Facile and Green Preparation for the Formation of MoO_2 -GO Composites as Anode Material for Lithium-Ion Batteries

Shan Hu,^{†,‡} Fei Yin,[†] Evan Uchaker,[‡] Wen Chen,*[†] Ming Zhang,[‡] Jing Zhou,[†] Yanyuan Qi,[†] and Guozhong Cao*[‡]

[†] State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, PR China

E-mail: chenw@whut.edu.cn; Tel.: +86-27-87651107; Fax: +86-27-87760129.

[‡] Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States

E-mail: <u>gzcao@u.washington.edu</u>; Tel.: +1-206-616-9084; Fax: +1-206-543-3100.

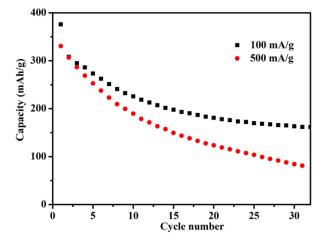


Figure S1. Cycling performance of the pure MoO_2 nanoparticles at current densities of 100 and 500 mA g⁻¹ over a voltage range of 0.01-3.0 V