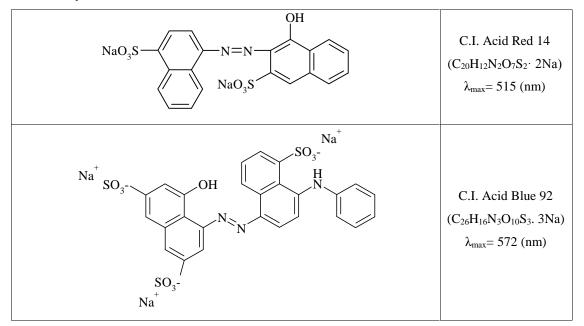
Supporting Information

Application of Carbon Nanotubes Coated Electrodes and Immobilized TiO₂ for Dye Degradation in a Continuous Photocatalytic-Electro-Fenton Process

Elmira Pajootan, Mokhtar Arami^{*}, and Mehdi Rahimdokht

Textile Engineering Department, Amirkabir University of Technology, 424 Hafez Ave, Tehran, 15875-4413, Iran

Corresponding Author


* Mokhtar Arami, Tel: +98 2164542614, Fax: +98 2166400245, Email: arami@aut.ac.ir.

		s Using Various Electrodes Mounied with CIVI		1
order	electrode type	modification method	application	ref.
1	pencil graphite (PG)	Immersed into Eppendorf tubes that contained 110 µL of 3000 µg/mL CNTs solution for 1 h in order to form a thin CNTs layer on the PG surface by wet- adsorption	monitoring the interaction between 4-Nonylphenol and DNA	1
2	fluorine doped tin oxide (FTO)	a) Chemical, b) Thermal chemical vapor deposition and c) Plasma enhanced chemical vapor deposition	solar cells	2
3	glassy carbon	Polishing with alumina slurries, washing and sonicating. then 1 mg/mL CNTs:H ₂ SO ₄ was cast on the electrode surface and dried at 200 °C for 3 h	NADH detection	3
4	glassy carbon disk (GCD)	Dispersion of CNTs in 1 mL DMF was cast on GCD and dried at room temperature	electrochemical detection of trace insulin	4
5	glassy carbon	Dispersion of CNTs in 1 mL dimethylformamide and dried at room temperature	detection of 2,4,6-trinitrotoluene	5
6	carbon fiber	Dipping the electrode into DMF solution containing 4 mg/mL CNTs for 20 s, drying for 30 min, followed by three, 2 s dippings (with an intermediate 10 min drying)	determination of hydrogen sulfide	6
7	glassy carbon	1 mg CNTs was dispersed in an aqueous 0.1% Nafion solution and was dropped on the GC electrode surface and then the solvent was evaporated under an infrared heat lamp	detection of phenolic estrogenic compounds	7
8	graphite powder	Graphite powder, CNTs and mineral oil were mixed. Then the osmium redox polymer (10 mg/mL) was spread over its surface. The cellular paste was spread on the electrode and it was covered with a dialysis membrane	microbial biosensor	8
9	edge plane pyrolytic graphite	Dropping the dispersion of CNTs onto the polished electrode	determination of paracetamol	9
10	pyrolytic graphite	Carboxylated CNTs dispersion was cast onto the surface of a polished (PG)	reduction of nitrobenzene	10
11	graphite plates	Two components of epoxy conductive adhesive were blended on graphite plates. CNTs and carbon nanopowder were sprayed separately on the electrodes and dried	enhanced power generation	11
12	graphite plates	Ultrasonication of solution containing CNTs/CTAB and further electrodeposition using DC voltage of 17.5 (V)	methylene blue detection and enhanced capacity	12

Table S2. Studies Used Modified Graphite Electrodes for Electrochemical Wastewater Treatment

order	graphite type	used as	modified with	modification method	pollutant	ref.
1	graphite	cathode	polypyrrole/ anthraquinone disulphonate composite film		amaranth azo dye	13
2	commercial graphite felt	cathode		Anodization in a phosphate buffer (pH=6.88) at 1.8V vs. SCE for 5 min, followed by cathodization at -1.5V vs. SCE for 1 min/ Dipping the graphite in a solution 0.5 M of H ₂ SO ₄ for 30 min	wastewater from the regeneration of ion-exchange resin towers by a chemical industry	14
3	graphite felt	cathode		Electrochemically oxidized in H ₂ SO ₄ solution	drinking water	15
4	graphite powder	cathode	polytetrafluoro ethylene (PTFE)	Graphite powder and PTFE dispersion were mixed and ethanol was added as solvent at 80 °C. Then it was pulverized to form a sheet which was pressed onto a stainless steel mesh under a pressure of 15 MPa for 3 min. Then it was calcined at 300 °C for 2h and immersed in acetone and water five times, followed by air drying	C.I. Acid Red 2	16
5	expanded graphite	anode	Attapulgite	The dispersed acid activated attapulgite was added to expanded graphite and dried at 105 °C for 3 h, and pressed with a performing machine	textile wastewater	17
6	CNTs or graphite	cathode	nitrogen functionalized CNTs	CNTs (or graphite) and PTFE were dispersed. Ethanol was added as solvent and mixed at 80 °C. PTFE cake was pulverized to form a thin film and pressed onto stainless steel mesh under the pressure of 15MPa for 3 min	methyl orange	18
7	expanded graphite	working electrode	palygorskite	EG and paraffin and palygorskite were mixed and heated to 65 °C to melt the paraffin. Then it was filled into a glass tube	phenol	19
8	graphite plates	cathode	activated carbon- PTFE or carbon nanotube- PTFE	Activated carbon or carbon nanotube, PTFE (0.84 g), distilled water and n- butanol were mixed, heated at 80 °C and sintered at 350 °C for 15 min	C.I. Acid Yellow 36	20
9	graphite plate	cathode	CNTs	Ultrasonication of solution containing CNTs/CTAB and further electrodeposition using DC voltage of 17.5 (V)	Acid Red 14, Acid Blue 92	21

Table S3. Dyes Structures

		par	ameters		Na ₂ SO ₄ as electrolyte				NaCl as electrolyte				
run order	time	[Fe ³⁺]		CD (X3,	[C ₀] (X ₄ ,	decolor (%		COD	EEC	decolor (%		COD removal	EEC
	(X ₁ , min)	(X ₂ , mM)	$(A3, mA/cm^2)$	(A4, mg/L)	AR14	AB92	(%)	(kWh/q_{COD})	(kWh/σ_{COD})	AR14	AB92	(%)	(kWh/g_{COD})
1	120	0.15	12.95	50	72.18	60.30	62.88	0.426	79.68	85.31	70.71	0.378	
2	100	0.2	15.30	70	67.51	35.44	53.77	0.320	67.10	68.89	58.56	0.294	
3	80	0.05	12.95	50	47.64	50.70	40.27	0.443	57.00	68.54	50.93	0.350	
4	80	0.15	12.95	50	69.04	58.79	55.76	0.320	70.42	82.96	64.59	0.276	
5	60	0.2	10.60	70	43.15	40.65	37.01	0.246	53.35	58.01	48.02	0.190	
6	100	0.2	10.60	30	73.27	71.59	63.99	0.526	79.01	70.24	69.84	0.482	
7	60	0.1	10.60	70	45.51	28.01	37.09	0.246	44.66	45.42	38.57	0.236	
8	60	0.2	15.30	70	60.70	23.68	49.71	0.207	57.67	60.08	50.30	0.205	
9	40	0.15	12.95	50	62.48	33.93	50.99	0.175	57.48	47.10	52.13	0.171	
10	80	0.15	8.25	50	56.63	36.16	46.85	0.333	55.07	73.13	52.89	0.295	
11	60	0.1	10.60	30	69.64	27.11	43.78	0.461	58.52	71.59	53.37	0.378	
12	80	0.15	12.95	10	79.89	65.64	77.32	0.900	80.50	92.92	87.35	0.758	
13	80	0.15	17.65	50	62.57	19.74	52.54	0.381	65.46	78.64	58.42	0.343	
14	80	0.15	12.95	50	69.94	56.79	54.73	0.326	71.55	83.09	63.87	0.279	
15	80	0.15	12.95	50	71.24	56.05	55.57	0.321	69.54	81.44	63.01	0.283	
16	80	0.15	12.95	50	68.84	57.93	54.89	0.325	72.83	83.68	65.65	0.272	
17	80	0.15	12.95	50	70.58	55.99	56.51	0.316	70.90	82.53	64.93	0.275	
18	60	0.2	15.30	30	67.24	28.25	53.77	0.425	84.18	56.37	75.96	0.301	
19	100	0.1	15.30	30	62.78	55.69	52.69	0.723	63.89	98.26	60.03	0.634	
20	80	0.25	12.95	50	52.13	64.96	47.35	0.377	72.68	49.85	65.98	0.270	
21	80	0.15	12.95	50	71.22	59.29	56.53	0.316	70.42	82.96	64.17	0.278	
22	60	0.1	15.30	70	55.11	20.78	41.71	0.247	47.64	45.24	41.47	0.249	
23	100	0.2	15.30	30	77.33	40.93	67.51	0.574	87.67	68.79	78.32	0.486	
24	100	0.2	10.60	70	64.18	62.56	54.50	0.279	63.62	69.05	57.58	0.264	
25	60	0.2	10.60	30	49.98	32.09	41.51	0.486	74.66	54.16	66.74	0.303	
26	80	0.15	12.95	90	58.19	45.54	38.25	0.316	57.50	69.49	38.57	0.329	
27	60	0.1	15.30	30	63.23	44.27	51.99	0.439	58.47	86.56	54.75	0.417	
28	100	0.1	10.60	70	54.53	46.06	44.73	0.340	55.63	62.73	49.84	0.305	
29	80	0.15	12.95	50	69.19	57.32	54.75	0.326	70.81	81.56	64.63	0.276	
30	100	0.1	10.60	30	73.15	43.24	58.68	0.573	62.37	96.97	60.24	0.559	
31	100	0.1	15.30	70	56.49	27.43	44.84	0.383	59.38	66.33	53.51	0.321	

Table S4. CCD Matrix for the PEF-TiO₂ Process

			Na ₂ SO ₄ as	electrolyte		NaCl as electrolyte					
		decoloriz	ation (%)	COD EEC		decoloriz	ation (%)	COD	EEC		
		AR14	AB92	removal (%)	(kWh/g _{COD})	AR14	AB92	removal (%)	(kWh/g _{COD})		
1	constant	70.0098	57.449	55.5354	0.321289	70.9244	82.606	64.4081	0.277022		
2	t	3.9193	7.952	4.4963	0.060836	4.3298	8.3434	3.9963	0.061671		
3	[Fe ³⁺]	1.3279	2.964	2.5169	-0.02007	6.1699	-4.3704	5.1527	-0.03067		
4	CD	2.0362	-4.487	1.9206	0.010682	2.2897	1.3907	1.6565	0.011899		
5	[C ₀]	-5.5355	-4.114	-6.1948	-0.1295	-6.9051	-7.2509	-9.1237	-0.09811		
6	t^2	-0.6666*	-3.898	-0.0215*	-0.00761*	-0.9296*	-4.6345	-1.1315*	-0.00229*		
7	$[Fe^{3+}]^2$	-5.0272	-1.219*	-3.302	0.019797	-1.8638	-6.387	-1.8723	0.006594		
8	CD^2	-2.5977	-8.689	-1.8309	0.006632^{*}	-3.0085	-2.2137	-2.5721	0.008762		
9	$[C_0]^2$	-0.2389*	-1.779^{*}	0.1916*	0.069324	-0.8236*	-0.8836*	-0.7458*	0.064813		
10	t.[Fe ³⁺]	2.9847	2.1^{*}	1.9627	-0.01826	-0.278^{*}	-1.6945	-0.7612*	-0.0007^{*}		
11	t.CD	-2.4391	-3.317	-2.5549	0.025156	0.0393*	-0.9881*	-0.1788*	0.003836^{*}		
12	t.[C ₀]	0.1129*	-1.335*	-1.218*	-0.0131	1.5816	-0.4572*	1.469*	-0.02865		
13	[Fe ³⁺].CD	2.9634	-5.145	1.2996*	-0.01149*	1.1102*	-1.0628*	0.8275^{*}	-0.006*		
14	$[Fe^{3+}].[C_0]$	1.5555	2.343*	0.4361*	0.001357*	-2.9897	8.758	-1.9636	0.016154		
15 * TT	$CD.[C_0]$	1.7446	-4.067	-0.082*	-0.00416*	-0.3201*	-0.7311*	-0.5638*	-0.00272*		

Table S5. Coefficients of Significant Factors to the Response Functions

* The insignificant parameters

	treatment method	pollutant	reactor	electrode material	electrolyte	flow rate or time	CD (mA/cm ²)	decolorization (%)	ref.
1	PEF- TiO2	Acid Red 14 (6 mg/L)	batch (1 L)	anode: Pt sheet cathode: graphite- CNTs/ immobilized TiO ₂ on sand blasted glass plates by sol- gel dip-coating	Na ₂ SO ₄ 0.05 M/ Fe ³⁺ 0.2 mM	120 min	2.77	99	22
2	Electro- Fenton	simulated industrial textile wastewater	continuous (1.8 L)	anode: iron cathode: stainless steel	NaCl 25 g/L	0.33 L/h	123.97	99.3	23
3	PEF- TiO ₂	Direct Yellow 12 (50 mg/L)	batch (2.5 L)	anode: Pt sheet cathode: CNT- PTFE/ immobilized ZnO nanoparticles on glass plates	Na ₂ SO ₄ 0.05 M/ Fe ³⁺ 0.2 mM	70 min	34.78	97	24
4	Electro- Fenton	Lissamine Green B (8.5 mg/L)	continuous bubble reactor (0.675 L)	anode, cathode: graphite bars (surface area of 1.27 cm ²)	Na ₂ SO ₄ 0.01 M/ Fe ²⁺ 150 mg/L	0.048 L/h	potential difference (15V)	80	25
5	PEF- TiO ₂	Acid Red 14 and Acid Blue 92 (48.70 mg/L)	continuous bubble reactor (1 L)	anode: graphite cathode: graphite- CNTs/ immobilized TiO ₂ on UV resistant silicone polymer	NaCl 1 g/L/ Fe ³⁺ 0.15 mM	0.825 L/h	12.95	AR14: 94.47 AB92: 98.98	this study

 Table S6. Comparison of the Present Study with Other Researches

For the binary solutions, the extension of Beer-Lambert law (eq S1) was used:^{26,27}

$$A_{\lambda_j} = \sum_{i=1}^2 \varepsilon_{\lambda_j}^i C^i L \tag{S1}$$

in which, A_{A_j} is the absorbance of a mixture of 2 components at the *j*th wavelength, C^i is the concentration of the *i*th component, $\varepsilon_{A_j}^i$ is the extinction coefficient of the *i*th component at the *j*th wavelength, and L is the cell path length. According to this expression, two equations and two readings of absorbance at two different wavelengths are needed to determine the concentration of two dyes in a mixture. Finally, the involving of the resolution of a matrix system is expressed as eq S2 (assuming L = 1 cm): ^{26,27}

$$\begin{bmatrix} A_{\lambda_R} \\ A_{\lambda_B} \end{bmatrix} = \begin{bmatrix} \varepsilon_{\lambda_R}^R & \varepsilon_{\lambda_R}^B \\ \varepsilon_{\lambda_B}^R & \varepsilon_{\lambda_B}^B \end{bmatrix} \times \begin{bmatrix} C^R \\ C^B \end{bmatrix}$$
(S2)

The resolution of this two-equation system gives the expressions (eq S3) for the calculation of the concentrations of AR14 (C^{R}) and AB92 (C^{B}) in the mixture: ^{26,27}

$$C^{B} = \frac{A_{\lambda_{B}}\varepsilon^{R}_{\lambda_{R}} - A_{\lambda_{R}}\varepsilon^{R}_{\lambda_{B}}}{\varepsilon^{B}_{\lambda_{B}}\varepsilon^{R}_{\lambda_{R}} - \varepsilon^{B}_{\lambda_{R}}\varepsilon^{R}_{\lambda_{B}}}; \quad C^{R} = \frac{A_{\lambda_{R}}\varepsilon^{B}_{\lambda_{B}} - A_{\lambda_{B}}\varepsilon^{B}_{\lambda_{R}}}{\varepsilon^{B}_{\lambda_{B}}\varepsilon^{R}_{\lambda_{R}} - \varepsilon^{B}_{\lambda_{R}}\varepsilon^{R}_{\lambda_{B}}}$$
(S3)

REFERENCES

- Karadeniz, H.; Caliskan, A.; Uguz, C. Electrochemical monitoring of the interaction between 4-nonylphenol and DNA by graphite and carbon nanotube modified graphite electrodes. *Anal. Sci.* 2010, 26, 1065-9.
- (2) Bissett, M.; Barlow, A.; Shearer, C.; Quinton, J.; Shapter, J. G. Comparison of carbon nanotube modified electrodes for photovoltaic devices. *Carbon* **2012**, *50*, 2431-2441.
- (3) Musameh, M.; Wang, J.; Merkoci, A.; Lin, Y. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. *Electrochem. Commun.* 2002, *4*, 743-746.
- (4) Wang, J.; Musameh, M. Electrochemical detection of trace insulin at carbon-nanotubemodified electrodes. *Anal. Chim. Acta* 2004, *511*, 33-36.
- (5) Wang, J.; Hocevar, S. B.; Ogorevc, B. Carbon nanotube-modified glassy carbon electrode for adsorptive stripping voltammetric detection of ultratrace levels of 2,4,6trinitrotoluene. *Electrochem. Commun.* 2004, *6*, 176-179.
- (6) Lawrence, N. S.; Deo, R. P.; Wang, J. Electrochemical determination of hydrogen sulfide at carbon nanotube modified electrodes. *Anal. Chim. Acta* 2004, *517*, 131-137.
- (7) Vega, D.; Agüí, L.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J. M. Electrochemical detection of phenolic estrogenic compounds at carbon nanotubemodified electrodes. *Talanta* 2007, *71*, 1031-1038.
- (8) Timur, S.; Anik, U.; Odaci, D.; Gorton, L. Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes. *Electrochem. Commun.* 2007, *9*, 1810-1815.
- (9) Goyal, R. N.; Gupta, V. K.; Chatterjee, S. Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode. *Sens. Actuators, B* 2010, *149*, 252-258.
- (10) Li, Y.-P.; Cao, H.-B.; Liu, C.-M.; Zhang, Y. Electrochemical reduction of nitrobenzene at carbon nanotube electrode. *J. Hazard. Mater.* 2007, *148*, 158-163.
- (11) Mohanakrishna, G.; Krishna Mohan, S.; Venkata Mohan, S. Carbon based nanotubes and nanopowder as impregnated electrode structures for enhanced power generation: Evaluation with real field wastewater. *Appl. Energy* **2012**, *95*, 31-37.

- (12) Pajootan, E.; Arami, M. Structural and electrochemical characterization of carbon electrode modified by multi-walled carbon nanotubes and surfactant. *Electrochim. Acta* 2013, *112*, 505-514.
- (13) Zhang, G.; Yang, F.; Gao, M.; Fang, X.; Liu, L. Electro-Fenton degradation of azo dye using polypyrrole/anthraquinonedisulphonate composite film modified graphite cathode in acidic aqueous solutions. *Electrochim. Acta* 2008, *53*, 5155-5161.
- (14) Panizza, M.; Cerisola, G. Removal of organic pollutants from industrial wastewater by electrogenerated Fenton's reagent. *Water Res.* **2001**, *35*, 3987-3992.
- (15) Miao, J.; Zhu, H.; Tang, Y.; Chen, Y.; Wan, P. Graphite Felt electrochemically modified in H₂SO₄ solution used as a cathode to produce H₂O₂ for pre-oxidation of drinking water. *Chem. Eng. J.*
- (16) Zhou, M.; Yu, Q.; Lei, L. The preparation and characterization of a graphite–PTFE cathode system for the decolorization of C.I. Acid Red 2. *Dyes Pigm.* **2008**, *77*, 129-136.
- (17) Kong, Y.; Yuan, J.; Wang, Z.; Yao, S.; Chen, Z. Application of expanded graphite/attapulgite composite materials as electrode for treatment of textile wastewater. *Appl. Clay Sci.* 2009, 46, 358-362.
- (18) Zhang, X.; Fu, J.; Zhang, Y.; Lei, L. A nitrogen functionalized carbon nanotube cathode for highly efficient electrocatalytic generation of H₂O₂ in Electro-Fenton system. *Sep. Purif. Technol.* 2008, 64, 116-123.
- (19) Kong, Y.; Chen, X.; Ni, J.; Yao, S.; Wang, W.; Luo, Z.; Chen, Z. Palygorskite–expanded graphite electrodes for catalytic electro-oxidation of phenol. *Appl. Clay Sci.* 2010, 49, 64-68.
- (20) Khataee, A. R.; Safarpour, M.; Zarei, M.; Aber, S. Combined heterogeneous and homogeneous photodegradation of a dye using immobilized TiO₂ nanophotocatalyst and modified graphite electrode with carbon nanotubes. *J. Mol. Catal. A: Chem.* 2012, 363– 364, 58-68.
- (21) Pajootan, E.; Arami, M.; Rahimdokht, M. Discoloration of wastewater in a continuous electro-Fenton process using modified graphite electrode with multi-walled carbon nanotubes/surfactant. *Sep. Purif. Technol.* 2014, *130*, 34-44.
- (22) Khataee, A. R.; Safarpour, M.; Naseri, A.; Zarei, M. Photoelectro-Fenton/nanophotocatalysis decolorization of three textile dyes mixture: Response surface

modeling and multivariate calibration procedure for simultaneous determination. J. *Electroanal. Chem.* **2012**, 672, 53-62.

- (23) Körbahti, B. K.; Tanyolaç, A. Continuous electrochemical treatment of simulated industrial textile wastewater from industrial components in a tubular reactor. J. Hazard. Mater. 2009, 170, 771-778.
- (24) Khataee, A. R.; Zarei, M. Photoelectrocatalytic decolorization of diazo dye by zinc oxide nanophotocatalyst and carbon nanotube based cathode: Determination of the degradation products. *Desalination* 2011, 278, 117-125.
- (25) Rosales, E.; Pazos, M.; Longo, M. A.; Sanromán, M. A. Electro-Fenton decoloration of dyes in a continuous reactor: A promising technology in colored wastewater treatment. *Chem. Eng. J.* 2009, 155, 62-67.
- (26) Hornero-Méndez, D.; Mínguez-Mosquera, M. I. Rapid spectrophotometric determination of red and Yellow Isochromic Carotenoid Fractions in Paprika and Red Pepper Oleoresins. J. Agric. Food. Chem. 2001, 49, 3584-3588.
- (27) Pajootan, E.; Arami, M.; Mahmoodi, N. M. Binary system dye removal by electrocoagulation from synthetic and real colored wastewaters. J. Taiwan Inst. Chem. Eng. 2012, 43, 282-290.