Electronic Supporting Information

Extending the Family of Tetrahedral Tectons: Phenyl Embraces in Supramolecular Polymers of Tetraphenylmethane-based Tetraphosphonic Acid Templated by Organic Bases

Jan K. Zaręba ${ }^{*, \dagger}$ Michał J. Białek ${ }^{\ddagger}$, Jan Janczak ${ }^{\S}$, Jerzy Zoń ${ }^{*}, \perp$, and Agnieszka Doboszl
${ }^{\dagger}$ Faculty of Chemistry, Wrocław University of Technology, 27 Wybrzeze Wyspianskiego Street, 50-370 Wrocław, Poland
${ }^{\ddagger}$ Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50-383 Wrocław, Poland
${ }^{\S}$ Institute of Low Temperature and Structural Research, Polish Academy of Sciences, 2 Okólna Street, P.O. Box 1410, 50-950 Wrocław, Poland
${ }^{\perp}$ Department of Thermodynamics, Machine and Thermal Device Theory, Faculty of Mechanical and Power Engineering, Wrocław University of Technology, 27 Wybrzeze Wyspianskiego Street, 50-370 Wrocław, Poland
IDepartment of Basic Medical Sciences, Wrocław Medical University, 211 Borowska Street, 50-556 Wrocław, Poland
* (J.K.Z.) jan.zareba@pwr.edu.pl
* (J.Z.) jerzy.zon@pwr.edu.pl

Table of contents

Detailed synthetic procedures for phosphonic acids 3
Tetrakis[4-(dietoxyphosphoryl)phenyl]methane (1b) 3
Tetrakis[4-(dihydroxyphosphoryl)phenyl]methane (1) 4
The synthesis of acid-base adducts 5
Adduct of TPPM and pyridine, (2) 5
Adduct of TPPM and 2,2'-bipyridine, (3) 5
Adduct of TPPM and 4-(N,N-dimethylamino)pyridine, (4) 5
Adduct of TPPM and 1,6-diaminohexane, (5) and (5B) 5
Adduct of TPPM and urotropine, (6) 6
Supplementary tables 7
Table S1. Selected distances [\AA] and angles [${ }^{\circ}$] for all structures 7
Table S2. Potential hydrogen bonds in all structures 8
NMR Spectra and discussion 10
Figure S1. A ${ }^{1} \mathrm{H}$ NMR spectrum of ester 1b 10
Figure S2. $\mathrm{A}{ }^{13} \mathrm{C}$ NMR spectrum of ester $\mathbf{1 b}$ 10
Figure S3. A fragment of 1b HSQC spectrum 11
Figure S4. A NOESY spectrum of ester 1b 11
Figure $\mathrm{S} 5 . \mathrm{A}^{1} \mathrm{H}$ NMR spectrum of TPPM (1) 12
Figure 56 . $\mathrm{A}^{13} \mathrm{C}$ NMR spectrum of TPPM (1) 12
Figure S7. A fragment of a TPPM (1) HSQC spectrum 13
Figure S8. A TPPM (1) HMBC spectrum 13
Supplementary Figures 14
Figure S9. The asymmetric unit of adduct 3 14
Figure S10. The asymmetric unit of adduct 4 14
Figure S11. A packing diagram of adduct 4 together with partial topological simplification 15
Figure S12. The asymmetric unit of adduct 5 15
Figure S13. The asymmetric unit of adduct 6 16
Figure S14. A pseudohexagonal arrangement of 4PE-held linear columns in adduct $\mathbf{2}$ crystal 16
Figure S15. A tetragonal arrangement of 4PE-held linear columns in adduct $\mathbf{3}$ crystal 17
Figure S16. Dimeric assembly of TPPM molecules in adduct 5 presenting 6PE interaction 17
Discussion of 2D Fingerprint plot properties of the cocrystal and acid-base adduct 18
Figure S17. 2D fingerprint plots summarizing contacts of the TPPM molecule in the cocrystal and in the acid-base adduct 18
Figure S18. Contact-decomposed 2D fingerprint plots for adducts 3 and 4 19
Discussion of infrared spectra 20
pH-potentiometry studies 21
Experimental 21
Discussion 21
Figure S19. Distribution of protonation forms 21
Table S3. Protonation Constants of $\mathrm{H}_{8} \mathrm{~L}$ 22

Detailed synthetic procedures for phosphonic acids

All chemicals used in the synthesis were readily available from commercial sources (Sigma Aldrich, Merck, POCh) and were used as received. Infrared absorption spectra of solids were measured on a Perkin-Elmer FT-IR 1600 spectrophotometer in KBr discs. 1D and 2D NMR spectra for ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}$ were recorded with Bruker Avance 500 or Bruker Avance III 600 instruments at the indicated frequencies and are referred to a residual solvent signal or $\mathrm{H}_{3} \mathrm{PO}_{4}$ standard. Phenyl signals (1-Ph, 2Ph...) are assigned in respect to the location of a $\mathrm{PO}_{3} \mathrm{X}_{2}$ group. High resolution and accurate mass spectra were recorded using LCT Premier XE system with electrospray ionization and TOF analyzer. Melting points were determined using a Boetius apparatus and were uncorrected.

Synthesis of tetrakis[4-(dihydroxyphosphoryl)phenyl]methane [1, TPPM]:

Tetrakis[4-(dietoxyphosphoryl)phenyl]methane (1b)

Tetra(4-bromophenyl)methane ${ }^{1}(10.00 \mathrm{~g}, 15.7 \mathrm{mmol}, 1 \mathrm{a})$ and tert-butylbenzene ($25 \mathrm{~cm}^{3}$, bp. $169^{\circ} \mathrm{C}$) were placed in a two-necked round-bottom flask equipped with condenser, gas inlet and bubbler, and heated to $170^{\circ} \mathrm{C}$ under argon atmosphere. Next, anhydrous $\mathrm{NiBr}_{2}(1.50 \mathrm{~g}, 6.86 \mathrm{mmol})$ was added and under continuous stirring, triethyl phosphite ($15.0 \mathrm{~cm}^{3}, 87.5 \mathrm{mmol}$) was added dropwise over a period of 12 hours at the same temperature and under argon atmosphere. Usually, at this step, a reaction mixture contains mostly target compound 1a and triphosphonylated monobromo derivative, according to TLC analysis ($R_{f}=0.09$, a 10:1 (v/v) mixture of ethyl acetate : 96\% ethanol as eluent, silica gel on PET foils with fluorescent indicator 254 nm , a UV lamp for the visualization). To complete phosphonylation, additional portion of anh. $\mathrm{NiBr}_{2}(0.625 \mathrm{~g}, 2.86 \mathrm{mmol})$ was added and triethyl phosphite ($7.5 \mathrm{~cm}^{3}, 43.7 \mathrm{mmol}$) was added dropwise over 8 hours under the same conditions as above. Then the reaction mixture was cooled and put into a refrigerator. Large amount of solid precipitated and was filtered while cold. This solid was dissolved in $100 \mathrm{~cm}^{3}$ of ethyl acetate. Upon dissolution white precipitate has formed (probably some nickel complexes), which can be filtered. In order to remove residual nickel from crude product ${ }^{2}$, $15 \% \mathrm{H}_{2} \mathrm{O}_{2}\left(40 \mathrm{~cm}^{3}\right)$ was added, shaken and left overnight to extract nickel ions to water phase. The organic layer was separated, washed with water $\left(40 \mathrm{~cm}^{3}\right)$, brine $\left(40 \mathrm{~cm}^{3}\right)$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$.
After filtration and evaporation of solvent, such an obtained slightly viscous light-orange solid was subjected to a crystallization procedure. The solid was dissolved in ethyl acetate ($25 \mathrm{~cm}^{3}$), and heated under reflux to obtain a clear solution. Then cyclohexane was added in small portions to achieve sustainable turbidity of the solution (about one third volume of ethyl acetate). Then the mixture was additionally refluxed for several minutes to obtain clear solution once again and, after gradual cooling, was put into a refrigerator overnight. Precipitated white solid was cold-filtered and washed with cyclohexane; crystallization can be repeated if necessary. Yield of 1b from crystallization: 8.308 g (61\%), mp. $173-182^{\circ} \mathrm{C}$.

Combined filtrates remained after crystallizations were evaporated and the residual solid was purified using column chromatography ($\mathrm{R}_{\mathrm{f}}=0.04$, a $10: 1(\mathrm{v} / \mathrm{v})$ mixture of ethyl acetate : 96% ethanol as eluent, silica gel on PET foils with fluorescent indicator 254 nm , a UV lamp for the visualization). Additional amount of $\mathbf{1 b}$ from column chromatography: $1.770 \mathrm{~g}, \mathrm{mp} .177-184{ }^{\circ} \mathrm{C}$.
Overall yield: 10.078 g (74\%).
HRMS (ESI): calcd for $\mathrm{C}_{41} \mathrm{H}_{57} \mathrm{O}_{12} \mathrm{P}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right): 865.2800$; found: $865.2825(\mathrm{~m} / \mathrm{z}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $300 \mathrm{~K}) \delta_{H} 7.68\left(\mathrm{dd},{ }^{3} J_{P-H}=12.9 \mathrm{~Hz},{ }^{3} J_{H-H}=8.4 \mathrm{~Hz}, 8 \mathrm{H}, 2-\mathrm{Ph}\right), 7.27\left(\mathrm{dd},{ }^{3} J_{H-H}=8.4 \mathrm{~Hz},{ }^{5} J_{P-H}=3.8 \mathrm{~Hz}, 8 \mathrm{H}, 3-\right.$ $\mathrm{Ph}), 4.19-4.04\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 1.31\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(243$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta_{\mathrm{p}} 18.76(\mathrm{~s}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} 149.35\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{p}-\mathrm{C}}=3.3 \mathrm{~Hz}\right.$, $4-\mathrm{Ph}), 131.56\left(\mathrm{~d},{ }^{2} J_{P-C}=10.0 \mathrm{~Hz}, 2-\mathrm{Ph}\right), 130.88\left(\mathrm{~d},{ }^{3} J_{P-C}=14.7 \mathrm{~Hz}, 3-\mathrm{Ph}\right), 127.11\left(\mathrm{~d},{ }^{1} J_{\rho_{-C}}=191.2 \mathrm{~Hz}, 1-\right.$ Ph), 65.67 (s , methane core), $62.45\left(\mathrm{~d},{ }^{2} J_{\rho_{-} \mathrm{C}}=5.4 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 16.49\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{p_{-} \mathrm{C}}=5.6 \mathrm{~Hz}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right)$ ppm. IR (KBr): $v_{\text {max }} 3523$ (m), 3422 (s), 2984 (m), 2933 (m), 2912 (m), 2871 (w), 1655 (w), 1599 (s), 1492 (m), 1481 (m), 1444 (m), 1395 (s), 1368 (m), 1235 (vs), 1163 (s), 1136 (s), 1098 (m), 1050 (vs), 1017 (vs), 973 (vs), 955 (vs), 824 (m), 793 (s), 766 (s), 728 (m), 712 (s), 699 (m), 635 (m), 578 (s), 540 (s) cm^{-1}.

Tetrakis[4-(dihydroxyphosphoryl)phenyl]methane (1)

Method via trans-silylation

Tetrakis[4-(dietoxyphosphoryl)phenyl]methane (2.268 g, $2.62 \mathrm{mmol}, \mathbf{1 b}$), was dissolved in dichloromethane ($15 \mathrm{~cm}^{3}$) and trimethylsillyl bromide (TMSBr) ($4.2 \mathrm{~cm}^{3}, 31.84 \mathrm{mmol}$) was added dropwise. An obtained mixture was stirred for 16 hours at $25^{\circ} \mathrm{C}$. Then the mixture was evaporated under reduced pressure. To the resulting beige solid methanol ($40 \mathrm{~cm}^{3}$) was added and evaporated three times.

An obtained product can be additionally purified by refluxing octasodium salt with active carbon powder in water and subsequent precipitation of acid 1 by acidification with 36% hydrochloric acid.
Pure acid 1 was obtained as an off-white solid: $1.680 \mathrm{~g}(99 \%), \mathrm{mp} .>360^{\circ} \mathrm{C}$.

Microwave method

Tetrakis[4-(dietoxyphosphoryl)phenyl]methane (1.000 g, $2.62 \mathrm{mmol}, 1 \mathrm{lb})$, was dispersed in a 1:1 mixture of water and concentrated hydrochloric acid ($20 \mathrm{~cm}^{3}$), transferred to 50 mL microwave Teflon vessel, and tightly closed. An obtained mixture was heated at $170^{\circ} \mathrm{C}$ for 2 hours at 30% of the maximum power in a high-pressure solvothermal microwave reactor ERTEC Magnum II.
Pure acid 1 was obtained as an off-white solid: $0.730 \mathrm{~g}(99 \%), \mathrm{mp} .>360^{\circ} \mathrm{C}$.

HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{O}_{12} \mathrm{P}_{4}\left(\mathrm{M}-\mathrm{H}^{-}\right)$: 639.0140 ; found: $639.0142(\mathrm{~m} / \mathrm{z}) .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, DMSO $\left.-d_{6}, 300 \mathrm{~K}\right) \delta_{H} 7.63\left(\mathrm{dd},{ }^{3} J_{P-H}=12.5 \mathrm{~Hz},{ }^{3} J_{H-H}=8.4 \mathrm{~Hz}, 8 \mathrm{H}, 2-\mathrm{Ph}\right), 7.33\left(\mathrm{dd},{ }^{3} J_{H-H}=8.5 \mathrm{~Hz},{ }^{5} J_{P-H}=3.0\right.$ $\mathrm{Hz}, 8 \mathrm{H}, 3-\mathrm{Ph}$), 3.87 (br s, $8 \mathrm{H}, \mathrm{P}-\underline{\mathrm{OH}}$) ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 300 \mathrm{~K}$): $\delta_{\mathrm{p}} 13.14$ (s) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}^{-} \mathrm{d}_{6}, 300 \mathrm{~K}\right) \delta_{\mathrm{C}} 148.31\left(\mathrm{~d},{ }^{4} J_{P-C}=3.2 \mathrm{~Hz}, 4-\mathrm{Ph}\right), 131.86\left(\mathrm{~d},{ }^{1} J_{p-C}=181.9 \mathrm{~Hz}\right.$, 1-Ph), $130.49\left(\mathrm{~d},{ }^{2} J_{p-c}=10.2 \mathrm{~Hz}, 2-\mathrm{Ph}\right), 129.91\left(\mathrm{~d},{ }^{3} J_{p-c}=14.2 \mathrm{~Hz}, 3-\mathrm{Ph}\right), 64.97$ (s , methane core) ppm.

IR (KBr): $v_{\text {max }} 3420$ (br m), 3034 (s), 2853 (br s), 2277 (br s), 1602 (s), 1501 (m), 1404 (m), 1207 (vs), 1189 (vs), 1147 (vs), 1044 (vs), 1017 (vs), 939 (vs), 912 (s), 845 (m), 818 (s), 752 (m), 734 (m), 711 (s), 700 (s), 559 (s), 533 (vs), 480 (s) cm^{-1}.

The synthesis of acid-base adducts

Adduct of TPPM and pyridine, (2)

TPPM ($0.015 \mathrm{~g}, 0.0234 \mathrm{mmol}$) was mixed with distilled water $\left(2.0 \mathrm{~cm}^{3}\right.$) and excess of pyridine (about $\left.0.2 \mathrm{~cm}^{3}, 2.48 \mathrm{mmol}\right)$. Obtained solution was left undisturbed for slow evaporation at room temperature conditions. After a few days, obtained precipitate was solved in additional amount of water and left for slow evaporation. After another few days rectangular, colorless crystals of 2 appeared. Yield: 15.0 mg (85\%), IR (KBr) $v_{\text {max }} 3435$ (m), 3383 (w), 3335 (w), 3177 (w), 3135 (w), 3096 (w), 3070 (w), 3029 (w), 2852(w), 2803 (w), 2752 (m), 2286 (m), 2157 (w), 1940 (w), 1634 (m), 1598 (s), 1551 (w), 1487 (s), 1398 (m), 1138 (s), 1036 (m), 983 (s), 931 (s), 908 (s), 819 (s), 753 (m), 708 (s), 635 (w), 606 (w), 564 (w), 532 ()m, 446 (w) cm ${ }^{-1}$

Adduct of TPPM and 2,2'-bipyridine, (3)

TPPM ($0.0175 \mathrm{~g}, 0.0273 \mathrm{mmol}$) and 2, 2^{\prime}-bipyridine ($0.0172 \mathrm{~g}, 0.110 \mathrm{mmol}$) were mixed with distilled water $\left(3.0 \mathrm{~cm}^{3}\right)$ and heated under reflux for a few minutes. Dioxane $\left(0.6 \mathrm{~cm}^{3}\right)$ was added to the resulting mixture and heated again under reflux for a few minutes. After addition of dioxane, solution turns light purple (earlier was colorless). Obtained solution was left undisturbed for evaporation at room temperature conditions. After several days small, colorless needle crystals of 3 appeared, amongst significant amount of crystallized 2,2'-bipyridine.
Yield: 8.8 mg (34\%), IR (KBr) $v_{\text {max }} 3430(\mathrm{w}), 3095$ (w), 3065 (w), 3034 (w), 2694 (m), 2224 (m), 1598 (m), 1564 (m), 1496 (w), 1472 (w), 1429 (m), 1399 (w), 1279 (w), 1261 (m), 1215 (s), 1201 (s), 1168 (m), 1135 (s), 1039 (m), 989 (s), 970 (s), 936 (s), 907 (s), 819 (s), 760 (s), 745 (m), 707 (s), 649 (m), 574 (m), 539 (vs), 463 (s) cm ${ }^{-1}$.

Adduct of TPPM and 4-(\mathbf{N}, \mathbf{N}-dimethylamino)pyridine, (4)
TPPM ($0.0247 \mathrm{~g}, 0.0385 \mathrm{mmol}$) and 4-(N, N-dimethylamino) pyridine ($0.0144 \mathrm{~g}, 0.118 \mathrm{mmol}$) were mixed with distilled water $\left(4.0 \mathrm{~cm}^{3}\right)$ and heated under reflux for a few minutes. Dimethylacetamide (DMA) $\left(1.0 \mathrm{~cm}^{3}\right)$ was added to the resulting mixture and it was heated again under reflux for a few minutes. Small amount of undissolved residue was filtrated. Obtained solution was left undisturbed for evaporation at room temperature conditions. After several days big twinned, colorless plate crystals of 4 appeared. Yield: $18.2 \mathrm{mg}(43 \%)$, $\mathbf{I R}(\mathrm{KBr}) v_{\max } 3396$ (s$), 3240(\mathrm{~m}), 3078$ (s$), 3064$ (s), 2940 (s), 2775 (s), 2678 (s), 2342 (m), 2061 (m), 1959 (m), 1648 (vs), 1599 (s), 1560 (vs), 1493 (m), 1444 (s), 1399 (s), 1220 (s), 1137 (vs), 1060 (s), 1044 (s), 1018 (s), 932 (s), 902 (s), 818 (vs), 743 (s), 706 (s), 635 (m), 568 (s), 538 (vs) cm ${ }^{-1}$.

Adduct of TPPM and 1,6-diaminohexane, (5) and (5B)

TPPM ($0.0200 \mathrm{~g}, 0.0312 \mathrm{mmol}$) and 1,6-diaminohexane ($0.0109 \mathrm{~g}, 0.0777 \mathrm{mmol}$) were mixed with distilled water ($3.0 \mathrm{~cm}^{3}$) and heated under reflux for a few minutes. DMSO ($1.0 \mathrm{~cm}^{3}$) and methanol $\left(0.5 \mathrm{~cm}^{3}\right)$ were added to the resulting mixture and it was heated again under reflux for a few minutes. Undissolved residue was filtrated. After partial solvent evaporation (about a month at room temperature conditions), colorless single crystals appeared. Among them $\mathbf{5}$ and $\mathbf{5 b}$ were selected. Yield: 14.7 mg, IR (KBr) $v_{\text {max }} 3393$ (s$), 3189$ (s$), 3027$ (s$), 2934$ (s$), 2863$ (s$), 2658$ (s$), 2471$ (m), 2359 (m), 2150 (m), 1638 (s$), 1598$ (s$), 1526$ (m), 1494 (m), 1474 (m), 1397 (m), 1252 (m), 1237 (m), 1138
(vs), 1044 (vs), 1017 (s), 951 (s), 929 (s), 898 (s), 819 (s), 791 (m), 740 (m), 706 (s), 636 (m), 576 (s), 544 (vs), 492 (s), 478 (s) cm^{-1}.

Adduct of TPPM and urotropine, (6)

TPPM ($0.0200 \mathrm{~g}, 0.0312 \mathrm{mmol}$) and urotropine ($0.0109 \mathrm{~g}, 0.0777 \mathrm{mmol}$) were mixed with distilled water ($3.0 \mathrm{~cm}^{3}$) and heated under reflux for a few minutes. To the resulting mixture DMSO ($1.0 \mathrm{~cm}^{3}$) and methanol $\left(0.5 \mathrm{~cm}^{3}\right)$ were added and heated again under reflux for a few minutes. Undissolved residue was filtrated. After partial solvent evaporation (about a month at room temperature conditions), colorless single crystals of 6 appeared. Yield: 22.8 mg (60%), IR (KBr) $v_{\text {max }}, 3424$ (s), 3199 (s), 3011 (s), 2938 (s), 2901 (s), 2822 (s), 2689 (s), 2568 (s), 2482 (s), 2404 (s), 2347 (s), 1674 (m), 1645 (m), 1600 (m), 1465 (s), 1437 (s), 1403 (s), 1368 (m), 1312 (m), 1261 (s), 1221 (s), 1140 (vs), 1076 (s), 1062 (s), 1031 (vs), 1016 (vs), 983 (vs), 955 (s), 925 (s), 901 (s), 824 (s), 794 (s), 753 (m), 736 (m), 712 (s), 694 (s$), 659$ (s$), 635$ (m), 577 (s), 541 (vs), 500 (s), 485 (s), 468 (s) cm^{-1}.

Supplementary tables

Table S1. Selected distances [$\AA \AA$] and angles [${ }^{\circ}$] for all structures

Adduct of TPPM and pyridine (2)					
P1-04	1.5438(18)	P1-C11	1.790(2)	P2-03	1.5070(18)
P1-05	1.5482(15)	P2-01	1.5201(16)	P2-C5	1.8013(19)
P1-06	1.4985(17)	P2-02	1.5580(18)	C14-N1-C16	119.3(3)
Adduct of TPPM and 2,2'-bipyridine (3)					
P1-01	1.471(3)	P1-03	1.547(3)	C8-N1-C9	118.2(3)
P1-02	1.534(3)	P1-C5	1.788(4)		
Adduct of TPPM and 4-(N,N-dimethylamino)pyridine (4)					
P11-011	$1.495(3)$	P21-C24	1.796(4)	P41-042	1.502(3)
P11-012	1.499 (3)	P31-031	$1.495(3)$	P41-043	$1.575(3)$
P11-013	1.552(3)	P31-032	1.515(3)	P41-C44	1.793(4)
P11-C14	$1.789(4)$	P31-033	1.539(3)	C62-N61-C66	120.6(5)
P21-021	1.490 (3)	P31-C34	1.790 (4)	C72-N71-C76	120.3(5)
P21-022	1.488 (3)	P41-041	1.469 (3)	C52-N51-C56	120.1(5)
P21-023	1.561(3)				
Adduct of TPPM and 1,6-hexyldiamine (5)					
P11-011	1.473(3)	P21-C24	1.784(4)	P41-043	1.540(4)
P11-012	1.512(3)	P31-031	$1.495(3)$	P41-C44	1.780 (5)
P11-013	1.550(2)	P31-032	1.505(3)	N51-C52	1.486(6)
P11-C14	$1.771(4)$	P31-033	1.540(4)	N58-C57	1.467(6)
P21-021	1.488(3)	P31-C34	1.799(4)	N61-C62	$1.454(7)$
P21-022	$1.485(3)$	P41-041	1.446(4)	N71-C72	1.446(4)
P21-023	1.577(3)	P41-042	1.547(5)		
Adduct of TPPM and urotropine (6)					
P1-011	1.493(2)	P2-021	$1.498(3)$	C3-N1-C4	108.1(3)
P1-012	1.507(3)	P2-022	1.502(2)	C2-N1-C3	109.2(2)
P1-013	1.569(2)	P2-023	1.566(3)	C2-N1-C4	107.9(2)
P1-C14	1.813(3)	P2-C24	1.809(3)	C5-N4-C7	109.0(3)
C5-N2-C6	109.0(4)	C3-N3-C6	107.8(4)	C4-N4-C5	109.0(4)
C2-N2-C6	109.5(3)	C6-N3-C7	107.8(3)	C4-N4-C7	108.0(4)
C2-N2-C5	109.3(3)	C3-N3-C7	108.9(3)		
$2^{\text {nd }}$ adduct of TPPM and 1,6-hexyldiamine (5b)					
$\begin{gathered} \text { Disordered group P11 } \\ \text { A: } 0.696 \text { B: } 0.304 \end{gathered}$		Disordered group P31 A: 0.685 B: 0.315		P21-021	1.475(3)
A: P11-011	1.443(4)	A: P31-031	$1.468(4)$	P21-022	1.514(3)
B: P11-014	1.440 (8)	B: P31-034	1.465 (8)	P21-023	1.602(3)
A: P11-012	1.512(3)	A: P31-032	1.525(5)	P21-C24	1.795(3)
B: P11-015	1.527(8)	B: P31-035	1.502(12)	P41-041	1.492(3)
A: P11-013	$1.622(5)$	A: P31-033	1.573(5)	P41-042	1.499 (3)
B: P11-016	1.582(7)	B: P31-036	1.580(16)	P41-043	1.558(3)
P1-C14	1.799 (3)	P31-C34	1.811(3)	P41-C44	1.794(3)
N51-C52	$1.464(5)$	N58-C57	1.480 (5)		
N71-C72	1.473(8)	N61-C62	1.453(5)		

Table S2. Potential hydrogen bonds in all structures, determined from geometrical criteria ($d_{D \cdots A}<$ $R_{D}+R_{A}+0.50, d_{H \cdots A}<R_{H}+R_{A}-0.12$, Ang. ${ }_{\text {D }-H \ldots A}>100.0^{\circ}$)

D-H...A	D-H [Å]	H \cdots A [${ }^{\text {] }}$]	D $\cdots \mathrm{A}$ [Å]	D-H..A
Adduct of TPPM and pyridine (2)				
N1-H1N...O3 ${ }^{(1)}$	0.8700	2.1000	$2.906(3)$	154
O1-H1O...O1 ${ }^{\text {(i) }}$	1.2300	1.2300	2.469(3)	180
O1W-H1W...01 ${ }^{(\text {(i) }}$	0.92(4)	1.99(3)	2.893(3)	166(3)
O2-H2O...O1W ${ }^{\text {(ii) }}$	0.86(3)	1.76(3)	2.615(3)	172(3)
O1W-H2W...O6 ${ }^{(\text {iii) }}$	0.82(4)	2.11(4)	2.921(3)	171(3)
O4-H4O...03 ${ }^{\text {(iv) }}$	1.03(3)	1.48(3)	2.490 (2)	167(3)
O5-H5O...06 ${ }^{(v)}$	0.89(3)	1.70(3)	$2.578(2)$	174(2)
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 2^{(\mathrm{vi})}$	0.9300	2.5100	3.245 (3)	136.00
C14-H14...O4 ${ }^{\text {(vi) }}$	0.9300	2.5200	3.251(4)	135.00

(i) 1-x,2-y,1-z; (ii) 1-x,1-y,1-z; (iii) 1-x,1+y,1/2-z; (iv) 3/2-x,1/2-y,1-z; (v) 3/2-x,$1 / 2+y, 1 / 2-z$; (vi) $x, 1-y,-1 / 2+z$; (vii) $-1 / 2+x, 1 / 2+y, z$

Adduct of TPPM and 2,2'-bipyridine (3)				
$\mathrm{O} 2-\mathrm{H} 1 \mathrm{O} \cdots \mathrm{N} 1^{\text {(i) }}$	$0.77(5)$	$1.88(5)$	$2.632(4)$	$169(6)$
$\mathrm{O} 3-\mathrm{H} 2 \mathrm{O} \cdots 1^{\text {(ii) }}$	$0.90(5)$	$1.68(6)$	$2.551(4)$	$159(5)$
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O}^{\text {(iii) }}$	0.9300	2.5000	$3.312(5)$	146.00

(i) $-x, 1-y, z$; (ii) $1 / 2-x, 3 / 2-y,-1 / 2+z$; (iii) $-1+y, 1-x,-z$

Adduct of TPPM and 4-(N,N-dimethylamino)pyridine (4)				
O13-H13O \cdots O12 ${ }^{\text {(i) }}$	0.8200	1.8400	2.586(4)	151.00
O23-H23O..011 ${ }^{\text {(ii) }}$	0.8200	1.8500	2.627(4)	157.00
O33-H33O...O22 ${ }^{\text {(iii) }}$	0.8200	1.7500	2.507(4)	152.00
O42-H42O...O42 ${ }^{\text {(iv) }}$	1.2200	1.2200	2.446(4)	180.00
O43-H43O...031 ${ }^{(v)}$	0.8200	1.8100	2.611(4)	164.00
N51-H51...011 ${ }^{(v)}$	0.8600	1.8400	2.682(5)	166.00
N61-H61..021	0.8600	1.7700	2.623(5)	173.00
O1W-H1W1 \cdots. $02 \mathrm{~W}^{(\text {vi) }}$	0.8300	2.0200	2.767(6)	150.00
O1W-H2W1..032 ${ }^{\text {(vi) }}$	0.8300	2.4400	3.187(6)	150.00
O2W-H1W2 ${ }^{\text {a }}$ O12 $2^{\text {(vii) }}$	0.8100	1.9700	2.764(4)	167.00
O2W-H2W2 ${ }^{\text {a }}$ O41 $1^{\text {(viii) }}$	0.8300	1.9800	2.806(5)	175.00
O3W-H1W3 \cdots. ${ }^{\text {O }} 1^{(\text {(ix) }}$	0.8200	1.9900	$2.799(5)$	169.00
O3W-H2W3 \cdots O13	0.8300	2.1400	2.899(5)	152.00
O4W-H1W4..032	0.8200	1.8000	2.584(4)	160.00
O4W-H2W4..06W	0.8200	1.7700	2.589(8)	180.00
O5W-H1W5 ...041 ${ }^{\text {(viii) }}$	0.8200	2.1800	2.989(5)	167.00
O6W-H1W6...021 ${ }^{\text {(iii) }}$	0.8100	1.9400	2.748(5)	175.00
C33-H33...O1W ${ }^{\text {(vii) }}$	0.9300	2.4400	3.339(6)	164.00
C45-H45 ..042	0.9300	2.5300	2.924(5)	106.00
C56-H56 \cdots O22 ${ }^{\text {(iii) }}$	0.9300	2.3700	3.123(6)	138.00
C66-H66...03W ${ }^{\text {(iii) }}$	0.9300	2.3400	3.062(7)	134.00
$\begin{gathered} \text { (i) } 1 / 2-x, 3 / 2-y, 1-z ; \text { (ii) } x, 1-y,-1 / 2+z ; \text { (iii) } 1 / 2-x,-1 / 2+y, 1 / 2-z ; \text { (iv) } 1-x,-y, 1-z ; \text { (v) } 1 / 2- \\ x, 1 / 2-y, 1-z ;(\text { (vi) } x, 1-y, 1 / 2+z ;(\text { (vii) } x, 1-y,-1 / 2+z ; \text { (viii) } 1 / 2-x, 1 / 2+y, 1 / 2-z ; \text { (ix) } 1 / 2- \\ x, 3 / 2-y, 1-z ; \end{gathered}$				

Adduct of TPPM and 1,6-hexyldiamine (5)				
O13-H13O \cdots O21 ${ }^{\text {(i) }}$	0.815(19)	1.75(2)	2.545(3)	164(2)
O23-H23O…012 ${ }^{\text {(ii) }}$	0.820(13)	1.762(12)	2.561(4)	164.5(18)
O33-H33O..031 ${ }^{\text {(iii) }}$	0.820(9)	1.758(8)	$2.564(4)$	167(2)
O42-H42O $\cdots .03 \mathrm{~W}^{\text {(iv) }}$	0.819(12)	1.904(9)	2.635(8)	148.0(9)
O43-H43O…O32 ${ }^{(v)}$	0.820(14)	1.880(12)	2.619(4)	149.3(10)
N51-H511...O1W ${ }^{(\text {vi) }}$	0.85(4)	2.05(4)	$2.835(6)$	154(4)
N51-H513 \cdots O23 ${ }^{\text {(vi) }}$	0.85(2)	2.19(2)	$2.985(5)$	156(4)
N58-H582..012 ${ }^{\text {(vi) }}$	0.85(4)	2.01(4)	2.748 (4)	145(4)
N71-H711...04W	0.890(5)	2.066(6)	2.951(5)	172.7(5)
N71-H712..O2W	0.891(6)	2.130(5)	2.933(4)	149.6(5)

Potential hydrogen bonds (not localized hydrogen atoms)

041..05W	-	-	2.95(1)
041..01W	-	-	2.933(5)
01W...011	-	-	2.738 (4)
04W...O41	-	-	2.760(5)
041…02W	-	-	2.800(4)
05W...O11	-	-	3.11(1)
021..02W	-	-	2.734 (5)
043..05W	-	-	3.07(1)
O32 \cdots N61	-	-	2.745 (5)
O22 \cdots N61	-	-	2.779(6)
N61..03W	-	-	3.126(7)
N58...031	-	-	2.804(3)
O43 ..N58	-	-	2.944(6)
05W...N58	-	-	2.83(1)
N51..013	-	-	3.078(5)
O13...N51	-	-	3.171(6)
N51..022	-	-	2.856(4)
N71..011	-	-	2.758(3)
N71..01W	-	-	3.140(3)

(i) $x,-1+y, z$; (ii) $2-x, 1-y, 1-z$; (iii) -x,1-y,2-z; (iv) $1-x,-y, 2-z ;$ (v) $1+x, y, z$; (vi) $-1+x, 1+y, z$; (vii) $-1+x, y, z$

Adduct of TPPM and urotropine (6)				
N1-H1 \cdots O12 ${ }^{(i)}$	0.8700	1.8700	2.727(4)	167.00
N3-H3 ...O3W (occ. 0.5)	0.8700	2.4800	3.295(7)	157.00
N3-H3 ..-04W (occ. 0.5)	0.8700	2.5300	3.382(10)	167.00
O13-H13O...021 ${ }^{\text {(ii) }}$	0.8200	1.8000	2.557(3)	152.00
O23-H23O…O22 ${ }^{\text {(iii) }}$	0.8200	1.8200	2.623(3)	165.00
C2-H2A \cdots O1W ${ }^{\text {(iv) }}$	0.9700	2.5200	3.458(4)	163.00
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 1^{(\text {(i) }}$	0.9700	2.5600	3.481(5)	158.00
C3-H3B \cdots O21 ${ }^{(v)}$	0.9700	2.3500	3.321(4)	175.00
C23-H23 ..013 ${ }^{(\text {vi) }}$	0.9300	2.4800	3.381(3)	164.00

(i) $x,-y,-1 / 2+z$; (ii) $x,-y,-1 / 2+z$; (iii) $-x, 1-y, 1-z$; (iv) $1 / 2-x, 1 / 2-y, 1-z$; (v) $x, 1-y,-1 / 2+z$;
(vi) $1 / 2-x, 1 / 2+y, 1 / 2-z$;

Figure S1. $\mathrm{A}^{1} \mathrm{H}$ NMR spectrum $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right)$ of ester $\mathbf{1 b}$.

Figure S2. $\mathrm{A}^{13} \mathrm{C}$ NMR spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$) of ester $\mathbf{1 b}$.

Figure S3. A fragment of 1b HSQC spectrum showing correlations (cross-peaks and dotted lines) between phenyl protons and corresponding carbon atoms' signals.

Figure S4. A NOESY spectrum of ester $\mathbf{1 b}$ showing correlations through space (red cross-peaks and dotted lines) between 2-Ph phenyl protons and alkyl chain from the phosphonic group.

Figure S5. $\mathrm{A}^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}, 300 \mathrm{~K}$) of TPPM (1).

Figure S6. $\mathrm{A}^{13} \mathrm{C}$ NMR spectrum ($126 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, 300 \mathrm{~K}$) of TPPM (1).

Figure S7. A fragment of a TPPM (1) HSQC spectrum showing correlations (cross-peaks and dotted lines) between phenyl protons and corresponding carbon atoms' signals analogically to the ester spectrum.

Figure S8. A TPPM (1) HMBC spectrum showing correlations (cross-peaks): for signal a (2-Ph), there are correlations through one and three bonds, also weaker through two bonds to 3-Ph and 1-Ph (not shown). Signal b (3-Ph) correlates through one and three bonds and weakly through two bonds to 2Ph (not shown).

Supplementary Figures

Figure S9. The asymmetric unit of adduct $\mathbf{3}$ (only atoms with labels). Displacement ellipsoids are drawn at the 50\% probability level. Hydrogen atoms drawn arbitrarily small.

Figure S10. The asymmetric unit of adduct 4. Displacement ellipsoids are drawn at the 50\% probability level. Hydrogen atoms drawn arbitrarily small.

Figure S11. A packing diagram of adduct 4 (left) together with partial topological simplification (right) showing high complexity of the obtained network.

Figure S12. The asymmetric unit of adduct 5 (only non-transparent atoms). Displacement ellipsoids are drawn at the 50\% probability level. Hydrogen atoms drawn arbitrarily small.

Figure S13. The asymmetric unit of adduct 6 (only non-transparent atoms). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms drawn arbitrarily small.

Figure S14. A pseudohexagonal arrangement of 4PE-held linear columns in adduct $\mathbf{2}$ crystal. Grey isolated atoms are quaternary carbon ones from TPPM molecules.
-

Figure S15. A tetragonal arrangement of 4PE-held linear columns in adduct $\mathbf{3}$ crystal. Grey isolated atoms are quaternary carbon ones from TPPM molecules.

Figure S16. Dimeric assembly of TPPM molecules in adduct 5 presenting 6PE interaction, showed along the [001] direction. These TPPM molecules showed using a space-filling model with arbitrarily chosen atomic radii. The other ones are ball-and-stick representations.

Discussion of 2D Fingerprint plot properties of the cocrystal and acid-base adduct

In our previous work, ${ }^{3}$ we demonstrated and discussed specific properties of Hirshfeld surfaces and fingerprint plots of phosphonic acids, in which a phosphonic group is protonated and monodeprotonated. It is worth noting that the properties of the Hirshfeld surface of phosphonic cocrystals have not been reported to date. The lack of deprotonation of a TPPM molecule in 3 has an impact on the 2D fingerprint plot. This is illustrated comparatively on structures with 2,2'-bipyridine (3) and 4-(N,N-dimethylamino)pyridine (4) in Figure S17. Decomposed 2D fingerprint plots are presented in Figure S18.

Figure S17. 2D fingerprint plots summarizing contacts of the TPPM molecule in the cocrystal (left) and in the acid-base adduct (right). The 2D fingerprints plots are calculated for structures $\mathbf{3}$ and 4, respectively.
$\mathrm{O} \cdots \mathrm{H}$ and $\mathrm{N} \cdots \mathrm{H}$ contacts, indicating strong hydrogen bonding, are usually presented in a 2D fingerprint plot as a pair of long sharp spikes directed toward the bottom left of the plot. ${ }^{4}$ In the cocrystal structure (3), the most prominent feature of the 2D fingerprint plot is the splitting of the upper spike into the $\mathrm{N} \cdots \mathrm{H}$ and $\mathrm{O} \cdots \mathrm{H}$ spike. The shortest $\mathrm{O} \cdots \mathrm{H}$ contacts, expressed as $d_{i}+d_{e}$ value, do not differ and in both compounds (3 and 4) are within a 1.60-1.62 Å range. The $N \cdots H$ contact is a little more distant ($1.64 \AA \circ$) and this is the reason why it can be distinguished from the $0 \cdots \mathrm{H}$ spike. In fact, the 2D fingerprint plot of $\mathbf{3}$ strongly resembles those of free fully-protonated phosphonic acids. ${ }^{3}$ This is the case because there are two protonated oxygen atoms per phosphonic group inside the space limited by the Hirshfeld surface of 3. This increases the contact range and broadens the $\mathrm{H} \cdots \mathrm{O}(\mathrm{N})$ donor (upper) spike. In structure 4, where proton transfer occurs, an $\mathrm{O} \cdots \mathrm{H}$ acceptor (lower) spike dominates. The "wings" found in the 2D fingerprint plot are usually characteristic of C...H interactions. In both instances, a lower wing is present, while the upper one is reduced, indicating the predominance of the $\mathrm{C} \cdots \mathrm{H}$ accepting character of the tetraphenylmethane core.

Adduct 3
Adduct 4
$\mathrm{O} \cdots \mathrm{H}$
$\mathrm{N} \cdots \mathrm{H}$
$\mathrm{C} \cdots \mathrm{H}$

Figure S18. Contact-decomposed 2D fingerprint plots for adducts $\mathbf{3}$ and 4.

Discussion of infrared spectra

In the spectrum of acid 1, in the typical range for hydrogen bonding there are three maxima observed at $3420 \mathrm{~cm}^{-1}, 2824 \mathrm{~cm}^{-1}$, and $2277 \mathrm{~cm}^{-1}$. A pattern of specific intermolecular interactions present in investigated hydrogen-bonded networks (2-6) finds its reflection in infrared spectra. The spectral features of adducts $\mathbf{2}$ and $\mathbf{3}$ in the range of $3500-2000 \mathrm{~cm}^{-1}$, are quite similar to $\mathbf{1}$ due to the rather noncomplicated hydrogen bond network. There are observable three dominating vibrations (at $3435,2752,2286 \mathrm{~cm}^{-1}$ and $3430,2694,2224 \mathrm{~cm}^{-1}$ for $\mathbf{2}$ and $\mathbf{3}$, respectively). This region in adducts 4-6 gives much more complex vibrational pattern. For instance in adduct 4 one can find more of strong maxima (3396, 3240, 2924, 2775, 2678, $2342 \mathrm{~cm}^{-1}$) which derive from the hydrogenbonded networks of water molecules as well as from contribution of protonated bases. This characteristics is the same in adducts 5 and 6 spectra.

The spectrum of tetraphosphonic acid 1 constitutes the basis for an analysis of infrared spectra of adducts 2-6. Most characteristic features, present in all spectra, are: C-C stretching vibrations within phenyl rings (around $1600 \mathrm{~cm}^{-1}$ and $1400 \mathrm{~cm}^{-1}$), C-P stretching ($750-740 \mathrm{~cm}^{-1}$) and the "umbrella" bending of a PO_{3} group that occurs at $550-560 \mathrm{~cm}^{-1}$. In 1 , one can notice $\mathrm{P}=0$ stretching vibration ($1207 \mathrm{~cm}^{-1}$) typical for the protonated phosphonic group as well as asymmetric and symmetric P$(\mathrm{OH})_{2}$ stretching at 1017 and $939 \mathrm{~cm}^{-1}$, respectively.

Infrared spectra of adducts (2-6) give more complicated pattern in the region below $1500 \mathrm{~cm}^{-1}$ due to overlapping with signals from base molecules, as well as due to nonuniform deprotonation of phosphonic groups. Additionally, the involvement of the phosphonic groups into the hydrogen bond network may result in coupling of vibrations giving further complication of the spectra. ${ }^{5}$ Therefore, assignments should be treated tentatively, especially between $1300 \mathrm{~cm}^{-1}$ and $800 \mathrm{~cm}^{-1}$. In the adducts spectra, a monodeprotonated phosphonic group gives usually asymmetric and symmetric PO_{2} stretching vibrations centered at 1140 and $1040 \mathrm{~cm}^{-1}$, respectively. The stretching vibration involving a protonated oxygen atom $(\mathrm{P}-\mathrm{OH})$ is found at around $930 \mathrm{~cm}^{-1}$.

In adduct 2, a pyridine molecule introduces C-C pyridine ring stretching vibration at $1634 \mathrm{~cm}^{-1}$ and $\mathrm{C}_{\mathrm{Ar}}-\mathrm{N}$ stretching vibration at $1551 \mathrm{~cm}^{-1}$. In this region, contribution from symmetric bending $\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}$ vibrations at $1487 \mathrm{~cm}^{-1}$ can also be noticed. The presence of $2,2^{\prime}$-bipyridine in adduct $\mathbf{3}$ is manifested by a set of peaks at $1564,1472,1429$ coming from $\mathrm{C}_{\mathrm{Ar}}-\mathrm{N}$ and $\mathrm{C}-\mathrm{C}$ vibrations in aromatic rings. In this adduct, the presence of not deprotonated phosphonic groups results in the well defined $\mathrm{P}=\mathrm{O}$ stretching vibration ($1215 \mathrm{~cm}^{-1}$) and gives asymmetric and symmetric $\mathrm{P}-(\mathrm{OH})_{2}$ stretching at 989 and $936 \mathrm{~cm}^{-1}$, respectively.

Vibrations of the DMAP molecule in adduct 4 are highly characteristic what has been shown in our previous report. ${ }^{3}$ The $1648 \mathrm{~cm}^{-1}$ band is assigned to $\mathrm{C}-\mathrm{C}$ pyridine ring stretching vibrations and maximum at $1560 \mathrm{~cm}^{-1}$ is attributed the $\mathrm{C}_{\mathrm{Ar}}-\mathrm{N}$ stretching vibration. Their high intensity causes relative decrease in the intensity of vibrations coming from C-C stretching of the phenyl rings in the tetraphenylmethane core ($1399 \mathrm{~cm}^{-1}$). Moreover, there is also found a band centered at $1220 \mathrm{~cm}^{-1}$, that can be attributed to $v_{a s}\left(\mathrm{~N}-\left(\mathrm{CH}_{3}\right)_{2}\right)$ vibration.

In the spectrum of adduct $5, C-N$ streching bands of 1,6-hexanediamine are centered at $1252 \mathrm{~cm}^{-1}$, $1237 \mathrm{~cm}^{-1}$, and $1017 \mathrm{~cm}^{-1}$. The $-\mathrm{NH}_{3}^{+}$bending vibrations appear as a broadened band at $1526 \mathrm{~cm}^{-1}$. Bands in the range of $1350 \mathrm{~cm}^{-1}-1500 \mathrm{~cm}^{-1}$ are found due to different vibration deformation modes of CH_{2} groups in a hexane chain.

The presence of urotropine, DMSO molecules and lattice water leads to a very complicated infrared spectrum of 6 . The introduction of the urotropine molecule into the structure provides $\mathrm{C}-\mathrm{N}$ streching bands at $1261 \mathrm{~cm}^{-1}$ and $1016 \mathrm{~cm}^{-1}$. Bending vibration modes of methylene groups are positioned at $1368 \mathrm{~cm}^{-1}$ and $1465 \mathrm{~cm}^{-1}$, respectively. DMSO gives a set of noticeable signals. The $1076 \mathrm{~cm}^{-1}$ band can be ascribed as $\mathrm{S}=\mathrm{O}$ stretching vibration. The peaks at $1437 \mathrm{~cm}^{-1}$ and $1403 \mathrm{~cm}^{-1}$ correspond to asymmetric bending mode of the CH_{3} group, while a band at $1312 \mathrm{~cm}^{-1}$ corresponds to symmetric deformation of the methyl group.

pH-potentiometry studies

Experimental

The potentiometric studies were carried out using a MOLSPIN 1000 automatic titration system at constant temperature of $25^{\circ} \mathrm{C}$, under nitrogen flow. The titration system was equipped with a Mettler Tolledo InLab Micro Pro microcombined electrode calibrated daily in hydrogen ion concentration using HNO_{3}. Titrations were performed on solutions of $0.1 \mathrm{~mol} \cdot \mathrm{dm}^{-3} \mathrm{KNO}_{3}$ as background electrolyte, and the ionic product of water for these conditions was $10^{-13,77} \mathrm{~mol}^{2} \cdot \mathrm{dm}^{-6}$. Initial solutions of TPPM were titrated with sodium hydroxide ($C=0.098642 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$) delivered by $0.25 \mathrm{~cm}^{3}$ micrometer Hamilton syringe in pH range 2-11. Sample volumes were $2 \mathrm{~cm}^{3}$, concentration of TPPM was $C=0.00090904 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$. Stability constants $\beta_{\mathrm{pqr}}=\left[\mathrm{M}_{\mathrm{p}} \mathrm{H}_{\mathrm{q}} \mathrm{L}_{\mathrm{r}} /[\mathrm{M}]^{p}[\mathrm{H}]^{9}[L]^{\top}\right.$ were calculated using the SuperQuad v. 5.20 program. ${ }^{6}$

Discussion

The TPPM molecule has eight potential protonation sites derived from four phosphonic groups, but in our titration conditions only five protonation constants were found. The rest of the protonation constants are too low ($\mathrm{p} K_{a}<2$) to be determined in experimental conditions, and also due to precipitation of the compound at low pHs . The values of the protonation constants are presented in Table S3, while Figure S19 shows the graphic representation of the calculated protonation scheme. TPPM (below denoted as $\mathrm{H}_{8} \mathrm{~L}$) is totally deprotonated at a pH above 11 and the first four protons are easily deprotonated.

Figure S19. Distribution of protonation forms of L at $25^{\circ} \mathrm{C}, I=0.1 \mathrm{~mol} \cdot \mathrm{dm}^{-3} \mathrm{KNO}_{3}$

Table S1. Protonation Constants of $\mathrm{H}_{8} \mathrm{~L}$ at $25^{\circ} \mathrm{C}$ and $I=0.1 \mathrm{~mol} \cdot \mathrm{dm}^{-3}\left(\mathrm{KNO}_{3}\right)$

Equilibrium	$\log 6$	$\log K_{a}$
$\mathrm{H}^{+}+\mathrm{L}^{8-}=\mathrm{HL}^{7-}$	$8.31(1)$	8.31
$\mathrm{H}^{+}+\mathrm{HL}^{7-}=\mathrm{H}_{2} \mathrm{~L}^{6-}$	$15.66(1)$	7.35
$\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{~L}^{6-}=\mathrm{H}_{3} \mathrm{~L}^{5-}$	$22.90(1)$	7.24
$\mathrm{H}^{+}+\mathrm{H}_{3} \mathrm{~L}^{5-}=\mathrm{H}_{4} \mathrm{~L}^{4-}$	$29.26(1)$	6.36
$\mathrm{H}^{+}+\mathrm{H}_{4} \mathrm{~L}^{4-}=\mathrm{H}_{5} \mathrm{~L}^{3-}$	$31.62(2)$	2.36

The protonation constants for tetraphosphonic acids remain largely unreported in the literature. The compound we examined has four phenyl rings connected into the quaternary carbon atom, and the phosphonic groups are in para positions. According to Nagarajan et al., a simple phenylphosphonic acid has two protonation constants $\mathrm{p} K_{1}=1.80$ and $\mathrm{p} K_{2}=7.50^{7}$, while Guliński et al. found the values of $\mathrm{p} K$ to be slightly higher $\left(\mathrm{p} K_{1}=2.11 \text { and } \mathrm{p} K_{2}=8.15\right)^{8}$.
The values of second protonation constants for every phosphonic group present in TPPM are in good agreement with the corresponding constants for phenylphosphonic acid. Generally, acids containing more than two phosphonic groups represent an increase in the basicity of the unprotonated anion. ${ }^{9}$ In accordance with these results, the value of $\mathrm{p} K_{1}=8.31$ is slightly higher than for the simple phenylphosphonic acid.
The other acid somehow comparable to TPPM is 1,3,5-benzenetri(phosphonic acid) with three phosphonic groups connected to the aromatic ring. Five protonation constants were found for this compound. ${ }^{10}$ The values of the protonation constants are higher than for aromatic diphosphonates ${ }^{11}$ but are almost the same as for TPPM. This fact confirms that the higher the presence of phosphonic groups in the acid, the higher the amount of protonation constants. ${ }^{9}$

References

(1) Ng, M. C. C.; Craig, D. J.; Harper, J. B.; van-Eijck, L.; Stride, J. A., The Central Atom Size Effect on the Structure of Group 14 Tetratolyls. Chemistry - A European Journal 2009, 15, (27), 6569-6572.
(2) Yang, G.; Shen, C.; Zhang, L.; Zhang, W., Nickel-catalyzed Arbuzov reactions of aryl triflates with triethyl phosphite. Tetrahedron Lett. 2011, 52, (39), 5032-5035.
(3) Białek, M. J.; Zaręba, J. K.; Janczak, J.; Zoń, J., Chains, layers, channels, and more: Supramolecular chemistry of potent diphosphonic tectons with tuned flexibility. the generation of pseudopolymorphs, polymorphs, and adducts. Cryst. Growth Des. 2013, 13, (9), 4039-4050.
(4) McKinnon, J. J.; Spackman, M. A.; Mitchell, A. S., Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr. Sect. B: Struct. Sci. 2004, 60, (6), 627-668.
(5) Zoń, J.; Videnova-Adrabinska, V.; Janczak, J.; Wilk, M.; Samoć, A.; Gancarz, R.; Samoć, M., Design, synthesis and noncentrosymmetric solid state organization of three novel pyridylphosphonic acids. CrystEngComm 2011, 13, (10), 3474-3484.
(6) Gans, P.; Sabatini, A.; Vacca, A., SUPERQUAD: an improved general program for computation of formation constants from potentiometric data. J. Chem. Soc., Dalton Trans. 1985, (6), 1195-1200.
(7) Nagarajan, K.; Shelly, K. P.; Perkins, R. R.; Stewart, R., Arylphosphonic acids. I. Substituent effects on their first and second dissociations. Can. J. Chem. 1987, 65, (8), 1729-1733.
(8) Gulinski, J.; Maciejewska, U.; Stewart, R., The effects of high concentrations of aqueous tetramethylammonium chloride and other salts on the dissociation of phenylphosphonic acid and on the enolization of acetone. J. Solution Chem. 1988, 17, (4), 297-304.
(9) Bogdan, C.; Peczely, G.; Gaizer, F., Protonation constants of ethane and propane framesubstituted oligophosphonic and oligophosphonocarboxylic acids. Polyhedron 2001, 20, (15-16), 1809-1813.
(10) Kong, D.; Clearfield, A.; Zoń, J., Crystal-engineered three-dimensional hydrogen-bonding networks built with 1,3,5-benzenetri(phosphonic acid) and bipyridine synthons. Cryst. Growth Des. 2005, 5, (5), 1767-1773.
(11) Caplan, N. A.; Pogson, C. I.; Hayes, D. J.; Blackburn, G. M., Novel bisphosphonate inhibitors of phosphoglycerate kinase. Bioorg. Med. Chem. Lett. 1998, 8, (5), 515-520.

