Supporting Information

Flow Update for the Carbonylation of 1-Silyl-Substituted Organolithiums under CO Pressure

Takahide Fukuyama*, Takenori Totoki, and Ilhyong Ryu*

Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

ryu@c.s.osakafu-u.ac.jp

Table of Contents

General Information	S 2
Typical Procedure for Table 1	S3-4
Typical Procedure for Table 2	S4-5
Spectrum Data	S6-8
References	S 8
Spectrum Chart	S9-22

General Information

¹H NMR spectra were recorded using JEOL ECP-500 (500 MHz) or JEOL ECS-400 (400 MHz) spectrometers in CDCl₃ and are referenced at 7.26 ppm for CHCl₃. ¹³C NMR spectra were recorded using JEOL ECP-500 (125 MHz) or JEOL ECS-400 (100 MHz) spectrometers in CDCl₃ and are referenced at 77.16 ppm for CHCl₃. Chemical shifts are reported in parts per million (δ). Splitting patterns are indicated as follows: br, broad; s, singlet; d, doublet; t, triplet; m, multiplet. Infrared spectra were obtained on a JASCO FT/IR-4100 spectrometer; absorptions were reported in reciprocal centimeters. Both conventional and high-resolution mass spectra were recorded with a JEOL MS-700 spectrometer. The melting point was measured according to the BÜCHI Melting Point B-540. The products were purified by flash column chromatography on silica gel (Kanto Chem. Co. Silica Gel 60N (spherical, neutral, 40-50 μm)) and, if necessary, were further purified by preparative HPLC (Japan Analytical Industry Co., Ltd., LC-908) with GPC columns using CHCl₃ as an eluent.

THF was distilled from sodium and benzophenone prior to use. N,N,N',N'-tetramethylethylenediamine (TMEDA) and trimethylchlorosilane (TMSCl) were distilled from CaH₂. The starting materials $\mathbf{1b}^1$ and $\mathbf{1c}^2$ were prepared according to the literature procedures. Other reagents were commercially available and used without further purification.

Stainless steel T-shaped micromixers with inner diameter of 400 and 600 µm were purchased from MiChS Co., Ltd.³ Stainless steel and PTFE microtube reactors with inner diameters of 1000 µm were purchased from GL Sciences Inc. The microreactor and microtube reactors were connected with PEEK fittings (GL Sciences Inc., 1/16"). Back-pressure regulators (40 and 75 psi) were purchased from M & S Instruments Inc. Solutions were introduced to the flow microreactor system using syringe pumps, YSP-101 and YSP-301 (YMC Co., Ltd.), equipped with gastight syringes. These syringes were purchased from SGE Analytical Science Pty. Ltd.

Carbon monoxide was delivered to the micromixer at a constant rate through a mass flow controller, MiChS GFC-1, from a CO gas cylinder. The pressure of the system was controlled by a back-pressure regulator and was monitored by a pressure monitor on the mass flow controller. Residence time at **R2** was estimated according to the equation: t (min) = inner volume of **R2** (mL) / [liquid flow rate (mL min⁻¹) + CO flow rate at 25 °C, 1 atm (mL min⁻¹) / pressure of CO (atm)].

Typical Procedure for Two-Consecutive-Flow Reaction (Table 1, entry 3)

Allyl(phenyl)dimethylsilane (1b) (0.704 g, 3.99 mmol) was dissolved in THF (9 mL) and TMEDA (1.8 mL, 12 mmol) and then placed in a syringe, which was then attached to a syringe pump. A THF/TMEDA solution of **1b** (flow rate: 0.2 mL min⁻¹) and a hexane solution of *n*-BuLi (flow rate: $0.065 \text{ mL min}^{-1}$) were mixed in M1 (400 μ m i.d.) at 25 °C using syringe pumps. The resultant reaction mixture was fed into R1 (channel diameter = 1000 µm, length = 6 m) and was then mixed with pressurized carbon monoxide (6 atm, 7.46 mL min⁻¹ (in terms of 1 atm), 4.5 equiv) in M2 (600 µm i.d.), which was supplied through a mass flow controller. The reaction mixture was passed through **R2** (channel diameter = 1000 µm, length = 20 m), which was connected to a back-pressure regulator (75 psi), and was collected from the outlet. The reaction mixture eluted during the first 5 min was discarded and the following portion was collected for a 5 min period in a glass flask that contained TMSCl (0.6 mL, 4.7 mmol). The collected reaction mixture was stirred at 25 °C for 1 h and then aqueous workup with ether and a NaHCO₃ aqueous solution was conducted. The ethereal solution was dried over MgSO₄. The filtration and evaporation of the solvents gave a crude reaction mixture, which was purified by flash column chromatography on SiO₂ (hexane) to give **2b** (93.3 mg, 91%).

Table S1. Details of Continuous Microflow Reaction for Table 1 in the Manuscript

	length (m)		СО	flo	flow rate (mL min ⁻¹)				
entry	R1	R2	(atm)	1b	<i>n</i> -BuLi	CO ^a			
1	6	10	4	0.15	0.048	5.55 (1.39)			
2	10.5	20	4	0.2	0.065	7.46 (1.87)			
3	6	20	6	0.2	0.065	7.46 (1.24)			

Inner diameters of **R1** and **R2** are 1000 μ m.

^aFlow rate at standard condition of 25 °C and 1 atm. Calculated flow rate at actual pressure at 25 °C is shown in parentheses.

(E)-((1-(Dimethylphenylsilyl)-1,3-butadienyl)oxy)trimethylsilane (2b)

colorless oil; $R_f = 0.1$ (hexane); 1H NMR (400 MHz, CDCl₃) δ 0.05 (s, 9H), 0.41 (s, 6H), 4.98 (dd, J = 10.4, 1.2 Hz, 1H), 5.13 (dd, J = 17.6, 2.4 Hz, 1H), 5.79 (d, J = 10.4 Hz, 1H), 6.66 (ddd, J = 17.2, 10.6, 10.4 Hz, 1H), 7.30-7.40 (m, 3H), 7.50-7.58 (m, 2H); 13 C NMR (125 MHz, CDCl₃) δ -3.13, 0.97, 115.2, 126.4, 127.9, 129.4, 130.6, 134.4, 137.0, 158.6. These spectral data are consistent with those previously reported in the literature.⁴

Typical Procedure for Three-Consecutive-Flow Reactions (Table 2, entry 1)

Allyl(phenyl)dimethylsilane (**1b**) (0.697 g, 3.95 mmol) was dissolved in THF (9 mL) and TMEDA (1.8 mL, 12 mmol) and then placed in a syringe, which was then attached to a syringe pump. A THF/TMEDA solution of **1b** (flow rate: 0.2 mL min⁻¹) and a hexane solution of *n*-BuLi (flow rate: 0.065 mL min⁻¹) were mixed in a **M1** (400 μ m i.d.) at 25 °C using syringe pumps. The resultant reaction mixture was fed into **R1** (channel diameter = 1000 μ m, length = 6 m) and was then mixed with pressurized carbon monoxide (6 atm, 7.46 mL min⁻¹ (in terms of 1 atm), 4.5 equiv) in **M2** (600 μ m i.d.), which was supplied through a mass flow controller. The reaction mixture was passed through **R2** (channel diameter = 1000 μ m, length = 20 m), which was connected to a back-pressure regulator (75 psi), and was quenched by mixing with a THF solution of TMSCl (flow rate: 0.625 mL min⁻¹) in **M3** (400 μ m i.d.), and then fed into **R3** (channel diameter = 1000 μ m, length = 11 m). A mixture of the product was collected from the outlet. The reaction mixture eluted during the first 5 min was discarded and the following portion was collected for a 5 min period. After collection, an aqueous

workup with ether and a NaHCO₃ aqueous solution was conducted. The ethereal solution was dried over MgSO₄. The filtration and evaporation of the solvents, gave a crude reaction mixture, which was purified by flash column chromatography on SiO_2 (hexane) to give **2b** (94.2 mg, 93%).

Table S2. Details of Continuous Microflow Reaction for Table 2 and Scheme 4 in the Manuscript

entry	1 -	length (m)		m)	electrophiles products
entry	1	R1	R2	R3	electrophiles products
1	1b	6	20	11	OTMS TMSCI SiPhMe ₂ 2b
2	1a	6	10	11	OTMS TMSCI Za
TM 3	S TMS	6	20	11	TMSCI TMS TMS
4	PhTMS 1d	10.5	10	11	OTMS TMSCI Ph TMS 2d
5	1d	10.5	10	11	CHO OH O Ar TMS Ar = p -Cl-C ₆ H ₄
6	1d	10.5	10	11	Mel Me TMS Ph 5 OTMS
Scheme 4	1e	10.5	10	11	TMSCI n-Bu TMS

Flow rate: A THF/TMEDA solution of **1** (0.2 mL min⁻¹), A hexane solution of *n*-BuLi (0.065 mL min⁻¹), CO (7.46 sccm, where sccm denotes mL min⁻¹ at the standard condition of 25 °C and 1 atm.), electrophiles (0.625 mL min⁻¹). Inner diameters of **R1**, **R2**, and **R3** are 1000 μ m.

Spectrum Data

(E)-Trimethyl((1-(trimethylsilyl)-1,3-butadien-1-yl)oxy)silane (2a)

colorless oil; R_f = 0.25 (hexane); 1 H NMR (400 MHz, CDCl₃) δ 0.13 (s, 9H), 0.21 (s, 9H), 4.96 (dd, J = 10.8, 1.6 Hz, 1H), 5.13 (dd, J = 16.8, 1.6 Hz, 1H), 5.75 (d, J = 10.4 Hz, 1H), 6.66 (ddd, J = 16.8, 10.6, 10.4 Hz, 1H); 13 C NMR (100 MHz, CDCl₃) δ -1.73, 0.99, 114.8, 125.0, 130.6, 160.4. These spectral data are consistent with those previously reported in the literature.⁴

((1E,3E)-1-((Trimethylsilyl)oxy)-1,3-butadien-1,4-diyl)bis(trimethylsilane) (2c)

colorless oil; $R_f = 0.25$ (hexane); ¹H NMR (400 MHz, CDCl₃) δ 0.07 (s, 9H), 0.12 (s, 9H), 0.21 (s, 9H), 5.76 (d, J = 10.0 Hz, 1H), 5.77 (d, J = 18.4 Hz, 1H), 6.88 (dd, J = 18.4, 10.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ -1.75, -0.99, 1.16, 127.1, 131.2, 137.6, 160.5; IR (neat): 1604, 1554 cm⁻¹; EIMS m/z (relative intensity) 286 (M⁺, 29), 183 (14), 148 (11), 147 (74), 73 (100). HRMS (EI) m/z calcd for $C_{13}H_{30}OSi_3$ (M⁺): 286.1604, found: 286.1605.

(E)-Trimethyl((2-phenyl-1-(trimethylsilyl)ethenyl)oxy)silane (2d)

colorless oil; $R_f = 0.125$ (hexane); ¹H NMR (400 MHz, CDCl₃) δ 0.06 (s, 9H), 0.20 (s, 9H), 5.93 (s, 1H), 7.16 (t, J = Hz, 1H), 7.28 (t, J = 7.2Hz, 2H), 7.50 (d, J = 6.8 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ -1.28, 1.16, 123.4, 126.4, 128.1, 129.1, 136.5, 159.9. These spectral data are consistent with those previously reported in the literature. ⁵

(1S,2S,3R)-rel-1-(4-Chlorobenzoate)-3-(4-Chlorophenyl)-2-phenyl-1-(trimethylsilyl)-1,3-propanediol (4)

White solid; m.p. 105-108 °C; $R_f = 0.1$ (hexane : EtOAc = 50 : 1); ¹H NMR (400 MHz, CDCl₃) δ –0.17 (s, 9H), 2.95 (dd, J = 10.0, 2.4 Hz, 1H), 4.56 (dd, J = 10.0, 3.2 Hz, 1H), 4.72 (d, J = 3.2 Hz, 1H), 5.74 (d, J = 2.4 Hz, 1H), 6.92-6.94 (m, 4H), 7.04 (d, J = 8.8 Hz, 2H), 7.13-7.14 (m, 3H), 7.54 (dd, J = 6.8, 2.4 Hz, 2H), 8.11 (dd, J = 6.8, 2.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ -3.11, 57.05, 69.81, 73.65, 127.2, 128.0, 128.1, 128.2, 128.4, 129.4, 129.9, 131.4, 132.7, 138.6, 140.4, 140.5, 168.3; IR (neat): 3477, 1695 cm⁻¹; EIMS m/z (relative intensity) 457 (M⁺-CH₃, 1), 177 (21), 176 (96), 162 (14), 161 (83), 145 (15), 139 (100), 113 (11), 111 (21), 77 (24), 73 (35). HRMS (EI) m/z calcd for $C_{24}H_{23}Cl_2O_3Si$ (M⁺-CH₃): 457.0794, found: 457.0804.

The stereoconfiguration of this compound was determined by referring to the ¹H NMR spectrum of the related compound in literature.⁶

2-Phenyl-1-(trimethylsilyl)-1-propanone (5)

yellow oil; $R_f = 0.125$ (hexane : EtOAc = 50 : 1); 1H NMR (400 MHz, CDCl₃) δ –0.02 (s, 9H), 1.28 (d, J = 7.2 Hz, 3H), 4.01 (q, J = 7.2 Hz, 1H), 7.12-7.13 (m, 2H), 7.24-7.26 (m, 1H), 7.30-7.34 (m, 2H); ^{13}C NMR (100 MHz, CDCl₃) δ -2.51, 16.3, 57.5, 127.0, 128.7, 139.1, 244.5. These spectral data are consistent with those previously reported in the literature.

Trimethyl(((1*E*)-1-(trimethylsilyl)-1-hepten-1-yl)oxy)silane (2e)

colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 0.09 (s, 9H), 0.18 (s, 9H), 0.89 (t, J = 6.4 Hz, 3H), 1.30-1.33 (m, 6H), 2.05-2.06 (m, 2H), 5.01 (t, J = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ -1.51, 1.07, 14.2, 22.7, 25.9, 29.4, 32.0, 125.9, 156.5; IR (neat): 1616 cm⁻¹; EIMS m/z (relative intensity) 258 (M⁺, 11), 201 (16), 185 (61), 184 (11), 148 (11), 147 (71), 133 (13), 73(100). HRMS (EI) m/z calcd for C₁₃H₃₀OSi₂ (M⁺): 258.1835, found: 258.1826.

References

- (1) Soderquist, J. A.; Hassner, A. J. Org. Chem. 1983, 48, 1801.
- (2) Ihara, E.; Koyama, K.; Yasuda, H.; Kanehisa, N.; Kai, Y. *J. Organomet. Chem.* **1999**, *574*, 40.
- (3) http://www.michs.jp/index_en.html
- (4) Ryu, I.; Yamamoto, H.; Sonoda, N.; Murai, S. Organometallics 1996, 15, 5459.
- (5) Murai, S.; Ryu, I.; Iriguchi, J.; Sonoda, N. J. Am. Chem. Soc. 1984, 106, 2440.
- (6) Honda, M.; Iwamoto, R.; Nogami, Y.; Segi, M. Chem. Lett. 2005, 34, 466.
- (7) Nakada, M.; Urano, Y.; Kobayashi, S.; Ohno, M. J. Am. Chem. Soc. 1988, 110, 4826.

	Ш
	Ŭ
	7
	4
	Œ
	7
ı	7
	Ö
	Ŋ
Ш	Ш
5	7
7	ш.
{4	
11	11

tt-b4-124-fr.3-7_Proton-1-5.jdf

= C:\Users\delta\Documente\J
= delta\Documente\J
= delta\Documente\J
= delta\Documente\J
= proton.jxp
= tr-b-4-124-er.3-7
= 2t-NAN-2013 20:22:11
= 12-MAN-2013 16:46:18
= 12-MAN-2013 16:55:14 = 9.42499681[T] (400[MHz]) = 2.1757952[s] 1H = 401.28219856 [MHz] = 5 [ppm] = 16384 Proton 401.28219856[MHz] 5[ppm] 0.45960208[Hz] 7.53012048[kHz] 6.02409639[kHz] JNM-ECS400 DELTA2_NMR TMS OTMS Field Strength
X Acq Duration
X Domain
X Freq
X Offset 2a -2.0 -1.0 \$12.0 702.0 991.0 981.0 \$41.0 \$51.0 721.0 482.9 118.8 1.0 2.0 3.0 4.0 827.2 257.2 841.2 186.4 186.4 186.4 080.1 700.1 0.9 / 207.6 / 207.6 / 376.6 / 366.6 / 366.6 / 466.6 / 466.6 1,000 7.0 8.0 9.0 10.0

0.82 0.72 0.62 0.25 0.45 0.52 0.25 0.12 0.02 0.91 0.81 0.71 0.61 0.21 0.41 0.51 0.51 0.01 0.09 0.8 0.7 0.6 0.2 0.4 0.5 0.2 0.1 0 эрпидансе X : parts per Million : Proton

11.0

12.0

S9

= C:\Users\dalta\Documents\J
= dalta\
= carbon.jxp
= tr-b4-124-fr.3-7 1
= CELROROPSH-10-12-48-10-12-48-10-12-48-10-13-51-26
= 12-248-2013 16:51:26 = single pulse decoupled gat = 1D COMPLEX = 26214 = Carboni3 = (ppm] = 9.42499681[T] (400[MHz]) = 1.03809024[s] = 136 = 100.9024[s] = 100.90247863[MHz] = 100.90247863[MHz] 20.96330739[Hz] 31.5656567[kHz] 25.25252525[kHz] Proton 401.28219856[MHz] = 2(s) = 20.4 (dC) = 20.4 (dC) = 1.0380904(s) = 1.038090904(s) = 2.046667(us) = 2.04667(us) = 2.046667(us) = 2.04667(us) = 2.04667(us) = 2.0467(us) JNM-ECS400 DELTA2 NMR Field Strength
X Acq Duration
X Domain
X Freq
X Offset
X Postors
X Postors
X Resolution Comment
Data Format
Dim Size
Dim Title
Dim Units
Dim Units
Site
Spectrometer -20.0 -10.0 \$86.0 627.1 10.0 20.0 30.0 40.0 50.0 0.09 70.0 . \$48'9L - 091'LL - \$48'9L 80.0 120.0 110.0 100.0 90.0 114.823 125.038 160.0 150.0 140.0 130.0 £19.0£I 196.091 220.0 210.0 200.0 190.0 180.0 170.0 o-tt-b4-124-fr.3-71_Carbon-1-3.jdf X : parts per Million : Carbon13 9.0 s;0 p.0 2.0 1,0 ε.0 ò abundance S10.

---- ACQUISTION PARAMETERS ---File Name = 1d_13c_spectrum_copy.30
Author = tr-b4-20Sampla ID = tr-b4-20Content = Single Fulls with Broad
Creation Date = 20-UW-2012 18:51:54 Revision Date = 23-JUN-2012 18:56:05 Spec Site = ECP500 7.7-134-20--20.0 -10.0 - 6627.0 - 8628.1-- 8161.6-10.0 20.0 30.0 40.0 50.0 60.0 70.0 1214.77 E031.77 90.0 100.0 110.0 120.0 2640,7E1 046E,4E1 2241,4E1 04420,0E1 0244,6Z1 5806,7Z1 2204,6Z1 150.0 170.0 180.0 X : parts per Million : 13C 190.0 200.0 210.0 0.0≳€ 330.0 0.015 0.092 0.072 0.022 0.052 0.012 0.001 0.071 215.021 0.051 0.011 0.06 0.07 0.08 0.05 0.01

(snoilliM)

0.061

0.081

0.071

0.091

0.021

140.0

130.0

0.021

0.011

0.001

0.06

864

0.07

0.09

0.05

0.04

30.0

0.02

0.01 (snoilliM)

TT-B4-74-FR.3-4 Single Pulse with Broad 7-NOV-2012 13:28:55 10-NOV-2012 15:05:29 ECP500 Pile Name = 10_13c_spectrum.106
Author = rr_B-4-4-Rn.3-4
Sumple ID = rr_B-4-4-Rn.3-4
Content = Single Pulse with Brc
Creation Date = 7-NOV-2012 13:28:55 20 Revision Date Spec Site

-20.0 -10.0 8786.0-8087.1-10.0 20.0 30.0 40.0 50.0 0.09 70.0 0091.77 2809.97 120.0 110.0 100.0 90.0 8619.041 4863.761 8112.161 469.621 469.621 747.821 150.0 160.0 £961.091 170.0 180.0 X : parts per Million : 13C

190.0

200.0

210.0

JEOL RESONANCE = C:\Users\\delta\Documents\\J\
= delta\\Documents\\J\
= delta\\Documents\\J\
= delta\\Documents\\J\
= proton. jxp
= tt-b-4-120-fx; 2-4
= 10x-3xx-2013 10:33:16
= 12x-3xx-2013 10:33:16 = 9.42495681[T] (400[MEz])
= 2.1757952[s]
= 401.28219656[MEz]
= 5[ppm]
= 16384 Proton 401.28219856[MHz] 0.45960208[Hz] 7.53012048[kHz] 6.02409639[kHz] JNM-ECS400 DELTA2 NAR £46.8

2d -2.0 -1.0 940.0 410.0-860.0-961.0 191.0 - 241.0 820.0 820.0 E22.0 1.0 1.544 1.433 2.0 3.0 4.0 5.0 $\overline{000.1}$ --- 1 E 6. S 6.0 402.7 402.7 402.7 672.7 672.7 671.7 821.7 821.7 041.7 7.0 207.0 3.559 950,2 8.0 9.0 10.0 11.0 12.0

tt-b4-120-fr.2-4 Proton-1-5.jdf

abundance

 \boldsymbol{X} : parts per Million : Proton

(c_balance exp : 5[Hz] ff : 1 ### ACQUISTION PARAMETERS ---
Author

-20.0

-10.00401.1 7772.1-8677.1-10.0 20.0 0861.72 30.0 40.0 50.0 60.0 70.0 90.0 100.0 110.0 1280.621 8242.821 8860.821 886.621 1544.35 153.3834 136.4538 140.0150.0 160.0 \$66.6SI 170.0 180.0 190.0 200.0 210.0 220.0 0.022 0.042 0.052 0.052 0.052 0.051 0.002 0.091 0.081 0.071 0.061 0.081 0.041 0.051 0.051 0.051 0.051 0.051 0.001 0.09 0.09 0.09 0.07 0.09 0.02 0.04 0.05 0.05 0.05 (knoilliM)

Author delta	actrometer and a selection of a sele	OHO
A S S S S S S S S S S S S S S S S S S S	Special Specia	<u>,</u>

1.0 997.8 -0.154 -0.170-1.0 122.1
≥ 122.1 076.0 $\frac{8882}{2.933}$ 0 027.4 217.4 378.4 188.4 286.0 286.0 000.1 ___ [ÞL'\$ \$11.8 \$11.8 \$11.8 \$20.8 \$60.8 \$60.8 \$60.7 \$61.7 \$6 3.610 3.022 668.1 266.I 716.1 9.0 10.0 X: parts per Million: Proton 11.0 12.0

ester_Proton-1-4.jdf

PECONFERENCE Authors Authors	TAMS TO
	TOO 0 -10.0 -20.0
	90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0
	0.00 0.
818	220.0 210.0 200.0 190.0 180.0 170.0

Piletame = tt.m1-53-hp1c_Proton-1 Author = delta = proton.1 yry Sample Id = tt.m1-53-hp1c_Proton-1 Experiment = delta = proton.1 yry Sample Id = tt.m1-53-hp1c Solvent im = 24-MC-2013 11:55:17 Revision Time = 26-MC-2014 13:55:17 Current Time = 26-MC-2014 13:52:77	-	Tri Offset = 5 [ppm] Tri Domain = Proton	O SWILL O	
Anti Anti Anti Anti Anti Anti Anti Anti	Comment of the commen	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		-2.0
090'6				0-1-
		,	7.993	200
				3.0
			<u>000.</u>	0.5
				0.9
			2.342	618.0
				0.6

7	SONF
D JE	7
11	77.

Jeol Resonance		single pulse decoupled gat single pulse decoupled gat 1D COMPLEX 26214 single pulse single pulse	iden = 4 .0775981[Hz] 11.15pped = 25.3107346[Hz] 12.15pped = 28.2468757[Hz] 12.16pped = 26.24985[Hz] 13.16pped = 25.56 14.221985[Hz] 15.21985[Hz] 16.221985[Hz] 17.221985[Hz]	n_Delay = 2 [s] n_ = 21.9 [dc] th = 8.75 [us] s = 0.2738376 [s] = 5.2 [ds] s = 2.916667 [us] oc = 2.691[ds] s = 91.464.		TMS 2			
1111	Filename Author Expeziment Sample_Id Scaple_Id Scaple_Id Creation_Time Earlsion_Time Current_Time	Data Format Data Format Data Format Dia Size Dia Title Dia Unite Diamentions Site Spectrometer Field Strength X. Acq. Duration X. Freq X. Domain X. Freq X. Pointe	X Freedans X Freedans X Sweep Z Sweep X Sweep Clipped IXT Domain IXT Freed IXT Offset Clipped Scans Total Scans		Decoupling Initial Wait Noe Time Repetition_Time	<u> </u>	1444 - 1,444	1 5	
						·		0 0 -10.0	<888. 012.
								20.0 10.0	67£
								40.0 30.0	
								50.0	019
								70.0 60.0	
							3000	0.080.0	<001 001 0018
								30.0 120.0 110.0 100.0 90.0	
								20.0 110.0	078
								1 -	256. 527. 720. 510. 028.
								210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0	080.
								0.0 160.0	
								180.0 17	
								00.0 190.0	
								0 210.0 2	
								230.0 220.0	
								250.0 240.0 230.0	075
5 4,5 6,5								260.0 250	0ZS°1
£ 4.E E.E	Z.E I.E 0.E 9.2 8.Z	2.2 2.3 2.4 2.5 2.6 2.7	I.S 0.2 9.1 8.1 7.	S20	.I I.I 0.I 9.0 8.6	0 4.0 8.0 8.0	ice 0.2 0.3 0.4	rsbnuds 0 0	

PEEDONFANCE Silenament and the control of the cont	
	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	10.07 0.00 0
	0.08 0.00 2001.77 200 2001.77
	130.0 120.0 110.0 100.0 90.0
	156.504
tt-b4-151-fr.2-3_Carbon-1-4.jdf	220.0 210.0 200.0 190.0 180.0 170.0 X : parts per Million : Carbon 13
25.0 15.0 5.0 81.0 71.0 81.0 21.0 41.0 51.0 51.0 11.0 1.0 60.0 80.0 70.0 80.0 20.0 40.0 50.0 20.0 1	spandance