Inhibitory Act of Selenoprotein P on Cu^+/Cu^{2+} -induced tau aggregation and neurotoxicity

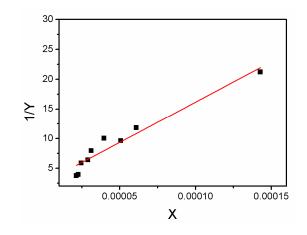
Xiubo Du, ^a Youbiao Zheng, ^a Zhi Wang, ^b Yijing Chen, ^b Rui Zhou, ^a Guoli Song, ^a Jiazuan Ni ^b* and Qiong Liu* ^a

^a Department of Marine Biology, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen 518060, China. Tel: 86-755-26534152; E-mail: liuqiong@szu.edu.cn.
^b College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China. Tel: 86-755-26536629. E-mail: jzni@szu.edu.cn.

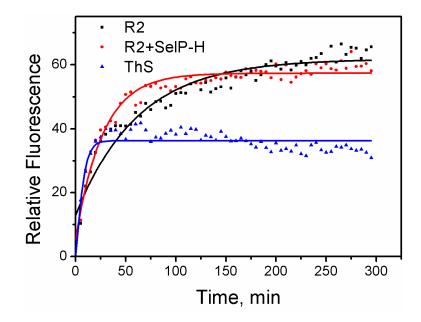
Estimation of Cu⁺ Binding Constants of tau-R2

Bicinchoninic acid is a colorimetric Cu⁺ chelator, which can form a stable purple complex with Cu⁺ in a 2:1 ratio as Cu⁺(BCA)₂ that exhibits absorption maxima at 562 nm (ϵ = 7900 M⁻¹·cm⁻¹) and 358 nm (ϵ = 42 900 M⁻¹·cm⁻¹).¹ Therefore, the transfer of Cu⁺ from BCA to tau-R2 was evaluated by monitoring the changes in UV-Vis absorbance of Cu⁺(BCA)₂ at 562 nm. At the wavelength between 450 nm and 650 nm, neither apo- nor copper-bound proteins gave any absorption, while UV absorption from BCA occurs at $\lambda \leq 370$ nm.

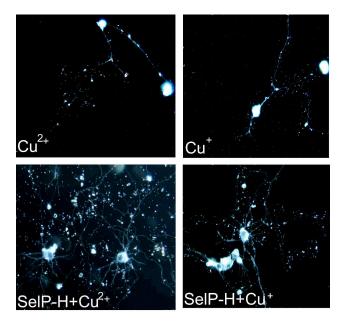
Experiment of competition reaction between tau-R2 and BCA was carried out under anaerobic conditions as described previously.² Briefly, Cu^+ solutions in the form of $[Cu(MeCN)_4]PF_6$ were mixed with BCA in a molar ratio of 1:3 in Tris/HCl buffer (50 mM, pH 7.4) as a stock solution. Protein solutions₁ at various concentrations were then mixed with the stock solution to give rise to final concentrations of Cu^+ of 20 μ M and BCA of 60 μ M. Ascorbic acid was kept at 1 mM to maintain the oxidation state of Cu^+ in the reaction mixture. The results were corrected for dilution and base-line absorbance at 800 nm.

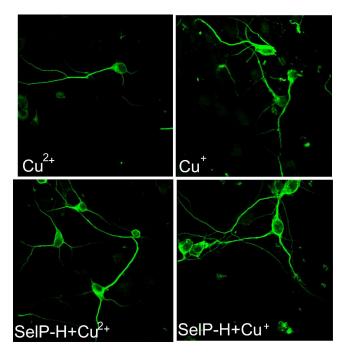

The absorbance data obtained in tau-R2 titrated into $Cu^+(BCA)_2$ (Fig. 1) were used to calculate the binding constants for Cu^+ -tau-R2 complex, using the following equation,

$$\frac{1}{Y} = \frac{1}{n} + \frac{1}{nK_a} \cdot X \tag{Eq.1}$$


where the fractional saturation $Y = (\text{concentration of Cu}^+ \text{ bound to P})/(\text{total concentration of all forms of P}), X = \frac{[BCA]^2}{[Cu^+(BCA)_2]}$, K_a is the intrinsic binding constant, n is the stoichiometry value. The detailed information for the calculation of K_a and n value could be found in Table S1. The slope of the plot of 1/Y versus X (Fig. S1) gives $\log K_a = 1.9 \times 10^{-5}$ (correlation coefficient r = 0.94, n = 0.34, Fig. 1, Fig. S1 and Table S1). Using the known value for the association constant of Cu(BCA)₂ of $\log \beta_2 = 17.30$, binding constants of $K_{tau-R_2}=12.58$ was calculated for Cu⁺ binding to tau-R2.

Reference


- Xiao, Z.; Donnelly, P. S.; Zimmermann, M.; Wedd, A. G. Transfer of copper between bis(thiosemicarbazone) ligands and intracellular copper-binding proteins. insights into mechanisms of copper uptake and hypoxia selectivity. *Inorg. Chem.* 2008, 47, 4338-47.
- Yatsunyk, L. A. and Rosenzweig, A. C. Cu(I) binding and transfer by the N terminus of the Wilson disease protein. *J Biol Chem*, 2007, 282, 8622-8631.


Figure S1 Plot of 1/Y versus of X to give the intrinsic binding constants and binding number of tau-R2 for Cu^+ . $X = \frac{[BCA]^2}{[Cu^+(BCA)_2]}$ $Y = \frac{[nCu^+ - P]}{[P]_T}$

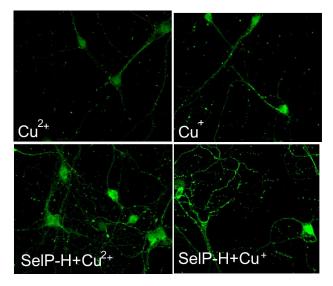

Figure S2. Fibrillation of tau-R2 in the absence of copper ions. Tau-R2 (15 μ M) was incubated with heparin (3.8 μ M) in the presence or absence of SelP-H (10 μ M). All experiments were carried out in 50 mM Tris-HCl, 100 mM NaCl, containing 20 μ M ThS at pH 7.4, 37 °C. λ_{ex} =440 nm, λ_{em} =480 nm. Solid lines represent the fits of the data to Boltzmann equation.

Figure S3. Typical dark field microscopy (DFM) images of primary neurons upon 12 h treatment with copper ions (3.5 μ M) in the presence or absence of SelP-H (5 μ M). Cu⁺ was prepared by reducing CuSO₄ with 1 mM H₂Asc.

Figure S4. Typical confocal images showing the level and distribution of MAP-2 in primary neurons upon 12 h treatment with copper ions (3.5 μ M) in the presence or absence of SelP-H (5 μ M). Cu⁺ was prepared by reducing CuSO₄ with 1 mM H₂Asc.

Figure S5. Typical confocal images showing the level and distribution of synaptophysin in primary neurons upon 12 h treatment with copper ions (3.5 μ M) in the presence or absence of SelP-H (5 μ M). Cu⁺ was prepared by reducing CuSO₄ with 1 mM H₂Asc.

Table S1 Determination of intrinsic binding constants and binding number of tau-R2 for Cu⁺ by competition with BCA for Cu^{+a, b}

[P] _T , μM	0	1	2	5	10	15	30	40	50	60	200
Absorbance	0.2144	0.2116	0.2090	0.2053	0.1977	0.1942	0.1824	0.1698	0.1600	0.1512	0.0738
[Cu ⁺ -2BCA], µM	20	19.7332	19.4926	19.1494	18.4387	18.1104	17.0118	15.8403	14.9245	14.1056	6.8793
[BCA] _f , µM	20	20.5335	21.0147	21.7012	23.1226	23.7792	25.9765	28.3193	30.1511	31.7889	46.2414
[Cu] _f ,×10 ⁻¹¹ , M	0.025	0.0234	0.0221	0.0203	0.0172	0.0160	0.0126	0.0099	0.0083	0.0070	0.0016
[nCu ⁺ -P], μM	0	0.2667	0.5074	0.8506	1.5613	1.8896	2.9882	4.1597	5.0755	5.8944	13.1207
X	0.00002	2.14E-05	2.27E-05	2.46E-05	2.9E-05	3.12E-05	3.97E-05	5.06E-05	6.09E-05	7.16E-05	0.000311
1/Y	n.d.	3.7490	3.9419	5.8783	6.4050	7.9383	10.0393	9.6161	9.8512	10.1791	15.2431
n						0.34					
K _a						1.9E-5					
r						0.9432					

n.d.: not determined

^a Experiments were performed in Tris-HCl (50 mM, pH 7.4) and H₂Asc (1 mM) under anaerobic conditions.

 b Total Cu $^{+}$ and BCA concentration in all equilibrium solutions are 20 and 60 $\mu M,$ respectively.

$$X = \frac{[BCA]^2}{[Cu^+(BCA)_2]}$$
$$Y = \frac{[nCu^+ - P]}{[P]_T}$$