Supplementary Information

Changes in Dissolved Organic Matter during the Treatment Processes of a Drinking Water Plant in Sweden and Formation of Previously Unknown Disinfection Byproducts

Michael Gonsior^{a*}, Philippe Schmitt-Kopplin^{b,c}, Helena Stavklint^d, Susan D. Richardson^e, Norbert Hertkorn^b and David Bastviken^f

^a Chesapeake Biological Laboratory , University of Maryland Center for Environmental Science, Solomons, USA

^b Helmholtz Zentrum München, Analytical BioGeoChemistry, Neuherberg, Germany

^c Technische Universität München, Analytical Food Chemistry, D-85354 Freising-Weihenstephan, Germany

^d Tekniska verken i Linköping AB, Sweden

^e University of South Carolina, Department of Chemistry and Biochemistry, Columbia, SC, USA

^f Linköping University, Department of Thematic Studies – Environmental Change, Linköping, Sweden

*Corresponding author. phone: +14103267245, fax: +14103267302, Email address:

gonsior@umces.edu

Summary

Table S1	Page S2
Table S2	Page S3
Table S3	Page S4
Figure S1	Page S5
Figure S2	Page S6

spectrum	Figure	NS	AQ [s]	D1 [s]	WDW2	PR2
¹ H NMR						
before / after Cl	6	512	5	5	EM	1
¹³ C NMR						
before / after Cl	S2	9361 / 9456	1	19	EM	35 (2)
DEPT 45/135 ¹³ C NMR						
before / after Cl	S2	16384	1	2	EM	12.5
DEPT 90 ¹³ C NMR						
before / after Cl	S2	32768	1	2	EM	12.5

Table S1: Acquisition parameters of NMR spectra, shown according to figures. NS: number of scans (for 2D NMR: F2); AQ: acquisition time [ms]; D1: relaxation delay [ms]; NE: number of F1 increments in 2D NMR spectra; WDW1, WDW2: apodization functions in F1/ F2 (EM: line broadening factor [Hz]; PR2: coefficients used for windowing functions WDW2.

δ(¹ H) [ppm]	10 - 7.0	7.0 - 5.3	4.9 - 3.1	3.1 - 1.9	1.9 - 0.0	H _{olefinic} / H _{aromatic}	10 - 5.3 $(\underline{H}C_{sp}^{2})$
key substructures	<u>H</u> ar	<u>H</u> C=C, <u>HCO₂</u>	<u>H</u> CO	<u> Н</u> С-N, <u>Н</u> С-С-Х	<u>H</u> C-C-C-	1 aromatic	
before Cl	2.4	2.1	19.2	28.7	47.6	0.9	4.5
after Cl	3.0	2.7	19.3	29.1	46.0	0.9	5.7

 Table S2:
 ¹H NMR section integrals (percent of non-exchangeable protons) and key substructures of DOM before and after chlorination.

δ(¹³ C) ppm	220-18	7 187	-167	167-145	145-108	108-90	90-47	47-0	H/C ratio	O/C ratio	
Key substructures	<u>C</u> =O	<u>C</u>	XC	<u>C</u> ar-O	<u>C</u> ar-C,H	О ₂ <u>С</u> Н	О <u>С</u> Н	С <u>С</u> Н			
before chlorination	1.8		9.8	3.9	8.4	5.6	33.7	36.8	1.31	0.70	
after chlorination	1.7	9	Э.1	3.8	10.8	5.6	32.1	35.5	1.28	0.67	
NMR mixing model	C=O	CO	ОН	C _{ar} -O	C _{ar} -H	O ₂ CH	ОСН	CH ₂			
H/C ratio	0		1	0	1	1	1	2			
O/C ratio	1		2	1	0	2	1	0			
DOM (depth)	CH total	CH ₂ total	CH ₃ total	ratio $(d_1 / c_1 / b_1 / a_1)$ HCar-C / O-HC-O / HC-O / HC-C			ratio (b ₂ / a ₂) H ₂ C-O / H ₂ C-C		ratio (b ₃ / a ₃) H ₃ <u>C</u> -O / H ₃ <u>C</u> -C		
before chlorination	36	30	34	15.9	/ 1.0 / 33.9 / 49.1		6.8	6.8 / 93.2		9.1 / 90.9	
after chlorination	35	33	32	14.8 / 1.4 / 34.5 / 49.3		10.7	10.7 / 89.3		5.7 / 94.3*		

Table S3. (Top): ¹³C NMR section integrals (percent of total carbon) and key substructures of DOM before and after chlorination. Middle: Substructures used for NMR-derived reverse mixing model with nominal H/C and O/C ratios given. Bottom: percentage of methin, methylene and methyl carbon related to total protonated ¹³C NMR integral as derived from ¹³C DEPT NMR spectra of DOM according to carbon multiplicity (left 3 columns) and relative proportions of these CH_n units binding to oxygen versus carbon chemical environments.

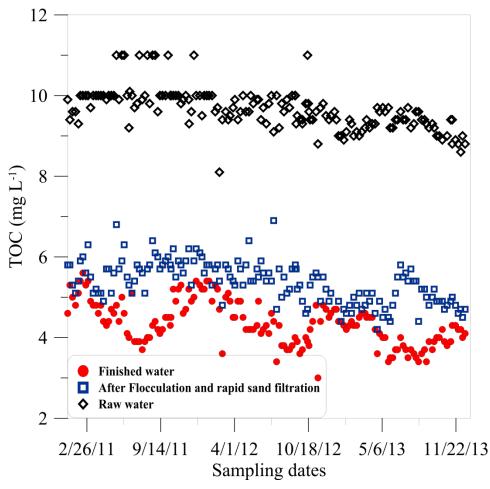
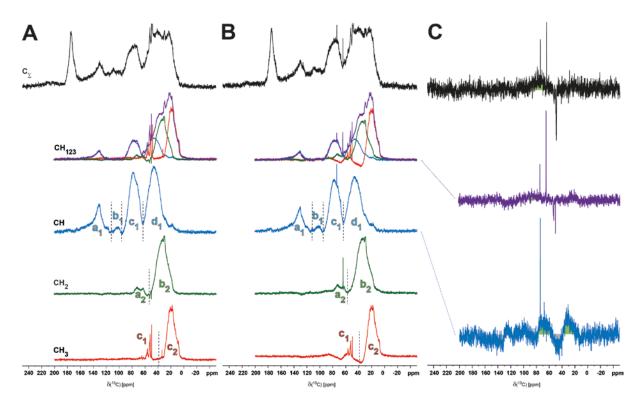



Figure S1: Total organic carbon concentration of the raw water, after flocculation/rapid sand filtration, and of the processed water, Råberga drinking water treatment plant, Linköping, Sweden.

Figure S2: ¹³C NMR spectra of Raberga slow sand SPE-DOM (¹²CD₃OD solution, $B_0 = 11.7 \text{ T}$) obtained by solid phase extraction (PPL) before (**A**) and after (**B**) chlorination; ¹³C DEPT NMR spectra: (top) superimposed protonated carbon NMR resonances (CH₁₂₃; DEPT-45 ¹³C NMR spectra), multiplicity-edited ¹³C NMR spectra are (second from top) CH; methin, with indices a₁-d₁ denoting following chemical environments: H<u>C</u>_{ar}-C / O-H<u>C</u>-O / H<u>C</u>-C), (second from bottom) CH₂; methylene, with indices a₂ and b₂ denoting following chemical environments: H₂<u>C</u>-O / H₂<u>C</u>-C, and (bottom) CH₃; methyl, with indices a₃ and b₃ denoting following chemical environments: H₃<u>C</u>-O / H₃<u>C</u>-C. The respective ¹³C NMR section integrals are provided in Tab. 4. (**C**) difference ¹³C NMR spectra as derived from (top) single pulse ¹³C NMR spectra, (middle) DEPT-45 ¹³C NMR spectra, and (bottom) DEPT-90 ¹³C NMR spectra.