Supporting Information for

Syntheses and Characteristics of Water-Soluble, Pyridine-Based Poly(aryleneethynylene)s

Kai Seehafer,[†] Markus Bender,[†] S. Thimon Schwaebel[†] and Uwe H. F. Bunz^{*,†,‡}

[†] Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany

[‡]-CAM, Centre of Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany

uwe.bunz@oci.uni-heidelberg.de

Contents

1.	General Informations	2
2.	Synthetic Details and Analytical Data	5
3.	¹ H NMR-Spectra	13
4.	Evaluation of Stern-Volmer Constants	25
5.	Supplemental References	27

1. General Informations

Analytical thin layer chromatography (TLC) was performed on Macherey & Nagel Polygram[®] SIL G/UV254 precoated plastic sheets. Components were visualized by observation under UV light (254 nm or 365 nm) or in the case of UV-inactive substances by using the suitably colouring solutions. The following colouring solutions were used for the visualization of UV-inactive substances:

KMnO₄ solution: 2.0 g KMnO₄, 10.0 g K₂CO₃, 0.3 g NaOH, 200 mL distilled water. Cer solution: 10.0 g Ce(SO)₄, 25 g phosphomolybdic acid hydrate, 1 L distilled water, 50 mL conc. H₂SO₄.

Flash column chromatography was carried out using silica gel S (0.032 mm-0.062 mm), purchased from Sigma Aldrich, according to G. Nill, unless otherwise stated.¹

Melting points (m. p.) were determined in open glass capillaries on a Melting Point Apparatus MEL-TEMP (Electrothermal, Rochford, UK) and are not corrected.

¹**H** NMR-spectra were recorded at room temperature on the following spectrometers: Bruker Avance III 300 (300 MHz), Bruker Avance III 400 (400 MHz) and Bruker Avance III 600 (600 MHz). The data were interpreted in first order spectra. The spectra were recorded in CDCl₃ or D₂O as indicated in each case. Chemical shifts are reported in δ units relative to the solvent residual peak (CHCl₃ in CDCl₃ at $\delta_{\rm H} = 7.27$ ppm, HDO in D₂O at $\delta_{\rm H} = 4.79$ ppm) or TMS ($\delta_{\rm H} = 0.00$ ppm).² The following abbreviations are used to indicate the signal multiplicity: s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), sext (sextet), dd (doublet of doublet), dt (doublet of triplet), ddd (doublet of doublet of doublet), etc., bs (broad signal), m (multiplet). All NMR spectra were integrated and processed using ACD/Spectrus Processor.

¹³C NMR-spectra were recorded at room temperature on the following spectrometers: Bruker Avance III 300 (75 MHz), Bruker Avance III 400 (100 MHz) and Bruker Avance III 600 (150 MHz). The spectra were recorded in CDCl₃ or D₂O as indicated in each case. Chemical shifts are reported in δ units relative to the solvent signal: CDCl₃ [δ_C = 77.16 ppm (central line of the triplet)] or TMS (δ_C = 0.00 ppm).

High resolution mass spectra (HR-MS) were either recorded on a Bruker ApexQehybrid 9.4 T FT-ICR-MS (ESI⁺) or a Finni-gan LCQ (ESI⁺) mass spectrometer at the Organisch-Chemisches Institut der Universität Heidelberg.

IR spectra were recorded on a JASCO FT/IR-4100. Substances were applied as a film, solid or in solution. The obtained data was processed with the software JASCO Spectra anagerTM II.

Elemental analyses were carried out at the Organisch-Chemisches Institut der Universität Heidelberg.

Used **buffer solutions:** pH 1 (HCl/KCl), pH 2 (KH phthalate/HCl), pH 3 (citric acid/NaOH/NaCl), pH 4 (citric acid/NaOH/NaCl), pH 5 (citric acid/NaOH), pH 6 (citric acid/NaOH), pH 7 (KH₂PO₄/Na₂HPO₄), pH 8 (borax/HCl), pH 9 (KH phthalate/NaOH), pH 10 (borax/NaOH), pH 11 (boric acid/NaOH/KCl), pH 12 (Na₂HPO₄/NaOH), pH 13 (glycine/NaOH/NaCl).

Gel Permeation Chromatography (GPC): Number- (M_n) and weight-average (M_w) molecular weights and polydispersities (PDI, M_w/M_n) were determined by GPC versus polystyrene standards. Measurements were carried out at room temperature in chloroform with PSS-SDV columns (8.0 mm x 30.0 mm, 5 µm particles, 10^2 -, 10^3 - and 10^5 - Å pore size) on a Jasco PU-2050 GPC unit equipped with a Jasco UV-2075 UV- and a Jasco RI-2031 RI-detector.

All **absorption and emission spectra** were recorded using a Jasco V660 and Jasco FP6500 spectrometer.

Pictures were taken with a Canon EOS 7D camera equipped with an EF-S 60mm F/2.8 Macro lens.

Fluorescence lifetimes T were acquired by an exponential fit according to the least mean square with commercially available software HORIBA Scientific Decay Data Analyses 6 (DAS6) version 6.4.4. The luminescence decays were recorded with a HORIBA Scientific Fluorocube single photon counting system operated with HORIBA Scientific DataStation version 2.2.

Quantum yields Φ were obtained by the absolute method described in ref.³ using an Ulbricht sphere (band widths excitation: 2 nm; band widths emission: 3 nm). Given Φ for each sample are **average** values of at least two independent measurements. Detailed informations are given in Table 1.

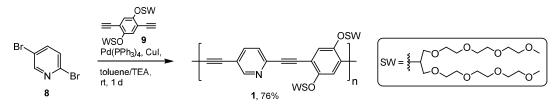
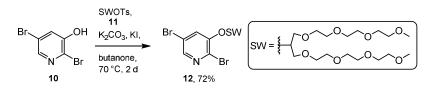

PAE	solvent	absolute absorbence at λ_{max}	excitation [nm]	emission range [nm]	Φ
1	H ₂ O	0.087	440	430-750	0.07
	CH ₂ Cl ₂	0.083	400	390-700	0.23
2	H ₂ O	0.090	410	400-700	0.18
	CH ₂ Cl ₂	0.118	410	400-700	0.23
3	H ₂ O	0.097	450	440-750	0.17
	CH_2CI_2	0.101	420	410-700	0.42
4	H ₂ O, pH 7 ^a	0.094	420	410-750	0.10
5	H ₂ O	0.093	480	470-750	0.01
	CH_2CI_2	0.112	500	490-750	0.05
6	H ₂ O	0.111	490	480-750	0.02
	CH_2CI_2	0.103	500	490-750	0.06
7	H ₂ O	0.105	410	400-750	0.33
<i>(</i>] 1 ()	CH ₂ Cl ₂	0.105	400	390-750	0.38

Table 1. Parameters for the determination of quantum yields Φ.

^{*a*}buffered (see above).

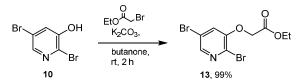
2. Synthetic Details and Analytical Data



Compound **8** *was purchased by Sigma-Aldrich*[®]*.*

Compund **9** *was synthesized according to the literature.*⁴

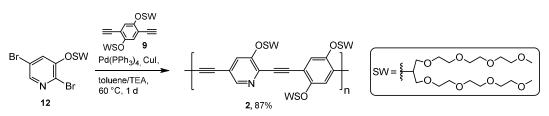
Synthesis of 1. Monomer 8 (178 mg, 0.75 mmol) and monomer 9 (668 mg, 0.75 mmol) were dissolved in degassed toluene/NEt₃ (1.5:1, 15 mL/10 mL). Pd(PPh₃)₄ (43.3 mg, 37 µmol) and CuI (7.1 mg, 37 µmol) were added and the mixture was stirred at ambient temperature for 24 h. Brine and CH₂Cl₂ were added, the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. The crude product was dissolved in CH₂Cl₂ and slowly added to an excess of *n*-hexane. The precipitate was dissolved in H₂O and the resulting mixture was dialyzed against DI H₂O for 3 d. After freezy-drying the residue was again dissolved in CH₂Cl₂ and slowly added to an excess of *n*-hexane to gave 1 as spongy, red-brownish solid (548 mg, 76%). The M_n was estimated to be 2.0 x 10⁴ with a PDI of 2.5. ¹H NMR (600 MHz, CDCl₃): δ = 8.56-8.71 (m, 1 H), 7.77-7.88 (m, 1 H), 7.50-7.59 (m, 1 H), 7.23-7.31 (m, 2 H), 4.49-4.61 (m, 2 H), 3.50-3.86 (m, 56 H), 3.36 (bs, 12 H) ppm. IR (cm⁻¹): v 2868, 1498, 1463, 1408, 1350, 1281, 1200, 1100, 947, 848. Due to low solubility, ¹³C NMR spectrum could not be obtained.


Scheme 2. Synthesis of monomer 12

Compounds 10^5 and 11^4 were synthesized according to the literature.

Synthesis of 12. A solution of compound **10** (1.00 g, 3.95 mmol), tosylate **11** (2.34 g, 4.35 mmol), K₂CO₃ (2.74 g, 19.75 mmol) and KI (32.8 mg, 0.20 mmol) in butanone (20 mL) was stirred at 70 °C for 2 days. Water and CH₂Cl₂ were added, the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel [petroleum ether/ethyl acetate/CH₂Cl₂/MeOH (8/3/1.5/0.5)] to give compound **12** (1.75 g, 2.83 mmol, 72%) as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 8.04 (d, *J* = 2.1 Hz, 1 H), 7.67 (d, *J* = 2.1 Hz, 1 H), 4.55 (m, 1 H), 3.50-3.80 (m, 28 H), 3.36 (s, 6 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 153.22, 142.64, 132.50, 126.60, 119.46, 80.82, 72.06, 71.39, 71.17, 70.77, 70.75, 70.71, 70.66, 59.17 ppm. HR-MS (ESI⁺): *m/z* calcd. for C₂₂H₃₈NO₉Br₂⁺ 620.0887 [M+H]⁺; found 620.0895. C₂₂H₃₇NO₉Br₂ (619.34): calcd. C 42.66, H 6.02, N 2.26, Br 25.80; found C 42.82, H 6.03, N 2.09, Br 25.34.

Scheme 3. Syntheis of monomer 13

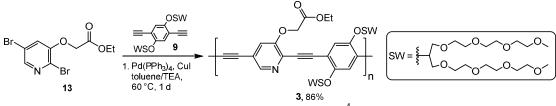


Compound **10** was synthesized according to the literature.⁵

Synthesis of 13. Ethylbromoacetate (526 μ L, 4.74 mmol) was added to a solution of compound 10 (1.00 g, 3.95 mmol) and K₂CO₃ (2.74 g, 19.75 mmol) in butanone (20 mL) and was stirred at ambient temperature for 2 h. Water and CH₂Cl₂ were added, the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried over

MgSO₄, filtered and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel [petroleum ether/ethyl acetate (5/1)] to give compound **13** (1.33 g, 3.92 mmol, 99%) as colorless solid (m.p. 56-58 °C). ¹H NMR (600 MHz, CDCl₃): $\delta = 8.11$ (d, J = 1.9 Hz, 1 H), 7.18 (d, J = 1.9 Hz, 1 H), 4.72 (s, 2 H), 4.29 (q, J = 7.1 Hz, 2 H), 1.31 (t, J = 7.1 Hz, 3 H) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 167.33$, 151.94, 143.25, 131.71, 123.42, 119.46, 66.24, 62.13, 14.26 ppm. HR-MS (ESI⁺): m/z calcd. for C₉H₁₀NO₃Br₂⁺ 337.9022 [M+H]⁺; found 337.9018. C₉H₉NO₃Br₂ (338.98): calcd. C 31.89, H 2.68, N 4.13, Br 47.14; found C 31.94, H 2.73, N 4.32, Br 47.13.

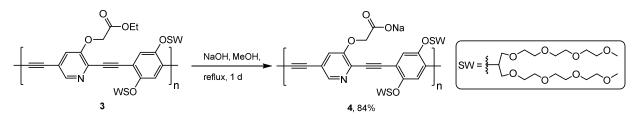
Scheme 4. Synthesis of PAE 2



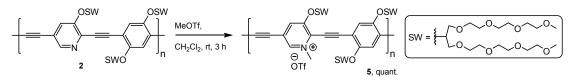
Compound **9** *was synthesized according to the literature.*⁴

Synthesis of 2. Monomer 12 (310 mg, 0.50 mmol) and monomer 9 (446 mg, 0.50 mmol) were dissolved in degassed toluene/NEt₃ (1.5:1, 9 mL/6 mL). Pd(PPh₃)₄ (28.9 mg, 25 µmol) and CuI (4.8 mg, 25 µmol) were added and the mixture was stirred at 60 °C for 24 h. Brine and CH₂Cl₂ were added, the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. Two times, the crude product was dissolved in CHCl₃ and slowly added to an excess of *n*-hexane. The precipitate was dissolved in H₂O, Na₂EDTA (100 mg) was added, and the resulting mixture was dialyzed against DI H₂O for 3 d. After freezy-drying the residue was again dissolved in CHCl₃ and slowly added to an excess of *n*-hexane to gave 2 as sticky, dark orange oil (588 mg, 87%). The M_n was estimated to be 1.5 x 10⁴ with a PDI of 2.7. ¹H NMR (600 MHz, CDCl₃): δ = 8.21-8.37 (m, 1 H), 7.51-7.79 (m, 1 H), 7.15-7.24 (m, 2 H), 4.44-4.70 (m, 3 H), 3.41-3.86 (m, 84 H), 3.34 (bs, 18 H) ppm. IR (cm⁻¹): v 2868, 1498, 1455, 1399,

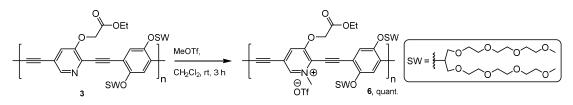
1350, 1199, 1095, 1039, 945, 850. Due to low solubility, ¹³C NMR spectrum could not be obtained.


Scheme 5. Synthesis of PAE 3

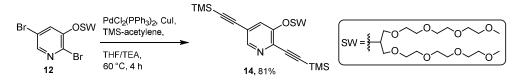
Compound 9 was synthesized according to the literature.⁴


Synthesis of 3. Monomer 13 (170 mg, 0.50 mmol) and monomer 9 (446 mg, 0.50 mmol) were dissolved in degassed toluene/NEt₃ (1.5:1, 9 mL/6 mL). Pd(PPh₃)₄ (28.9 mg, 25 µmol) and CuI (4.8 mg, 25 µmol) were added and the mixture was stirred at 60 °C for 24 h. Brine and CH₂Cl₂ were added, the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. The crude product was dissolved in CHCl₃ and slowly added to an excess of *n*-hexane. The precipitate was dissolved in H₂O, Na₂EDTA (100 mg) was added, and the resulting mixture was dialyzed against DI H₂O for 3 d. After freezy-drying, the residue was again dissolved in CHCl₃ and slowly added to an excess of *n*-hexane to give **3** as sticky, dark orange oil (459 mg, 86%). The M_n was estimated to be 1.4 x 10⁴ with a PDI of 2.4. ¹H NMR (600 MHz, CDCl₃): δ = 8.30-8.42 (m, 1 H), 7.17-7.35 (m, 3 H), 4.82-4.91 (m, 2 H), 4.48-4.62 (m, 2 H), 4.24-4.32 (m, 2 H), 3.48-3.85 (m, 56 H), 3.35 (bs, 12 H), 1.28-1.33 (m, 3 H) ppm. IR (cm⁻¹): v 2869, 1754, 1498, 1456, 1401, 1200, 1094, 947, 851. Due to low solubility, ¹³C NMR spectrum could not be obtained.

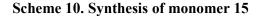
Scheme 6. Synthesis of PAE 4

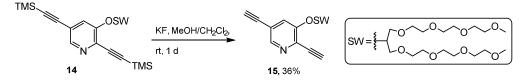

Synthesis of 4. NaOH (150 mg, 3.75 mmol) was added to a solution of polymer 3 (205 mg, 0.19 mmol) in MeOH (40 mL) and the resulting mixture was refluxed for 24 h. The solvent was reduced in vacuo, the residue was dissolved in H₂O and dialyzed against DI H₂O for 3 d. After freezy-drying, the residue was dissolved in MeOH and slowly added to an excess of Et₂O to give 4 as sticky, dark orange oil (171 mg, 84%). The M_n and PDI result from polymer 3. ¹H NMR (600 MHz, D₂O): δ = 8.00-8.45 (m, 1 H), 6.95-7.83 (m, 3 H), 4.49-4.80 (m, 4 H), 3.41-4.07 (m, 56 H), 3.31 (bs, 12 H) ppm. IR (cm⁻¹): v 2869, 1498, 1455, 1400, 1350, 1199, 1093, 945, 850. Due to low solubility, ¹³C NMR spectrum could not be obtained.

Scheme 7. Synthesis of PAE 5

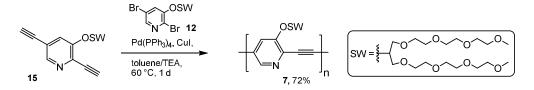

Synthesis of 5. Methyl trifluoromethanesulfonate (6.3 µL, 55.7 µmol) was added to a solution of polymer 2 (37.2 mg, 27.6 µmol) in CH₂Cl₂ (1 mL) and the resulting mixture was stirred at ambient temperature for 3 h. The solvent and MeOTf were evapurated in vacuo to give 5 as red solid (42 mg, quant.). The M_n and PDI result from polymer 2. ¹H NMR (600 MHz, D₂O): $\delta = 8.48-8.93$ (m, 2 H), 7.54-7.64 (m, 2 H), 5.10-5.19 (bs, 1 H), 4.84-4.95 (bs, 2 H), 4.44-4.63 (m, 3 H), 3.50-4.00 (m, 84 H), 3.30-3.34 (m, 18 H) ppm. IR (cm⁻¹): v 2872, 1272, 1223, 1097, 1030, 948, 850, 637. Due to low solubility, ¹³C NMR spectrum could not be obtained.

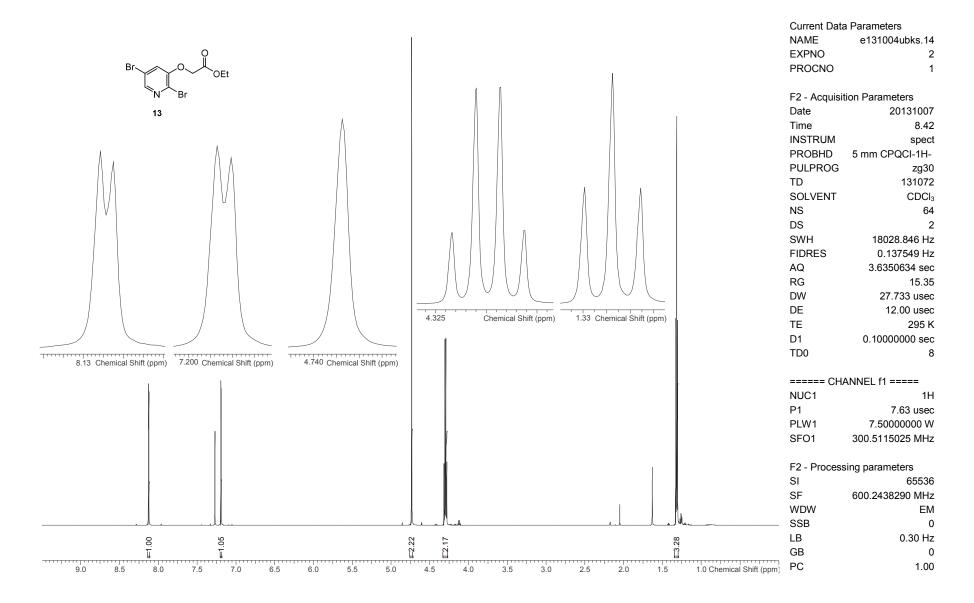
Scheme 8. Synthesis of PAE 6

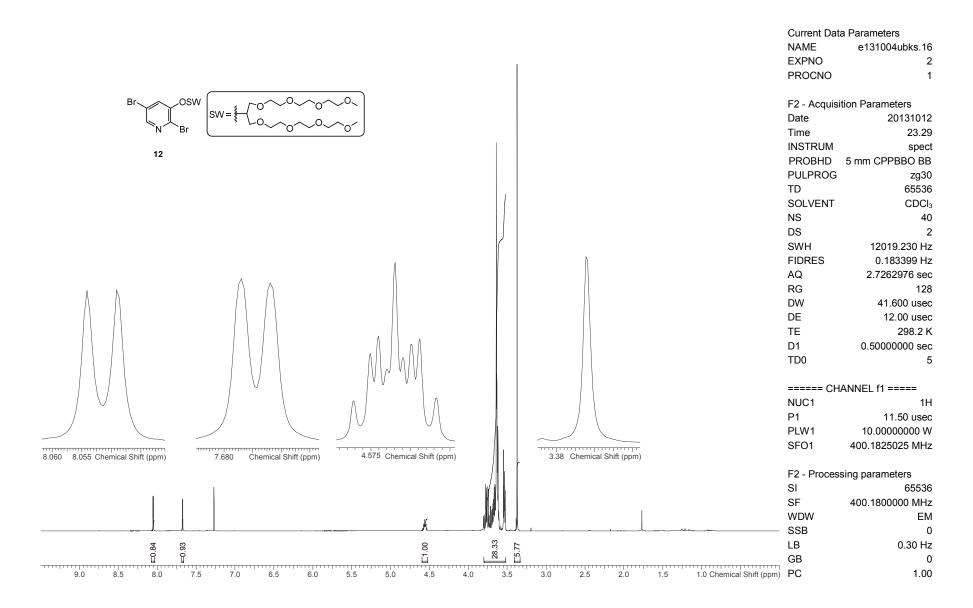

Synthesis of 6. Methyl trifluoromethanesulfonate (42.6 µL, 0.38 mmol) was added to a solution of polymer 3 (201 mg, 0.18 mmol) in CH₂Cl₂ (2 mL) and the resulting mixture was stirred at ambient temperature for 3 h. The solvent and MeOTf were evapurated in vacuo to give 6 as red solid (232 mg, quant.). The M_n and PDI result from polymer 3. ¹H NMR (600 MHz, D₂O): $\delta = 8.46$ -8.92 (m, 1 H), 7.25-7.92 (m, 3 H), 5.14-5.40 (m, 2 H), 4.85-5.00 (bs, 2 H), 4.21-4.72 (m, 5 H), 3.37-4.18 (m, 56 H), 3.18-3.33 (m, 12 H), 1.28-1.49 (m, 3 H) ppm. IR (cm⁻¹): v 2872, 1749, 1262, 1220, 1093, 1029, 851, 636. Due to low solubility, ¹³C NMR spectrum could not be obtained.

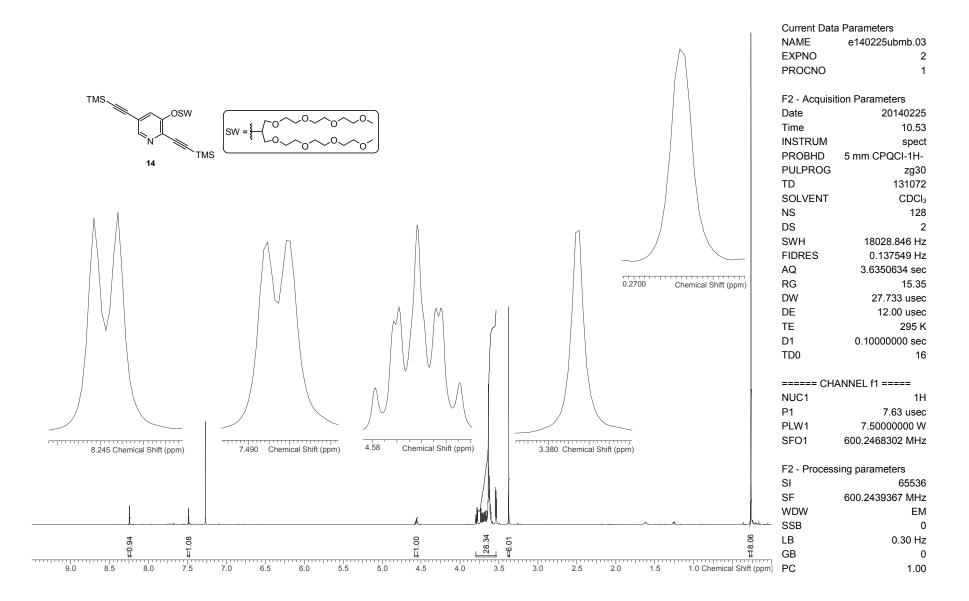

Scheme 9. Synthesis of compound 14

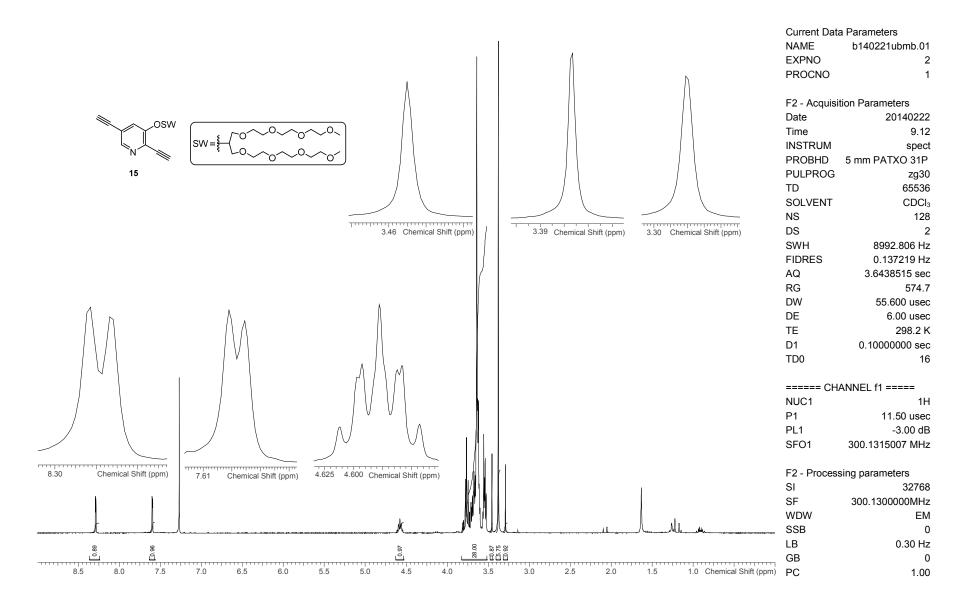
Synthesis of 14. Compound 12 (500 mg, 0.81 mmol) was dissolved in degassed toluene/piperidine (1:1, 2 mL/2 mL). $PdCl_2(PPh_3)_2$ (28.3 mg, 40 µmol) and CuI (8.0 mg, 40 µmol) were added. Subsequently TMS-acetylene was added dropwise and the resulting mixture was stirred at 70 °C for 4 h. The reaction mixture was quenched by the addition of aqueous NH₄Cl (15 mL). The aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel [petroleum ether/ethyl acetate/CH₂Cl₂/MeOH (7/1/1/0.5)] to give compound **14** (427 mg, 0.65 mmol, 81%) as brown oil. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.25$ (d, J = 1.5 Hz, 1 H), 7.49 (d, J = 1.5 Hz, 1 H), 4.56

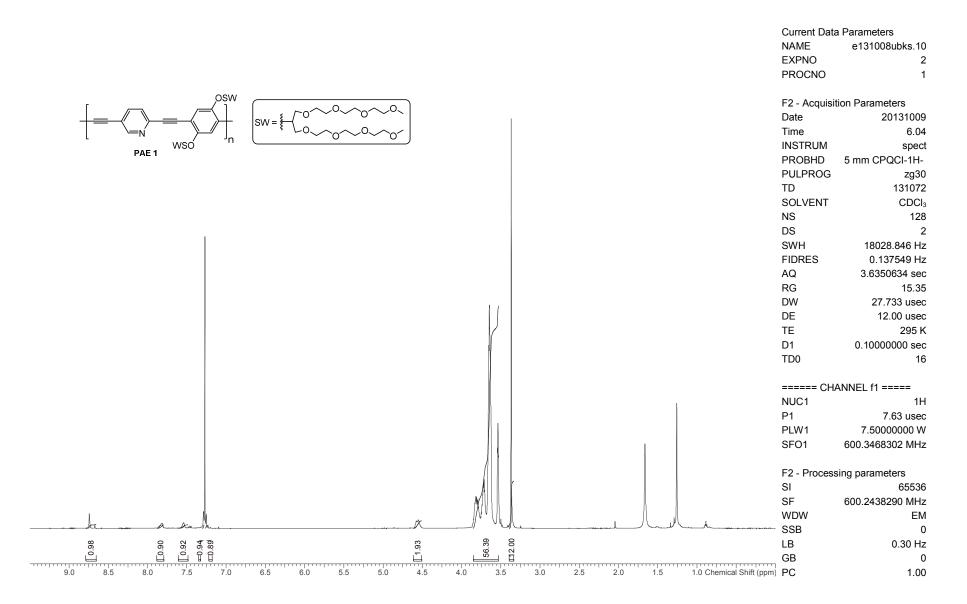

(m, 1 H), 3.53-3.80 (m, 28 H), 3.38 (s, 6 H), 0.27 (s, 18 H) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta = 155.82$, 145.43, 133.67, 125.26, 120.13, 101.15, 100.99, 100.39, 99.71, 79.61, 71.90, 71.28, 70.83, 70.63, 70.60, 70.56, 70.51, 59.03, 0.24 ppm. HR-MS (ESI⁺): *m/z* calcd. for C₃₂H₅₆NO₉Si₂⁺ 654.3488 [M+H]⁺; found 654.3495. C₃₂H₅₅NO₉Si₂ (653.96): calcd. C 58.77, H 8.48, N 2.14; found C 58.95, H 8.40, N 2.15.

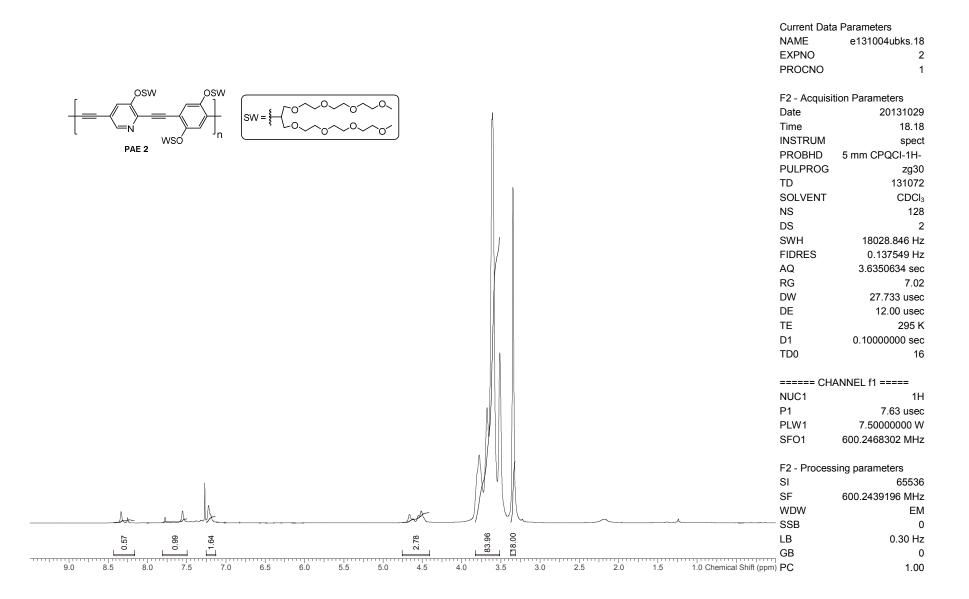

Synthesis of 15. Compound 14 (409 mg, 0.62 mmol) was dissolved in MeOH (10 mL). KF (145 mg, 2.50 mmol) in Methanol (10 mL) was added and stirred at ambient temperature over night. The reaction mixture was quenched by the addition of SiO₂, filtrated and concentrated in vacuo. Flash chromatography on silica gel [petroleum ether/ethyl acetate/CH₂Cl₂/MeOH (5/3/1/1)] of the crude product afforded compound 15 (114 mg, 0.22 mmol, 36%) as yellow oil. ¹H NMR (300 MHz, CDCl₃): $\delta = 8.29$ (d, J = 1.4 Hz, 1 H), 7.60 (d, J = 1.4 Hz, 1 H), 4.58 (m, 1 H), 3.53-3.82 (m, 28 H), 3.46 (s, 1 H), 3.38 (s, 6 H), 3.29 (s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 156.22$, 145.44, 133.35, 125.26, 119.52, 82.99, 81.88, 80.02, 79.74, 79.49, 71.92, 71.25, 70.94, 70.63, 70.56, 70.51, 59.01 ppm. HR-MS (ESI⁺): *m/z* calcd. for C₂₆H₄₀NO₉⁺ 510.2698 [M+H]⁺; found 510.2699. C₂₆H₃₉NO₉ (509.60): calcd. C 61.28, H 7.71, N 2.75; found C 61.01, H 7.81, N 2.83.

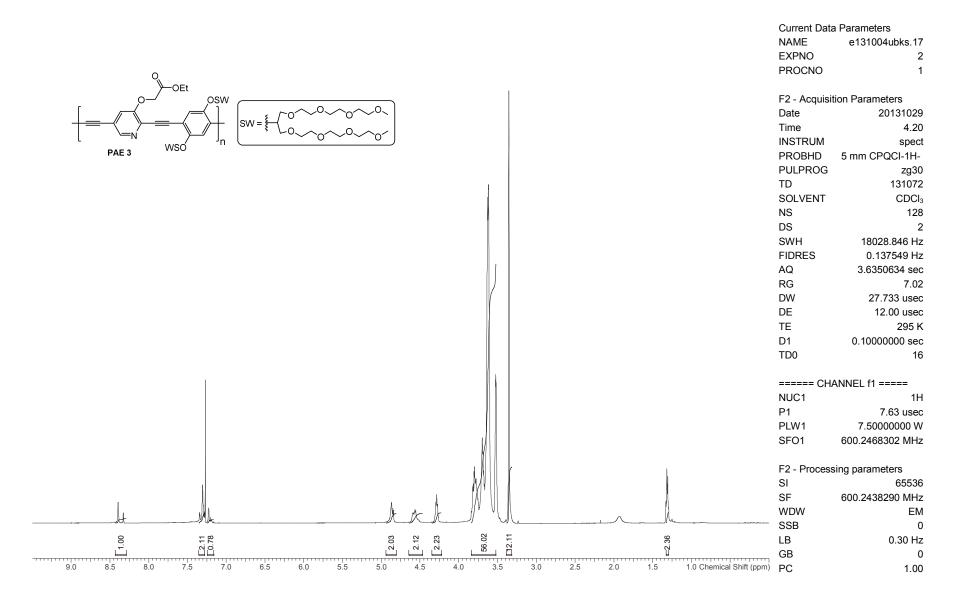

Scheme 11. Synthesis of PAE 7

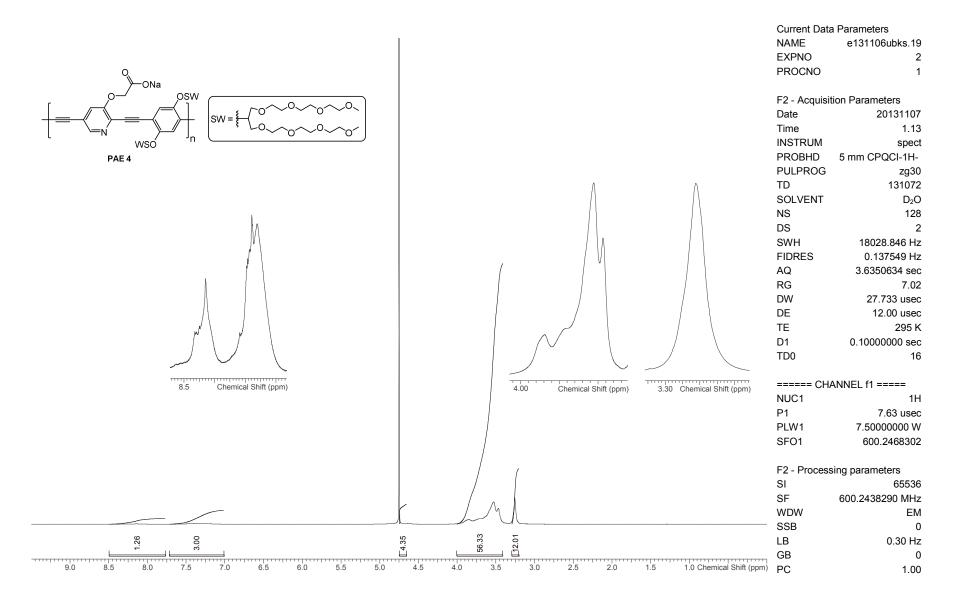


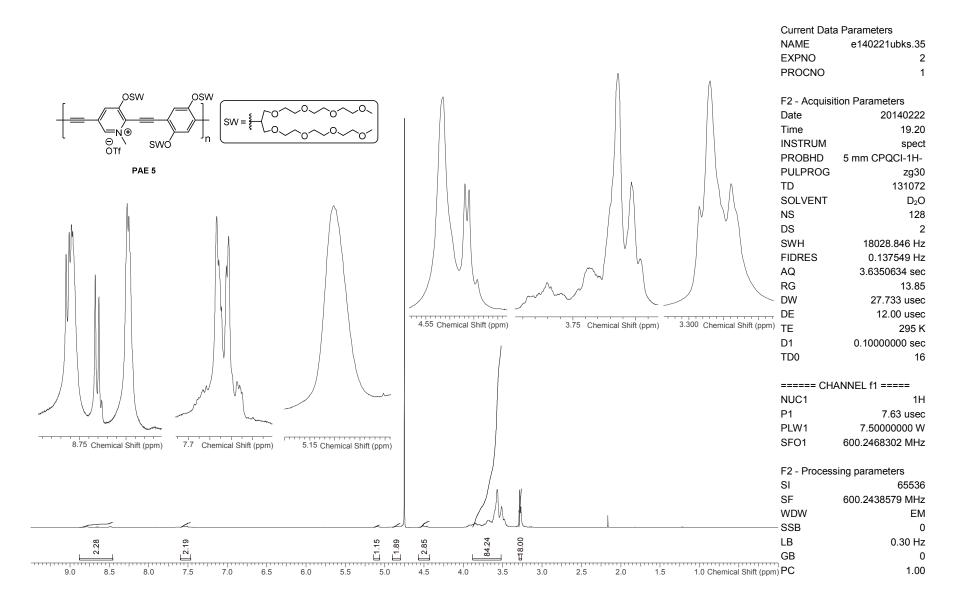

Synthesis of 7. Monomer 15 (230 mg, 0.45 mmol) and monomer 12 (451 mg, 0.45 mmol) were dissolved in degassed toluene/NEt₃ (1.5:1, 9 mL/6 mL). Pd(PPh₃)₄ (26.1 mg, 23 µmol) and CuI (4.3 mg, 23 µmol) were added and the mixture was stirred at 60 °C for 24 h. Brine and CH₂Cl₂ were added, the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. Two times, the crude product was dissolved in CHCl₃ and slowly added to an excess of *n*-hexane. The precipitate was dissolved in H₂O, Na₂EDTA (100 mg) was added, and the resulting mixture was dialyzed against DI H₂O for 3 d. After freezy-drying the residue was again dissolved in CHCl₃ and slowly added to an excess of *n*-hexane to gave **2** as sticky, dark brown oil (316 mg, 72%). The M_n was estimated to be 1.4 x 10⁴ with a PDI of 3.1. ¹H NMR (600 MHz, CDCl₃): δ = 8.26-8.40 (m, 1 H), 7.62-7.80 (m, 1 H), 4.62-4.69 (m, 1 H), 3.45-3.86 (m, 28 H), 3.34 (bs, 6 H) ppm. IR (cm⁻¹): v 2871, 1720, 1578, 1471, 1404, 1351, 1233, 1198, 1095, 940, 849, 756, 542, 446, 404. Due to low solubility, ¹³C NMR spectrum could not be obtained.

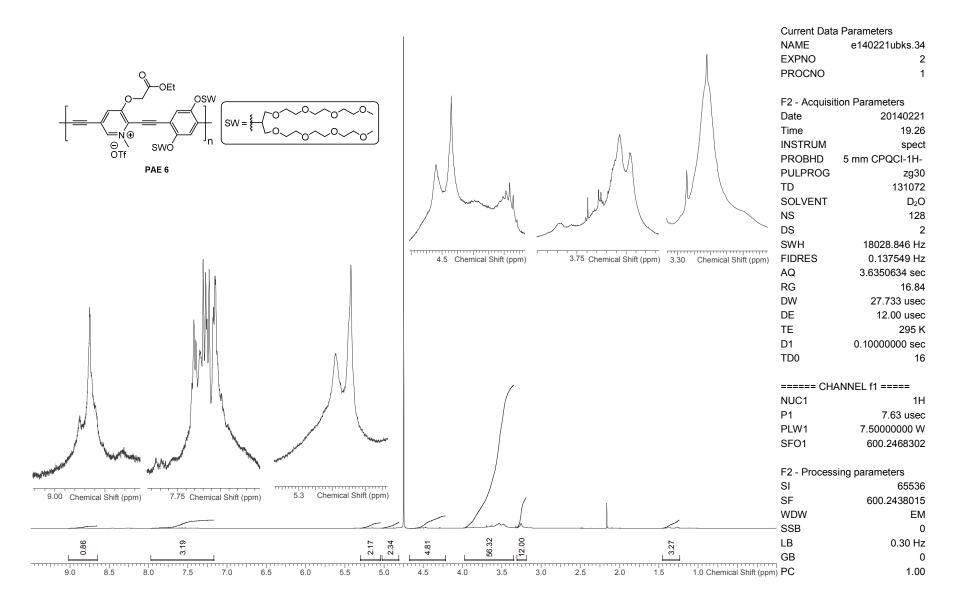

3. ¹H NMR-Spectra

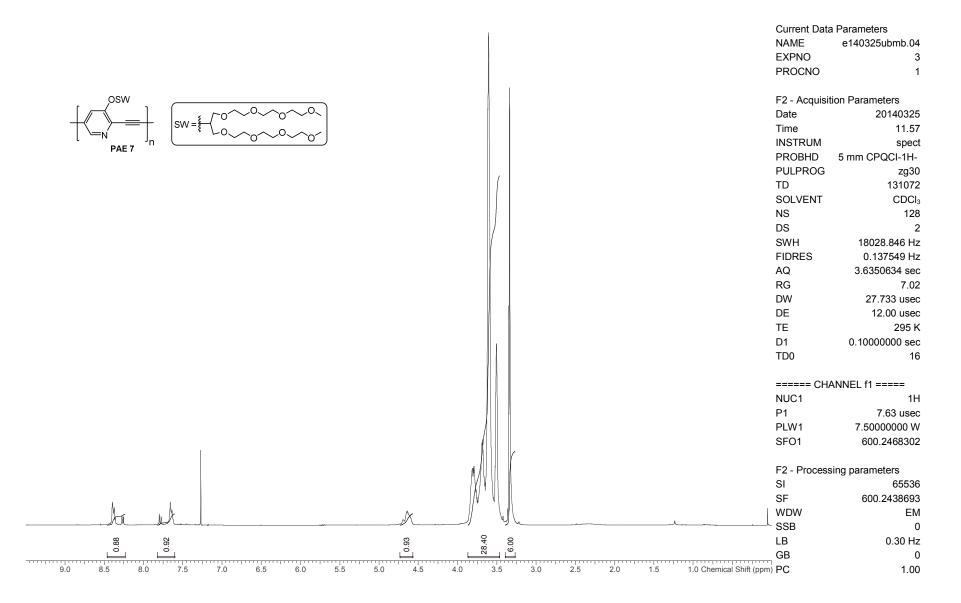


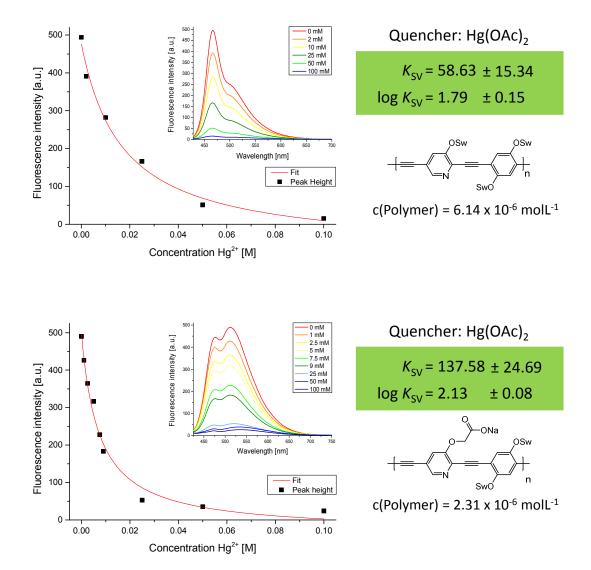


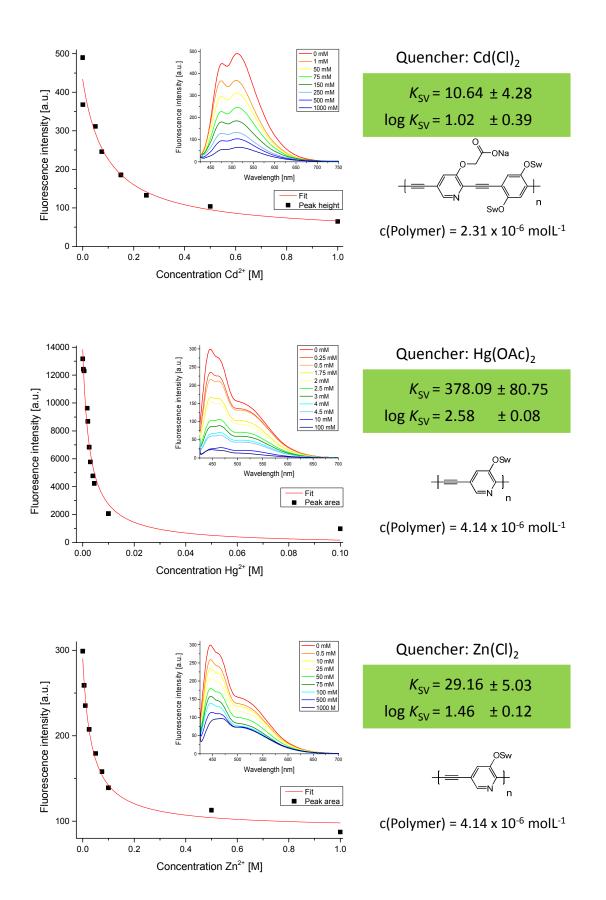












4. Evaluation of Stern-Volmer Constants

5. Supplemental References

(1) Helmchen, G.; Nill, G.; Flockerzi, D.; Youssef, M. S. K. Angew. Chem. 1979, 91, 65-66; Angew. Chem. Int. Ed. 1979, 18, 63-65.

(2) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. *Organometallics* **2012**, *29*, 2176-2179.

(3) Würth, C.; Grabolle, M.; Pauli, J.; Spieles, M.; Resch-Genger, U. Nat. Protoc. 2013, 8, 1535-1550.

(4) (a) Kim, I.-B.; Phillips, R.; Bunz, U. H. F. *Macromolecules* **2007**, *40*, 5290-5293. (b) Khan, A.; Müller, S.; Hecht, S. *Chem. Commun.* **2005**, 584-586. (c) Lauter, U.; Meyer, W. H.; Eukelmann, V.; Wegner, G. *Macromolecules* **1998**, *199*, 2129-2140.

(5) (a) Haydon, D. J.; Bennett, J. M.; Brown, B.; Collins, I.; Galbraith, G.; Lancett, P.; Macdonald, R.; Stokes, N. R.; Chauhan, P. K.; Sutariya, J. K.; Nayal, N.; Srivastava, A.; Beanland, J.; Hall, R.; Henstock, V.; Noula, C.; Rockley, C.; Czaplewski, L. *J. Med Chem.* **2010**, *53*, 3927-3936. (b) Berrie, A. H.; Newbold, G. T.; Spring, F. S. *J. Chem. Soc.* **1952**, 2042-2046.