	Capital cost (€)	Technical lifetime (years)
Internal Combustion Engine (ICE)	1,000	15
Stirling engine (SE)	866	15
Proton Exchange Membrane Fuel Cell (PEMFC)	2,981	25
Gas Turbine (GT)	1,500	15
Gas Burner 1 (GB1)	120	10
Gas Burner 2 (GB2)	120	10
Heat Buffer Tank 1 (HBUF1)	30	10
Heat Buffer Tank 2 (HBUF2)	30	10

 Table A1: Residential case: capital cost and technical lifetime of all candidate technologies.

Table A2: Residential case: operational and economic data.

1	mCHP, heat generators, heat storage tanks	λ_{i1}^+	0.3 kW
	3 households	η_{si}	1%
T	4 seasons, 2 day types, 24 hourly time intervals	v_t	0.0342 €/kWh
$B_{it=0}$	0 kW	ξ _{sit}	0.04674 €/kWh of fuel
Υi	1	φ_{si}	0.01 €
δ_i	1	ψ_{st}	0.1562 €/kWh
λ_{i1}^{-}	0.6 kW	π_t	0.114 €/kWh

Type of technology	Capital cost (€)	Technical lifetime (years)
Gas Engine (GE)	110,000	20
Gas Turbine 1 (GT)	97,500	20
Gas Turbine 2 (MGT)	95,100	20
Gas Turbine 3(GGT)	2,782,000	20
Reciprocating Engine 1 (RE)	974,000	20
Reciprocating Engine 2 (GRE)	1,170,500	20
Micro-Turbine (MIT)	357,000	20
Phosphoric acid Fuel Cell (PAFC)	1,890,272	20
Gas Burner 1 (GB1)	20,000	10
Gas Burner 2 (GB2)	40,000	10
Heat Buffer Tank 1 (HBUF1)	4,500	10
Heat Buffer Tank 2 (HBUF2)	9,000	10

 Table A3: Urban case: capital cost and technical lifetime of all candidate technologies.

Table A4: Urban case: operational and economic data.

1	CHP, heat generators, heat storage tanks	μ_{st}	15%
S	4 sectors	η_{si}	1%
T	4 seasons, 1 day types, 24 hourly time intervals	v_t	0.0342 €/kWh
$B_{it=0}$	0 kW	ξsit	0.04674 €/kWh of fuel
Υi	1	φ_{si}	0.11€
δ_i	1	ψ_{st}	0.1562 €/kWh
a_t	500 kW _{th}	σ_t	0.004674 €/kWh

Figure B1: Uniform probability distribution for the network technology selection of the urban energy system.

