Supporting Information

Experimental Realization of a Unique Class of Compounds: XY-Antiferromagnetic Triangular Lattices, KAg₂Fe[VO₄]₂ and RbAg₂Fe[VO₄]₂, with Ferroelectric Ground States

Ngozi E. Amuneke,[†] Joshua Tapp,[†] Clarina R. de la Cruz,[‡] and Angela Möller^{†,*}

[†]Department of Chemistry and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5003, United States

[‡]Quantum Condensed Matter Division, Oak Ridge National Laboratories, Oak Ridge, Tennessee 37831, United States

*Corresponding author, email: amoeller@uh.edu

S1. Crystallographic data and details of the refinement for RbAg₂Fe[VO₄]₂.

S2. $RbAg_2Fe[VO_4]_2$: Neutron diffraction data refinement (nuclear, 20 K) and magnetic phases (1.5 K) in magnetic fields, 0T (Y) and 5T (uud).

S3. Crystallographic data and details of the refinement for KAg₂Fe[VO₄]₂.

S4. $KAg_2Fe[VO_4]_2$: Neutron diffraction data refinement (nuclear, 20 K) and magnetic phases (1.5 K) in magnetic fields, 0T (Y) and 5T (uud).

S5. Selected interatomic distances and angles for $AAg_2Fe[VO_4]_2$ with A = K or Rb.

S6. Specific heat data for $AAg_2Fe[VO_4]_2$ (A = K, Rb, Ag).

S.7 DSC measurements for $AAg_2Fe[VO_4]_2$ (A = K, Rb, Ag).

S1. Crystallographic data and details of the refinement for $RbAg_2Fe[VO_4]_2$.

P 3, Z = 1	λ = 2.4062	λ = 1.542 Å (XRD)	
Т	20K	1.5 K	293 K
а	5.47563(3) Å	5.47556(6) Å	5.4827(1) Å
С	7.35696(8) Å	7.35685(9) Å	7.3826(1) Å
V	191.028(3) Å ³	191.022(3) Å ³	192.19(1) Å ³

Τ	20 K nuclear	1.5 K Y-phase, <i>H</i> = 0 T	1.5 K uud-phase, <i>H</i> = 5 T
R _p	6.25	7.34	7.19
R_{wp}	7.98	9.37	8.97
R_{exp}	5.20	5.70	5.18
R_{Bragg}	3.41	4.33	4.49
χ ²	2.35	2.811	3.10
k z		0.3724(3)	1/3
R _{mag.}		27.50	23.88
μ _B /Fe ³⁺		3.32	3.44

Fractional atomic coordinates and isotropic displacement parameters (Å²)

Τ		20 K			1.5 K				
Ator (Wyd	n ckoff)	x	У	z	B _{iso}	x	У	Z	B iso
Ag	(2d)	1/3	2/3	0.2818(7)	0.13(2)	1/3	2/3	0.2815(8)	0.10(3)
Rb	(1a)	0	0	0	0.36(2)	0	0	0	0.33(3)
Fe	(1b)	0	0	1/2	0.21(2)	0	0	1/2	0.19(3)
V	(2d)	1/3	2/3	0.728(3)	0.12(2)	1/3	2/3	0.730(3)	0.09(3)
01	(6g)	0.6674(7)	0.9120(5)	0.6590(5)	0.92(2)	0.6681(8)	0.9130(6)	0.6583(6)	0.90(3)
02	(2d)	1/3	2/3	0.9580(6)	0.66(2)	1/3	2/3	0.9591(7)	0.64(3)

S2. RbAg₂Fe[VO₄]₂: Neutron diffraction data refinement (nuclear, 20 K) and magnetic phases (1.5 K) in magnetic fields, 0T (Y) and 5T (uud).

Experiment (black), refinement (red), difference (blue). Sequence of Bragg positions (green) from top to bottom: nuclear, Al-container, magnetic phase.

S3. Crystallographic data and details of the refinement for $KAg_2Fe[VO_4]_2$.

P 3, Z = 1	λ = 2.4063	λ = 1.542 Å (XRD)	
Т	20K	1.5 K	293 K
а	5.48099(7) Å	5.4811(1) Å	5.4896(1) Å
С	7.2119(1) Å	7.2119(1) Å	7.2430(1) Å
V	187.629(5) Å ³	187.631(5)Å ³	189.03(1) Å

Τ	20 K nuclear	1.5 K Y-phase, <i>H</i> = 0 T	1.5 K uud-phase, <i>H</i> = 5 T
R _p	6.19	6.08	7.42
R_{wp}	8.15	7.96	9.32
R_{exp}	3.67	3.58	3.76
R_{Bragg}	7.67	7.25	5.75
χ²	5.75	4.94	6.31
k z		0.4035(6)	1/3
R _{mag.}		44.56	33.34
μ _B /Fe ³⁺		2.97	3.13

Fractional atomic coordinates and isotropic displacement parameters (Å²)

Τ		20 K			1.5 K				
Ator (Wyd	n ckoff)	x	У	Z	B _{iso}	x	У	Z	B _{iso}
Ag	(2d)	1/3	2/3	0.297(2)	0.14(5)	1/3	2/3	0.296(1)	0.24(5)
К	(1a)	0	0	0	0.44(5)	0	0	0	0.54(5)
Fe	(1b)	0	0	1/2	0.15(5)	0	0	1/2	0.25(5)
V	(2d)	1/3	2/3	0.729(1)	0.17(5)	1/3	2/3	0.729(1)	0.27(5)
01	(6g)	0.669(1)	0.901(1)	0.664(1)	0.71(5)	0.666(1)	0.901(1)	0.663(1)	0.82(5)
02	(2d)	1/3	2/3	0.965(1)	0.50(5)	1/3	2/3	0.965(1)	0.60(5)

S4. KAg₂Fe[VO₄]₂: Neutron diffraction data refinement (nuclear, 20 K) and magnetic phases (1.5 K) in magnetic fields, 0T (Y) and 5T (uud).

Experiment (black), refinement (red), difference (blue). Sequence of Bragg positions (green) from top to bottom: nuclear, magnetic phase.

S4. Continued.

KAg₂Fe[VO₄]₂: Neutron diffraction data refinement at 1.5 K in applied fields.

S5. Selected interatomic distances and angles for $AAg_2Fe[VO_4]_2$ with A = K or Rb

P 3, Z = 1	<i>T</i> = 20K, <i>H</i> = 0 T	
Distances in Å	KAg ₂ Fe[VO ₄] ₂	RbAg ₂ Fe[VO ₄] ₂
Fe – O1 (×6)	2.000(7)	2.010(3)
V – O1 (×3)	1.70(6)	1.718(8)
V – O2 (×1)	1.70(1)	1.69(2)
Ag – O1 (×3)	2.394(8)	2.350(4)
Ag – O2 (×1)	2.39(1)	2.382(7)
A – O1 (×6)	2.915(7)	2.994(3)
A – O2 (×6)	3.1745(6)	3.1766(4)
Angles in degrees		
O1 – Fe – O1	88.7(2)	89.5(1)
01 – V – 01	112.6(3)	111.7(1)
01 – V – 02	106.2(2)	107.2(1)
Φ _{S1}	121.6(3)	121.1(2)
Φ_{S2}	154.1(4)	149.6(2)

S6. Specific heat data for AAg₂Fe[VO₄]₂ (A = K, Rb, Ag).

The measured specific heat data was corrected for the lattice contribution using the diamagnetic references: BaAg₂Mg[VO₄]₂ ($P \overline{3}$) and SrAg₂Mg[VO₄]₂ (C2/c), respectively.

S.7 DSC measurements for $AAg_2Fe[VO_4]_2$ (A = K, Rb, Ag).

