine the enantiomeric excess: 93% ee (Chiralpak AS-H, i-propanol $/$ hexane $=30 / 70$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda$ $=220 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=7.77$ and 26.04 min .

($1 R, 3 R$)-methyl 4,9-dioxo-1,3-diphenyl-2,3,4,9-tetrahydro-1H-benzo[f]isoindole -1-carboxylate

The title compound was prepared according to the general procedure as described above in 86% yield. m.p. $120-123{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}=+48.6$ (c $0.42, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 400 \mathrm{MHz}\right) \delta 8.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.67-7.64 (m, 4H), $7.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.24(\mathrm{~m}, 6 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 100 \mathrm{MHz}\right) \delta 182.3,182.2,172.4,148.7,147.5,140.9$, 140.2, 133.8, 133.6, 132.9, 132.6, 129.7, 128.7, 128.2, 128.0, 127.6, 127.2, 126.5, 126.1, 76.6, 67.3, 53.0; IR (KBr) v 3384, 3065, 3030, 2958, 1736, 1669, 1593, 1457, 1219, 1070, 754, $698 \mathrm{~cm}^{-1}$. HRMS: calcd. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{NO}_{4}^{+}: 410.1387$, found. 410.1377. The product was analyzed by HPLC to determine the enantiomeric excess: 93% ee (Chiralpak AD-H, i-propanol/hexane $=15 / 85$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220$ $\mathrm{nm}) ; \mathrm{t}_{\mathrm{r}}=31.13$ and 34.41 min .

(1R,3R)-methyl 1-benzyl-4,7-dioxo-3-phenyl-2,3,4,7-tetrahydro-1H-isoindole-1carboxylate

The title compound was prepared according to the general procedure as described above in 82% yield. $[\alpha]^{25}{ }_{\mathrm{D}}=+53.7\left(c \quad 0.48, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 300\right.$ $\mathrm{MHz}) \delta 7.26(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.80$ (s, 1H), 3.83 (s, 3H), 3.49 (d, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.37 (d, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}$), $2.66(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, TMS, 75 MHz) δ 184.7, 183.8, 172.5, 148.1, 143.9, $140.8,136.8,136.6,135.4,130.2,128.4,128.2,127.9,127.5,127.1,75.3,66.7,52.9$, 41.9; IR (KBr) v 2956, 1736, 1669, 1593, 1452, 1215, 1047, 669, cm^{-1}. HRMS: calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{NO}_{4}^{+}: 376.1549$, found. 376.1530 . The product was analyzed by HPLC to determine the enantiomeric excess: 86% ee (Chiralpak AS-H, i-propanol/hexane $=$ $20 / 80$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}$); $\mathrm{t}_{\mathrm{r}}=14.89$ and 30.87 min .

IV. The Absolute Configuration Determination of (1R,3R)-5b

Figure 1. X-ray structure of $(1 R, 3 R)-\mathbf{5 b}$.

Crystal data for $(1 R, 3 R)-5 \mathbf{b}: \mathrm{C}_{27} \mathrm{H}_{22} \mathrm{ClNO}_{4}, M_{\mathrm{r}}=459.91, T=293 \mathrm{~K}$, tetragonal, space group $P 4(3), a=12.7827(8), b=12.7827(8), c=13.7419(18) ~ \AA, V=2245.4(4)$ $\AA^{3}, Z=4,3391$ unique reflections, final $R_{1}=0.0320$ and $w R_{2}=0.0806$ for 4129 observed $[I>2 \sigma(I)]$ reflections, Flack $\chi=-0.04(6)$. CCDC 904693 contains the
supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.htmL (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

V. Proposed Relative Configuration of the Labile Intermediate in This One-Pot

Sequential Catalytic Asymmetric 1,3-DC/Oxidation

To further investigate the relative configuration of the labile intermediate of this one-pot sequential catalytic asymmetric 1,3-DC/oxidation reaction, (Z)-hex-3-ene-2,5-dione $\mathbf{8}$ was employed as the dipolarophile and $\mathbf{4 b}$ was employed as imino ester to study the stereochemistry of the 1,3-dipolar cycloaddition under the optimized reaction condition. As expected, the normal 1,3-DC adduct 9 was obtained in 91% yield with excellent diastereoselectivity and 86% ee (Scheme 1), and the relative configuration of racemic adduct 9 was determined unambiguously to be endo by single X-ray crystallographic analysis (Figure 2). Hence, the relative configuration of the labile intermediate in this one-pot sequential 1,3-DC/oxidation reaction were tentatively proposed to be endo on the basis of these results.

(2R,3S,4R,5S)-methyl 3,4-diacetyl-2-benzyl-5-(4-chlorophenyl)pyrrolidine-2carboxylate

Under argon atmosphere, (S, R_{p})-PPFOMe ($3.1 \mathrm{mg}, 0.0072 \mathrm{mmol}$) and $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{BF}_{4}(1.9 \mathrm{mg}, 0.006 \mathrm{mmol})$ were dissolved in toluene $(2 \mathrm{~mL})$, and stirred at room temperature for about 1 h . Then, imine substrate $\mathbf{4 b}(78.3 \mathrm{mg}, 0.26 \mathrm{mmol})$, and (Z)-hex-3-ene-2,5-dione ($22.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) were added sequentially, after that the mixture was dropped to $-20^{\circ} \mathrm{C}$, TEA ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) was added. Once starting material was consumed (monitored by TLC), the residue was purified by column chromatography to give $\mathbf{9}$ in 91% yield, which was then directly analyzed by chiral HPLC to determine the enantiomeric excess. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 300 \mathrm{MHz}\right) \delta$ 7.38-7.26 (m, 7H), 7.17 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.16$ (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ (s, 3H), 3.43-3.37 (m, 2H), $3.33(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H})$, $1.66(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathrm{TMS}, 75 \mathrm{MHz}\right) \delta 208.4,205.2,173.8,135.9,135.7$, 133.7, 130.5, 128.7, 128.4, 128.3, 127.3, 73.4, 64.6, 62.6, 59.1, 52.4, 45.4, 32.3, 31.3; HRMS: calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{ClNO}_{4}{ }^{+}: 414.1467$, found. 414.1446. The product was analyzed by HPLC to determine the enantiomeric excess: 86% ee (Chiralpak AD-H, i-propanol/hexane $=20 / 80$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}) ; \mathrm{t}_{\mathrm{r}}=8.16$ and 10.99 min.

VI. The Relative Configuration Determination of Racemic endo-9

Figure 2. X-ray structure of racemic endo-9.
Crystal data for racemic endo-adduct 9: $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{ClNO}_{4}, M_{\mathrm{r}}=413.88, T=293 \mathrm{~K}$, Monoclinic, space group $P 2(1) / \mathrm{c}, a=8.9427(14), b=24.682(4), c=9.8606(16) \AA, V$ $=2156.1(6) \AA^{3}, Z=4,3082$ unique reflections, final $R_{1}=0.0450$ and $w R_{2}=0.1077$ for 4233 observed $[I>2 \sigma(I)]$ reflections. CCDC 904694 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.htmL (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit@.ccdc.cam.ac.uk).

VII. References

1. Hayashi, T; Fukushima, T, M; Kagotani, M; Nagashima, N; Hamada, Y; Matsumoto, A; Kawakami, S; Konishi, M; Yamamoto, K; Kumada, M. Bull. Chem. Soc. Jpn., 1980, 53, 1138
2. CCDC 904693 ($\mathbf{5 b}$) and CCDC 904694 ($\mathbf{9}$) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit@,ccdc.cam.ac.uk).

VIII. ${ }^{1}$ H NMR and ${ }^{13}$ C NMR Spectra

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 75 \mathrm{MHz}\right)$

022
1 vinuman 1.
 -133.88

-132.677 | $677 \begin{array}{l}130.201 \\ F^{129.528} \\ 128.368 \\ { }_{-1}^{128.082} \\ -127.996\end{array}$ |
| :---: |

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, 75 \mathrm{MHz}\right)$

(5n)

(5p)

-208.426
-205.185
-173.758
135.926
135.722
133.649
133.649
-130.547
$=128.725$
-128.382
-128.274
-127.263

77.424
-77.000
-76.576
-73.357
64.631
-62591
-62.591
-59.095
-52.356
-45.441
32.328
-31.303
-31.303

IX. HPLC Chromatograms

Data File D: LC'DATAHZL'HZL-4-29'HZL-4-29 2011-10-18 18-40-49,001-0201.D Sample Name: HZL-4-29

heq. Operator	HZL	Seq. Line : 2
heq. Inst rument	Inst rument 1	Location : Wial l
Injection liate	10/18/2011 6:52:46 PM	Ілј : $\quad 1$
		Iлj Wolume : 5 pl

 M
Last charged : 8/29/2011 3:56:33 PM by HZL
 20-80-10ML-220 MM. M
Last changed : 9/24/2012 9:57:12 $2 M \mathrm{by} \mathrm{FX}$

Sigral l: UTWl A , Wavelergth $=220 \mathrm{~m}$

Peak\#	RetT ime [min]	Type	Width [тin]	drea		Height	Area
				mLiJ	*5	[mLJ	品
1	11.289	EB	0.7515	4096	40.576	83.69995	52.1176
2	32.240	BB	2.1436	3753	51929	20.59521	47.8824
Total				78.59	92505	104.29516	

Data File I:' LC'2011ll',HZL'HZL-4-51,HZL-4-51 2011-11-04 21-12-02,001-0101.I
Sample Iame: HZL-4-51B

heq. Operator : HZL	Seq. Line : $\quad 1$
heq. Inst rument : Instrument l	Locatior : Vial 1
Irjectior liate : $11 / 4 / 20119: 13: 17 \mathrm{PM}$	Iлj : $\quad 1$
	Iлj Volwme : 5 pl

Last changed $1212 / 2011$ 4:39:01 PM bY

$===$

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier a Dilution Factor with ISTDs

Sigral l: vTil A, Waveleggth $=220$ ת

$\begin{aligned} & \text { Pealr RetT ime Type } \\ & \begin{array}{l} \# \\ \text { [min] }] \end{array} \end{aligned}$			Width		Area	Height	Area
			[min]	mbu	* 5	[mlO_{10}]	吕
1	11.588	EB	0.8335	8191	1.35303	150.73788	98.0075
2	33.876	MM	3.3027		. 53038	$8.40367 \mathrm{e}-1$	1.9925
Totals				83.57	7. 88341	151.57825	

Sample Hame: HZL-4-21C

hoq. Operator : HZL	Seq. Line : $\quad 1$
Aeq. Inst rument : Inst rument l	Locatior : Uial 2
Injection Iate : 10/20/20ll 8:07:18 PM	Ілј : $\quad 1$

Last changed : $10 / 20 / 20118: 03: 32 \mathrm{FM}$ by HZL
 4SH-40-50-10ML-220NM.M)
Last changed : 10/29/2011 3:19:44 PM by HZL (modified after loading

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Milution	$:$	1.0000

Jse Multiplier a Dilution Factor with ISTIs

Signal l: wTill A, Wavelength=220 m

$\begin{aligned} & \text { Peak RetT ime Type } \\ & \begin{array}{l} \# \\ \text { [min] }] \end{array} \end{aligned}$			Width	Area		Height	Area
			[min]	mili	* 5	[mblJ]	吕
1	7.977	M	0.6594	148	38757	37.03318	49.680 .5
2	20.370	MM	2.6827	1506	52039	9.35950	50.3195
Total	S			2993	90796	46.39268	

Sampile Name: HZL-4-66B

4eq. Operator	hel	Seq. Line : 4
4cq. Inst rument	Inst rument 1	Locatios : Wial 35
Injection liate	11/14/2011 11:42:09 PM	Ілј: $\quad 1$
		Inj Volwme : 5 pl

 Last charged : $10 / 31 / 2011$ 7:25:18 PM by HZL
 M (2SH-40-60-10ML-220NM-30MIN.M'
Last changed : 9/24/2012 10:07:24 M by FX !modified after loading

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Milution	$:$	1.0000

Jse Multiplier a IIlution Factor with ISTIs

Signal l: wTill A, Wavelength=220 ת

Peak RetT ime Type \# [miл]			Tididth [mis]	Area		Height	Area	
			m m J	* 5		吕		
1	8.069	BE		0.7045	8175	20117	178.06204	97.5821
2	20.861	MM	2.6940	202	56479	1.25320	2.4179	
Total	5			8377	76.596	179.31 .524		

Samile Iame: HZL-4-214

Acq. Operator : HZL	Seq. Line : 2
4eq. Inst rument : Inst rument l	Locatior : Wial l
Irjection Date : 11/5/2011 3:51:26 PM	Ілј: $\quad 1$
	Iлj Volume : 5 pl

Last changed : 10/20/2011 6:42:48 PM by HZL
 4SH-30-70-10ML-220NM.M)
Last changed : 11/5/2011 4:34:18 PM by HZL (modified after loading)

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Milution	$:$	1.0000

Jse Multiplier a Dilution Factor with ISTIs

Signal l: wTill A, Wavelength=220 ת

Peak RetT ime Type \# [ліл]			Width		Area	Height	Area
			[min]	milu	* 5	[miv	吕
1	9.040	MM	0.7646	1289	9.69067	28.11200	50.6529
2	27.791		4.1969	1255	5. 44556	4.98963	49.3471
Totals	5 :			2545	6.13623	33.10163	

Sample Name: HZL-4-682

4eq. Operator	hel	Seq. Line : 2
heq. Inst rument	Inst rument l	Locatior : Uial l
Injection liate	11/17/2011 10:07:30 3M	Ілј : $\quad 1$
		Iлj Wolume : 5 pl

 $220 \mathrm{NM}-40 \mathrm{MIN} . \mathrm{M}$
Last changed : 10/29/2011 2:58:53 PM by HZL
 ASH-30-70-10ML-220NM-40MIN.M
Last changed : 11/17/2011 11:07:45 M by hzl (modified after loading)

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Milution	$:$	1.0000

Jse Multiplier a Dilution Factor with ISTIs

Signal l: wTill A, Wavelength=220 m

$\begin{aligned} & \text { Peak RetT ime Type } \\ & \begin{array}{l} \# \\ \text { [min] }] \end{array} \end{aligned}$			Width	drea		Height	Area
			[min]	milj	* 5	[m [0]	吕
1	8.788	VE	0.7369	3.53	88e4	739.33594	95.8285
2	26.771	BB	2.5743	11.57	79492	5.2830 .5	3.1715
Total				3.65	56 e 4	744.61899	

 Sample Hame: HZL-4-21B

Last changed : 10/20/2011 6:42:48 PM by HZL
 DA.M ($\mathrm{ASH}-30-70-10 \mathrm{ML}-220 \mathrm{MM} . \mathrm{M}$)
Last changed : 10/29/2011 2:51:53 PM by HZL (modified after loading)


```
=====================================================================
```

Area Percent Report

Sorted fy		Sigmal
Multiplier	:	1. 0000
Dilution		1.0000

Wse Multiplier a Dilution Factor with ISTIS

Sigral l: VTHI A, wavelength $=220 \mathrm{gm}$

$\begin{gathered} \text { Feak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetT ime } \\ & {[\text { [min] }} \end{aligned}$	Тчре	$\begin{aligned} & \text { Tidth } \\ & \text { [min] } \end{aligned}$	Area		Height		Area
				malu	*s	[milu	J	
1	9.311		0.8174	1096	75818		2.36259	50.7846
2	30.053	$\cdots \mathrm{M}$	3.7439	1062	87061		4.73154	49.2154
Total				21.59	2878		7.094	

Samile Name: HZL-4-66

Acq. Operator	L	Seq. Liлe : 4
heq. Inst rument	Instrument 1	Location : Vial 45
Injection Date	11/15/2011 12:38:40 PM	Irj : $\quad 1$
		Iлj volume : 5 ¢

Last changed 12/15/2011 4:56:16 P世

$===$

Sorted By	$:$	Sigral
Multiplier	$:$	1.0000
Milutior	$:$	1.0000

Use Multiplier a Dilution Factor with ISTDs

Sigral l: vTil A, Waveleggth $=220$ ת

$\begin{aligned} & \text { Peal RetT ime TYpe } \\ & \quad \text { \# } \quad \text { min] } \end{aligned}$			Width	drea	Height	Area
			[miл]	mulJ ${ }^{\text {S }}$	[$\mathrm{mLS}^{\text {diJ }}$	吕
1	9.513	UB	0.7973	8909.80176	173.02185	97.2063
2	31.357	M	4.3574	256.06387	$9.79429 \mathrm{e}-1$	2.7937
Totals				9165.86 .563	174.00128	

Sample Hame: HZL-4-7lB

Last charged : 9/15/2011 8:42:49 MM by THL

($\mathrm{ADH}-30-70-10 \mathrm{H}-220 \mathrm{HM}$. M
Last changed : 12/15/2011 9:44:56 M by FX
imodified after loading

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Milution	$:$	1.0000

Jse Multiplier a Dilution Factor with ISTIs

Signal l: wTill A, Wavelength=220 m

Peak RetT ime Type \# [ліл]			Width		Area	Height	Area
			[miл]	malJ	* 5	[midJ	吕
1	8.688	BB	0.3125		3.74359	23.26645	50.1151
2	10.309	UB	0.4000		1. 52161	18.14019	49.8849
Totals					5.26 .520	41.4066 .5	

Saméle Name: HZL-4-88

heq. Operator : HZL	Seq. Liлe : 3
heq. Inst rument : Inst rument l	Locatios : Vial 44
Injection late : 12/1/2011 10:42:22 M	Ілј : $\quad 1$
	Iлj Volume : 5 pl

 Last charged : 11/19/2011 10:39:21 M by THL
 ($2 \mathrm{HH}-30-70-10 \mathrm{HL}-220 \mathrm{MN}-20 \mathrm{MIN} . \mathrm{M}$)
Last changed : 12/15/2011 4:49:40 PM by FX [modified after loading,

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Milution	$:$	1.0000

Jse Multiplier a Dilution Factor with ISTIs

Signal l: wTill A, Wavelength=220 תn

Peak RetT ime Type \# [miл]			Width [miл]	drea		Height	Area	
			melJ	* 5	[mLJ	吕		
1	8.853	M		0.3541	216	83698	10.20610	3.8809
2	10.628	UB	0.4364	5370	42090	184.09636	96.1191	
Totals	5 :			5587	25787	194.30246		

Sample Name: HZL-4-33A

leq. Operator		Seq. Line : 2
heq. Inst rument	Inst rument 1	Locatios : Wial 53
Injection liate	10/25/2011 4:35:14 PM	Iлj : $\quad 1$
		Ілј Volume : 5 pl

Last changed : 10/25/2011 4:20:13 PM by hzl
 4SH-30-70-12ML-220NM.M)
Last changed : 10/29/2011 3:04:44 PM by HZL (modified after loading)

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Milution	$:$	1.0000

Jse Multiplier a Iilution Factor with ISTIs

Signal l: wTill A, Wavelength=220 ת

Peak RetT ime Type \# [ліл]			Width		Area	Height	Area
			[min]	malJ	* 5	[miv	吕
1	7.771	MM	0.8797	1031	1.05908	19.53331	50.9128
2	20.833	M	2.9494		4.08826	5.61755	49.0872
Totals	3 :			2025	5. 14734	25.15086	

Sample Name: HZL-4-592

heq. Operator	FX	Seq. Line : 13
heq. Inst rument	Inst rument 1	Locatios : Vial 41
Injection liate	11/9/2011 8:02:49 2M	Ілј : $\quad 1$
		Iлj Wolume : 5 pl

 $220 \mathrm{NM}-30 \mathrm{MIN} . \mathrm{M}$
Last changed : 10/29/2011 3:08:59 PM by HZL
 4SH-30-70-12ML-220NM-30MIN.M'
Last changed : 11/9/2011 2:41:59 PM bY THL !modified after loading

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Milution	$:$	1.0000

Jse Multiplier a Dilution Factor with ISTIs

Signal l: wTill A, Wavelength=220 תn

Peak RetT ime Type \# [miл]			Width [miл]	Area		Height	Area	
			m m J	* 5	[mbu	品		
1	7.568	BE		0.770 .5	8895	59824	177.21434	97.3694
2	20.438	MM	2.7972	240	33339	1.43199	2.6306	
Total	5			9136	03163	178.64633		

Samile Iame: HZL-4-78A

4eq. Operator	HZL	Seq. Line : 2
deq. Inst rument	Inst rument l	Locatios : Wial 33
Injection Date	11/23/2011 4:49:34 PM	Iл ${ }_{\text {: }} \mathrm{l}$
		Iлj Volume : 5 pl

 220NM.M
Last changed : 9/ 14/2011 10: 11:46 MM by HZL
 0DH-30-70-10ML-220NM.M
Last changed : 12/15/2011 10:07:15 M by FX (modified after loading'

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Milution	$:$	1.0000

Jse Multiplier a Dilution Factor with ISTIs

Signal l: wTill A, Wavelength=220 תn

Peak	RetT ime	Type	Width	Area	Height	Area
\#	[miת]		[mis]	malJ ${ }^{\text {\% }}$	[milJ]	吕
1	5.376	M 1	0.2861	2034.92603	118.52831	49.8982
2	15. 035	BE	0.9118	2043.22571	34.59540	50.1018
Totals	5 :			4078.15173	153.12370	

Samele Name: HZL-4-80a

Acq. Operator	HZL	Seq. Line : 2
Leq. Inst rument.	Inst rument l	Locatior : Uial 37
Injection liate	11/24/2011 4:22:20 PM	Ілј : $\quad 1$
		Inj Volume : 5 pl

 220NM-20MIN.M
Last changed : 11/24/2011 3:51:31 PM by HZL
 ODH-30-70-10ML-220NM-20MIN.M
Last changed : 12/15/2011 10:09:25 M by FX (modified after loading

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Milution	$:$	1.0000

Wee Multiplier a Dilution Factor with ISTIs

Signal l: wTill A, Wavelength=220 תn

Peak RetT ime Type \# [miл]			Width[min]	Area		Height	Area	
			milj	* 5	[mid	吕		
1	5.333	UB		0.2688	2.29	04e4	1308.67627	96.3848
2	15.027	BB	0.8856	861	57837	14.93419	3.61 .52	
Totals	5 ;			2.38	20 e4	1323.61046		

Sampile Name: HZL-4-78B

deq. Operator	FX	Seq. Line : $\quad 1$
Leq. Inst rument	Inst rument 1	Locatior : Vial 2
Irjection Date	9/24/2012 10:40:38 2M	Ілј : $\quad 1$
		Iлj Volume : 5 pl

4eq. Method : DitLCDATAHZL'HZL-4-78, HZL-4-78B-1 2012-09
Last changed : $/ / 13 / 2012$ 10:19:59 MM by LOH
 4SH-30-70-1ML-220MM.M
Last changed : 9/24/2012 11:21:06 M by FX
(modified after loading!
Method Info : ASH-50-50-1ML-254MM-50MIN

\qquad

Sorted By	:	Sigmal
Multiplier	:	1. 0000
Milution		1.0000

Signal l: WTWl A, Wavelength $=220 \mathrm{~m}$

材 End of Report 材

Saméle Name: HZL-4-80B

Leq. Operator : HZL	Seq. Line : 1
heq. Inst rument : Inst rument l	Locatior : Wial 13
Injection Iate : 11/22/20ll 8:44:57 PM	Iлj : $\quad 1$
	Inj Volume : 5 pl

 220NM-30MIN.M
Last changed : 11/22/2011 8:35:29 PM by THL
 ASH-30-70-10ML-220NM-30MIN.M
Last changed : 12/15/2011 10:16:49 M by FX (modified after loading)

Area Percent Report

Sorted By	$:$	Sigral
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Wee Multiplier a Dilution Factor with ISTIs

Signal l: wTill A, Wavelength=220 תn

Samile Name: HZL-4-33B

heq. Operator	HZL	Seq. Line : 2
Leq. Inst rument	Inst rument l	Locatios : Wial 54
Injection late	10/26/2011 10:11: 44 M	Ілј : $\quad 1$
		Iлj Wolume : 5 pl

Last changed : 10/25/2011 4:20:13 PM by hel

25H-30-70-12ML-220NM.M'
Last changed : 10/29/2011 3:28:0.5 PM by HZL [, modified after loading'

Area Percent Report

Sorted By	$:$	Sigmal
Multiplier	$:$	1.0000
Milution	$:$	1.0000

Wee Multiplier a Dilution Factor with ISTIs

Signal l: wTill A, Wavelength=220 תn

Peak	RetT ime	Type	Width	Area	Height	Area
\#	[min]		[miл]	malJ ${ }^{\text {\% }}$	[$\mathrm{m}^{2} 1 \mathrm{~J}$	吕
1	13.507	M	1.8584	2142.58325	19.21558	50.4540
2	39.746	MM	5.4205	2104.02490	6.45932	49.5460
Totals	5 :			4246.60815	25.68490	

Sampile Name: HZL-4-59B

4eq. Operator	HZL	Seq. Line : $\quad 1$
Leq. Inst rument	Inst rument l	Location : Vial 24
Injection Date	11/11/2011 8:30:54 PM	Iл ${ }_{\text {: }} \mathrm{l}$
		Iлj Volume : 5 pl

 220NM-50MIN.M
Last changed : 10/29/2011 3:52:23 PM by HZL

ASH-30-70-12ML-220NM-50MIN.M)
Last changed : 11/11/2011 9:30:27 PM by THL
imodified after loading,

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Milution	$:$	1.0000

Wee Multiplier a Dilution Factor with ISTIs

Signal l: wTill A, Wavelength=220 תn

Peak RetT ime Type \# [miл]			Width [miл]	Area		Height	Area	
			m	* 5	[mid	品		
1	13.512	BE		1.6053	5780	93555	54.64053	97.7617
2	39.337	MM	4.9252	155	24968	$5.25358 \mathrm{e}-1$	2.2383	
Totals	5 ;			6936	18.523	6.5 .16 .589		

Sample Hame: HZL-4-81B

4eq. Operator	HZL	Seq. Line : $\quad 1$
deq. Inst rument	Inst rument 1	Locatios : Wial 32
Injection Date	11/23/2011 3:48:45 PM	Iл ${ }_{\text {: }} \mathrm{l}$
		Iлj Volume : 5 pl

Last charged : $10 / 20 / 2011$ 6: $42: 48 \mathrm{PM}$ bY HZL
 ASH-30-70-10ML-220NM.M'
Last changed : 12/15/2011 10:22:14 M by FX (modified after loading

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Milution	$:$	1.0000

Jse Multiplier a Dilution Factor with ISTIs

Signal l: wTill A, Wavelength=220 ת

Peak	RetT ime	Type	Width	Area	Height	Area
\#	[min]		[miл]	malJ ${ }^{\text {\% }}$	[$\mathrm{m}^{2} 1 \mathrm{~J}$	吕
1	11.911	MII	1.0821	1008.33783	15.5305.5	50.4466
2	33.970	M	4.2712	990.48456	3.86496	49.5534
Totals	5 :			1998.82239	19.39 .551	

Data File I:' LC' 201111 FK FX-4-123 THL-12-33 2011-11-24 12-09-47,035-0401.I
Sample Iame: HZL-4-832

Acq. Operator	FK	Seq. Line : 4
deq. Inst rument	Instrumert 1	Locatios : Vial 35
Injection Date	11/24/2011 12:55:19 PM	Irj : $\quad 1$
		Inj Volume : 5 pl

	$220 \mathrm{MM-45MIN} . \mathrm{M}$
Last charged	: 11/24/2011 12:08: 10 PM by hel
Aralysis Method	

Last changed - $1 / 2420112,27: 00$ PM

$===$

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier a Dilution Factor with ISTDs

Sigral l: vTil A, Waveleggth $=220$ ת

$\begin{aligned} & \text { Pealr RetT ime Type } \\ & \begin{array}{l} \# \\ \text { [min] }] \end{array} \end{aligned}$			$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	Area		Height	Area	
			mbu	* 5	[m 2lJ]	吕		
1	11.855	EB		1.0140	1.79	72e4	272.05200	97.2864
2	33.466	M M	4.0919	499	47961	2.03443	2.7136	
Totals				1.84	57 E 4	274.08644		

Samile Name: HZL-4-8Lh

Last changed : 10/20/2011 6: 42:48 PM by HZL
 $2 \mathrm{SH}-30-70-10 \mathrm{ML}-220 \mathrm{NH} . \mathrm{M}^{\prime}$
Last changed : 11/23/2011 3: 49:03 PM by hzl (modified after loading)

Area Fercent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Milution	$:$	1.0000

Jse Multiplier a Dilution Factor with ISTIs

Signal l: wTill A, Wavelength=220 m

Peak RetT ime Type \# [miл]			Width	Area	Height	Area
			[miл]	malJ ${ }^{\text {\% }}$	[$\mathrm{m}^{2} 1 \mathrm{~J}$	吕
1	12.419	M	1.8377	2493.40479	22.61336	50.3082
2	27.348	MM	4.0914	2452.84985	10.03253	49.6918
Totals				4956.25454	32.64 .589	

Samile Name: HZL-4-95C.

 Last changed : 10/29/2011 2:58:53 PM by HZL
 ASH-30-70-10ML-220NM-40MIN.M)
Last changed : $12 / 3 / 20113: 15: 56 \mathrm{PM}$ by LOH
(modified after loading)

Sorted By	$:$	Sigral
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Use Multiplier a Dilution Factor with ISTIs

Signal l: wTill A, Wavelength=220 m

$\begin{aligned} & \text { Peak RetT ime Type } \\ & \text { \# [miת] } \end{aligned}$			Width [miл]	drea		Height	Area	
			mili	* 5	[m [0]	吕		
1	12.750	BE		1.6962	2.15	30 e 4	193.26517	98.4616
2	28.657	MM	4.0378	336	89764	1.39061	1.5384	
Total	S			2.18	99e4	194.65679		

Samile Name：HZL－4－38

 $220 \mathrm{MM} . \mathrm{M}$
Last charged ：10／20／2011 6： $42: 48$ PM by HZL
 30－70－10以L－220円M．M
Last charged ：9／24／2012 10：00：52 M by FX （modified after loadig

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000
Use Multiplier a Dilutios Factor with	ISTDs	

Sigral l：vTil A ，Waveleggth $=220$ ת

$\begin{aligned} & \text { Peale RetT ime Type } \\ & \begin{array}{l} \# \text { [min] }] \end{array} \end{aligned}$			Width	drea	Height	Area
			［miת］	mulJ ${ }^{\text {S }}$	［ ${ }_{\text {miJ }}$	吕
1	11.327	M	0.8527	679.29863	13.27685	50.1461
2	14.276	MM	1.1835	675.34106	9.51031	49.8539
Total				1354.63989	22.78717	

Saméle Name: HZL-4-68B

4eq. Operator	hel	Seq. Line : 3
heq. Inst rument	Inst rument l	Locatior : Wial 2
Injection liate	11/17/2011 10:49:23 M	Ілј: $\quad 1$
		Iлj Volume : 5 pl

Area Percert Report		
Sorted By	:	Sigral
Multiplier	:	1.0000
Dilution		1. 0000
Use Multipl		tor wi

Signal l: WTWl A, Wavelength $=220 \mathrm{~m}$

Sample Hame: HZL-4-123

heq. Operator	HZL	Seq. Line : 1
Leq. Inst rument	Inst rument 1	Locatios : Vial 41
Injection Date	12/29/2011 7:51:00 PM	Irj : $\quad 1$
		Iлj Wolume : 5 pl

 Last charged : 8/29/2011 3:56:33 PM by HZL
 4SH-20-80-10ML-220NM.M'
Last changed : 9/24/2012 9:58:45 M by FK [modified after loading!


```
=========================================================================1
```

Area Percent Report

Sorted By	$:$	Sigral
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Jse Multiplier a Iilution Factor with ISTIs

Signal l: wTill A, Wavelength=220 תn

Peale R	QetT ime	TYpe	Widath	Area	Height	Area
\#	[miת]		[min]	mulJ ${ }^{\text {a }}$	[mul]	!
1	7.176	MM	0.9249	2361. 12451	42.54876	49.2699
2	9.884	MM	1.1467	2431. 10254	35.33603	50.7301
Totals				4792.22705	77.88478	

 Sample Hame: HZL-4-129

Leq. Operator : THL	Seq. Line : 5
Leq. Inst rument : Inst rument l	Locatios : Vial 44
Injection late : $1 / 3 / 2012 \mathrm{l}$ 22:49 PM	Ілј : $\quad 1$

Last changed : $12 / 15 / 2011$ 4: $27: 37 \mathrm{PM}$ by FX
 DA.M (ASH-20-80-10ML-220MM-15MIN.M!
Last changed : $1 / 3 / 20122: 52: 14 \mathrm{PM}$ by L L H imodified after loading

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Wee Multiplier a Iilution Factor with ISTIs

Signal l: wTill A, Wavelength=220 m

Peak RetT ime Type \# [ліл]			Width		Area	Height	Area
			[min]	malJ	* 5	[miv	吕
1	7.278	MM	0.9613	5150	0.39746	89.29688	95.9699
2	10.163	M	0.6137		0.93723	4.37035	3.0301
Totals	3 :			5311	1.33469	93.66722	

 Sample Name: HZL-3-106A

Leq. Operator : HZL	Seq. Line : 2
heq. Inst rument : Inst rument l	Locatiog : Uial l
Irjection late ; 9/8/2011 4:25:43 PM	Irj : 1
	Iлj̇ Volume : 5 pl

 10以 -220 Mm . M
Last charged : 9/8/2011 4: 11:48 PM by HZL
 DA.M (ODH-20-80-10ML-220MM.M)
Last changed : 11/8/2011 5:ll:36 PM by THL

\qquad
Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Milution	$:$	1.0000

Signal l: vTol 2, Wavelength $=220 \mathrm{~m}$

Peak RetT ime Type \# [miл]			Width	Area	Height	Area
			[miл]	mulJ ${ }^{\text {a }}$	[${ }_{\text {maju }}$]	!
1	15. 791	BB	0.7278	1.32454 e 4	275.51071	50.4540
2	25.458	BB	1.6016	1.30070 e 4	115.03537	49.5460
Totals	5 ;			2.62525 e 4	391.54608	

(5n)
 Sample Name: HZL-4-644

Acq. Operator	hz	Seq. Line	2
Leq. Inst rument	Inst rument l	Location	Vial 34
Injection Date	11/14/2011 10:54:30 PM	Ілј	1
		Iлj Volwe	5 pl

 10ML $220 \mathrm{MM}-35 \mathrm{MIN}$. M
Last changed : 9/13/2011 6:04:32 PM bY HZL
 DA.M (ODH-20-80-10ML-220MM-35MIN. M)
Last changed : 12/15/20ll 4:35:18 FM by FX

\qquad

Area Percent Report

Sorted By	$:$	Sigral
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Signal l: vTol 2, Wavelength $=220 \mathrm{~m}$

Pealc \#	RetT ime Type[miת]		Width	Area	Height	Area
			[min]	mulJ ${ }^{\text {a }}$	[mav	吕
1	17.195	BB	0.7464	45	93.12305	94.5845
2	30.026	BE	1.4737	259.92557	2.07204	5.4155
Totals	5 :			4799.65994	95.19509	

(50)
 Samile Iame: HZL-3-106B

Leq. Operator : HZL	Seq. Line : l
heq. Inst rument : Inst rument l	Locatior : Uial 2
Injection Date : 9/8/20ll 5:04:54 PM	Iлj : $\quad 1$
	Iлj Volume : 5 pl

 $220 \mathrm{WM} . \mathrm{M}$
Last changed : 8/29/2011 3:56:33 PM by HZL
 (ASH-20-80-10ML-220MM.M)
Last changed : 11/8/2011 5:10:33 PM by THL

\qquad
Area Percent Report

Sigral l: wWi 1 , Wavelength=220 m

(50)
 Samile Name: HZL-4-702

Leq. Operator	HZL	Seq. Line : 2
Acq. Inst rument	Inst rument l	Locatios : Vial ll
Injection Iate	11/18/2011 5:47:53 PM	Iлj : $\quad 1$
		Iлj Volume : 5 pl

 220円M-45MIN.M
Last ohanged : 8/29/2011 3:55:38 PM by HZL
 25H-20-80-10ML-220NM-45MIN.M!
Last changed : ll/18/20ll 6:35:ll PM by hzl

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	l. 0000
Dse Multiplier a gilution Factor with ISTIs		

Signal l: vTol 2, Wavelength $=220 \mathrm{~m}$

Samile Name: HZL-3-107C

Acq. Operator	HZL	Seq. Line : 1
Leq. Inst rument	Inst rument l	Locatior : Uial 3
Irjection late	9/8/2011 8: 44:06 PM	Ілј : $\quad 1$
		Iлj Volume : 5 pl

Last changed : 8/29/2011 3:56:33 PM by HZL
 (ASH-20-80-10ML-220RM.M)
Last changed : 11/8/2011 5:09:48 PM bY THL (modified after loading)

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Milution	$:$	1.0000

Jse Multiplier a Dilution Factor with ISTIs

Sigral l: wTWl A, Wavelength $=220 \mathrm{~mm}$

Peak RetT ime Type \# [miл]			Width [miл]	Area		Height		Area	
			m m J	* 5	[mid	1J	品		
1	23.001	BE		2.3299	1.26	38 e 4		1.81721	49.5305
2	41.777	MM	3.9866	1.29	43e4		54.03196	50.4695	
Total	5			2.56	8le4		5.84917		

Data File 1 :' LC'201ll2',HZL'HZL-4-104, HZL-4-104 2011-12-08 18-57-33'002-0201.I
Sampile Name: HZL-4-104

Leq. Operator : HZL	Seq. Line : 2
heq. Inst rument : Inst rument l	Locatior : Wial 2
Injection late : 12/8/2011 7:10:08 PM	Ілј : $\quad 1$
	Iлj Volwme : 5 pl

 220NM-55MIN.M
Last charged : 9/13/2011 11: 19:37 M by FX
 4SH-20-80-10ML-220NM-5 5M IN .M
Last changed : 12/15/2011 10:42:24 M by FX (modified after loading'

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	1.0000

Jse Multiplier a Iilution Factor with ISTIs

Signal l: wTill A, Wavelength=220 ת

$\begin{aligned} & \text { Peak RetT ime Type } \\ & \begin{array}{l} \# \\ \text { [min] }] \end{array} \end{aligned}$			Width [miл]	drea		Height	Area	
			mili	* 5	[m40]]	吕		
1	23.214	M		3.0470	985	87988	53.95921	94.8201
2	43.838	MM	4.3166		90503	2.08077	5.1799	
Total				1.04	38 e 4	56.03997		

Cata File I: 'SC'2011ll'HZL'HZL-3-112B'HZL-3-112 2011-11-08 19-09-15, 036-0101.I
Samele Name: HZL-3-ll2B

heq. Operator : hel	Seq. Liлe : $\quad 1$
heq. Inst rument : Inst rument l	Locatios : Wial 36
Injection Inate : 11/8/20ll 7:ll: ll PM	Iлj : $\quad 1$

 220NM.M
Last changed : 10/20/2011 6: 42:48 PM by HZL
 (ASH-30-70-10ML-220MM.M)
Last changed : 11/8/2011 7:44:47 PM by THL (modified after loading)

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Milution	$:$	1.0000

Jse Multiplier a Iilution Factor with ISTIs

Signal l: wTill A, Wavelength=220 תn

Peak RetT ime Type \# [ліл]			Width		Area	Height	Area
			[min]	milu	* 5	[miv	吕
1	7.788	UB	0.6386	2180	0.77393	51.76181	50.5390
2	25.448	M	3.1224	213	4.25659	11.39201	49.4610
Totals	5 :			4315	5.03052	63.15382	

Data File D:', LC'201lll'HZL'HZL-4-90'HZL-4-90 2011-12-01 2l-24-53'001-0201.1
Sample Tame: HZL-4-90

Signal $1: ~ W T W l A, ~ W a v e l e n g t h=220 ~ ת m ~$

Peak RetT ime Type \# [miл]			Width	drea	Height	Area
			[miл]	m ${ }^{\text {\% }} 5$	[mbl $]$	吕
1	7.769	UB	0.7003	1.16301 l 4	254.6306 .5	96.2474
2	26.039	BEA	2.1365	453.44806	2.48461	3.7526
Totals :				1.20835 e 4	257.11526	

 Sample Hame: HZL-4-85A

deq. Operator	HZL	Seq. Line :	2
deq. Inst rument	Inst rument 1	Location :	Wial 1
Injection Date	11/25/2011 9:05:19 PM	Ілј	1
		Inj Volwme :	5 pl

 $220 \mathrm{WM} . \mathrm{M}$
Last charged : 9/15/2011 8:42:49 3Mby THL
 25H-30-70-10ML-220NM.M'
Last charged : 9/24/2012 10: 15:51 M by FX Imodified after loading

Sorted By	:	Sigral
Multiplier		1. 0000
Dilutiog		1. 0000
Use Multipl		tor wit

Sigral $1:$ wTil A, Wavelength $=220 \mathrm{~nm}$

(5r)

Samile Name: HZL-4-103A

Acq. Operator	HZL	Seq. Line	2
4cq. Inst rument	Inst rument 1	Locatiog	Wial 35
Injection liate	12/8/2011 9:50:21 4M	Ілј	1
		j Volume	5 pl

 $220 \mathrm{MM}-60 \mathrm{MIN} . \mathrm{M}$
Last charged : 12/7/2011 9:20:12 PM by TMC
 2ПH-15-85-10ML-220\#M-60MIN.M)
Last changed : 12/15/20ll 9:55:50 $2 M$ by FX

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Dilution	$:$	l. 0000
Dse Multiplier a gilution Factor with ISTIs		

Signal l: vTol 2, Wavelength $=220 \mathrm{~m}$

Peak \#	RetT ime	Type	Width	Area	Height	Area
	[miת]		[min]	malj ${ }^{\text {\% }}$		\%
1	31.125	BU	0.9243	440.21582	6.08338	3.2697
2	34.408	UB	1.7225	1.30233 e 4	111.48381	96.7303
Totals				1.34635 e 4	117.56719	

Samile Name: HZL-4-96-1

deq. Operator : HZL	Seq. Line : $\quad 1$
Leq. Inst rument : Instrument l	Locatior : Vial 2
Irjection late : $12 / 3 / 2011$ 10:30:18 M	Ілј: $\quad 1$
	Inj Volume : 5 pl

Last charged : 8/29/2011 3:56:33 PM by HZL
 25H-20-80-10ML-220円M.M
Last charged : 8/14/2012 5:40:15 PM by THL (modified after loading)

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Milution	$:$	1.0000

Use Multiplier a Dilution Factor with ISTIs

Sigral l: vTil A, Waveleggth=220 תm

Peak RetT ime Type \# [miл]			Width	Area	Height	Area
			[miл]	mulJ ${ }^{\text {a }} 5$	[m ¢ $\mathrm{J}^{\text {d }}$	品
1	15.398	BB	1.2078	105.5.41504	13.53992	49.7545
2	31.463	MM	2.5478	1075.49463	7.03542	50.2354
Totals	5 :			2140.90967	20.57534	

 Samile Tame: HZL-4-lllB-1

4eq. Operator	hel	Seq. Liлe : 2
heq. Inst rument	Inst rument l	Locatior : Vial l
Injection late	12/15/2011 10:03:57 3M	Ілј : $\quad 1$
		Iлj Volume : 5 pl

 10ML-220MM-40MIN. M
Last changed : 8/29/2011 6:08:43 PM bY HZL
 (ASH-20-80-10ML-220NM-40MIN.M!
Last changed : 8/14/2012 5:42:05 PM by THL
(modified after loading)

Area Percent Report

Sorted By	$:$	Signal
Multiplier	$:$	1.0000
Milution	$:$	1.0000

Jse Multiplier a Dilution Factor with ISTIs

Signal l: wTill A, Wavelength=220 תn

Peak RetT ime Type \# [ліл]			Width		Area	Height	Area
			[min]	milu	* 5	[miv	吕
1	14.893	BE	1.2117	485	2.64600	51.79405	92.7808
2	30.869	M	2.4113		7.57892	2.60980	7.2192
Totals				5230	0.22491	64.40385	

Sample Name: hzl-5-120423

Acq. Operator	hel	Seq. Line	1
Leq. Inst rument.	Inst rument l	Locatios	Vial 41
Injection Date	5/2/2012 4:09:01 PM	Іл	1
		Iתך Volume	5 pl

 ML-220WM.M
Last changed ; 5/2/2012 3:53:21 PM by hel
 DA.M ($2 \mathrm{DH} \mathrm{H}-20-80-1 \mathrm{ML}-220 \mathrm{DM}$. C)
Last changed : 5/16/2012 7:38:12 PM by FX


```
Area Percent Report
```


Sorted By		Sigral
Multiplier		1.0000
Dilution		1. 0000
IJse Multipli		tor wi

Sigral l: wWi 1 , Wavelength=220 m

Samile Name: HZL-5-122

 220円M-20MII. M
Last changed : 5/16/2012 5:03:19 PM by HZL
 2DH-20-80-1 $\mathrm{HL}-220 \mathrm{MH}-20 \mathrm{MIN}$. M
Last charged : 5/15/2012 7:36:53 PM by FK
|modified after loading'

Area Percent Report

Sorted By	$:$	Sigral
Multiplier	$:$	1.0000
Dilution	\vdots	l. 0000
Jse Multiplier a Dilutior Factor with ISTDs		

Sigral l: wTil A, Wavelength=220 תm

Peak Ret ime Type	Width	drea	Height	Area
\# [miл]	[min]	mivo ${ }^{\text {\% }}$	[m 20]]	吕
18.155 BU	0.3757	410.32269	16.68796	7.7467
$2 \quad 10.985 \mathrm{BE}$	0.4499	4886.43262	163.83717	92.2533
Totals :		5296.75 .31	180.52513	

