Supporting Information for

Copper-Mediated Intramolecular Oxidative C–H/C–H Cross-Coupling of α-Oxo Ketene N,S-Acetals for Indole Synthesis

Fei Huang,[†] Ping Wu,[†] Liandi Wang,[†] Jiping Chen,[†] Chenglin Sun,[†] and Zhengkun Yu*^{,†,‡}

[†] Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People's Republic of China

^{*} State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, People's Republic of China

zkyu@dicp.ac.cn

Contents:	page
1. Optimization of the Reaction Conditions	S2
2. X-Ray Crystallographic Studies	S 3
3. Copies of NMR Spectra for Known Compounds	S 6
4. Copies of NMR Spectra for New Compounds	S12

1. Optimization of the Reaction Conditions

	, → ^H s	Me	>=0		
		H <u>condition</u>	onsSMe		
	Ċ		Ň		
	1a		2a		
Entry	[Cu]	Base	Solvent (v:v)	Temp.	Yield ^a
	[Cu]	Dase	501vent (v.v)	(°C)	(%)
1	CuCl ₂	K_2CO_3	DMF	120	76 (72) ^b
2^{c}	$CuCl_2$	K_2CO_3	DMF	120	61
3 ^ª	$CuCl_2$	K_2CO_3	DMF	120	6
4	$CuCl_2$	K_2CO_3	DMSO	120	31
5	$CuCl_2$	K_2CO_3	THF	120	6
6	$\operatorname{CuCl}_{2_{r}}^{e}$	K_2CO_3	DMF	120	52
7	$\operatorname{CuCl}_{2_{r}}^{1}$	K_2CO_3	DMF	120	7
8^{a}	$CuCl_{2}^{I}$	K_2CO_3	DMF	120	0
9 ^g	$CuCl_{2}^{I}$	K_2CO_3	DMF	120	0
10 ⁿ	CuCl ₂ ^T	K_2CO_3	DMF	120	31
11 ¹	$CuCl_2^J$	K_2CO_3	DMF	130	0
12	$CuCl_2^{k}$	K_2CO_3	DMF	130	91
13	CuCl ₂ ·2H ₂ O	K_2CO_3	DMF	120	$68(55)^{b}$
14	$CuBr_2$	K_2CO_3	DMF	120	75
15	$CuBr_2^k$	K_2CO_3	DMF	120	93
16	$CuCl_2$	K_2CO_3	DMF	140	80
17	$CuCl_2$	K_2CO_3	o-xylene	140	26
18	$CuCl_2$	K_2CO_3	1,4-dioxane	140	18
19	$CuCl_2$	K_2CO_3	DMF/DMSO (3:1)	120	75
20	$CuCl_2$	K_2CO_3	DMF/DMSO (5:1)	120	83
21		K_2CO_3	DMF/DMSO (7:1)	120	88
22		K_2CO_3	DMF/DMSO (9:1)	120	81
23		K_2CO_3	DMF/DMSO (11:1)	120	82
24		Li ₂ CO ₃	DMF	120	$94(84)^{b}$
25		Na ₂ CO ₃	DMF	120	84
26		Cs_2CO_3	DMF	120	66
27		Na ₂ CO ₃	DMF/DMSO (7:1)	120	80
28	CuCl ₂	Li ₂ CO ₃	DMF/DMSO (5:1)	120	85
29		Li ₂ CO ₃	DMF/DMSO (7:1)	120	87
30		Li ₂ CO ₃	DMF/DMSO (9:1)	120	86
31	CuCl ₂	Li ₂ CO ₃	DMF/DMSO (11:1)	120	91
32	CuCl ₂	Li ₂ CO ₃	toluene	140	10
33		Li ₂ CO ₃	ClCH ₂ CH ₂ Cl	140	69
34		2 5	DMF	140	52
35	CuCl ₂	K ₃ PO ₄	DMF	140	86
36	CuCl ₂	K ₃ PO ₄	DMF/DMSO (7:1)	140	$96(94)^{b}$
37	CuCO ₃	LiCl	DMF	140	8
38	CuCl	K ₃ PO ₄	DMF/DMSO (7:1)	120	97 (94) ^b
39	CuCl ₂	K ₃ PO ₄	DMF/DMSO (7:1)	100	81
40°		K ₃ PO ₄	DMF/DMSO(7:1)	120	68
41^{d}	CuCl ₂	K ₃ PO ₄	DMF/DMSO (7:1)	120	7
42	CuCl ₂	$K_3PO_4^e$	DMF/DMSO (7:1)	120	83
43	CuCl	$K_3 PO_4^1$	DMF/DMSO (7:1)	120	73
44		K ₃ PO ₄	DMF/DMSO (7:1)	120	52
45		K ₃ PO ₄	DMF/DMSO (7:1)	120	6
46	CuCl ₂	K ₃ PO₄	DMF/DMSO (20:1)	120	94

Table S1. Screening of Conditions for the Reaction of 1a

47	CuCl ₂ ⁻ 2H ₂ O	K ₃ PO ₄	DMF/DMSO (7:1)	120	76
48	CuBr ₂	K_3PO_4	DMF/DMSO (7:1)	120	95

Conditions: **1a** (0.2 mmol), [Cu] (0.6 mmol), base (0.6 mmol), solvent (2 mL), 0.1 MPa Ar, 0.5 h. ^{*a*} Determined by GC analysis with mesitylene as the internal standard. ^{*b*} Isolated yield given in parentheses. ^{*c*} In air. ^{*d*} In 0.1 MPa O₂. ^{*e*} 2 equiv. ^{*f*} 0.2 equiv. ^{*g*} with 2 equiv BQ. ^{*h*} with 2 equiv DDQ. ^{*i*} with 2 equiv K₂S₂O₈. ^{*j*} 0.5 equiv. ^{*k*} 4 equiv. ^{*f*} 1 equiv.

2. X-Ray Crystallographic Studies

Single crystals for the X-ray diffraction studies for compounds 2d, 2x, and 3b were carried out on a SMART APEX diffractometer with graphite-monochromated Mo radiation ($\lambda = 0.71073$ Å). Cell parameters were obtained by global refinement of the positions of all collected reflections. Intensities were corrected for Lorentz and polarization effects and empirical absorption. The structures were solved by direct methods and refined by full-matrix least squares on *F*2. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in calculated positions. Structure solution and refinement were performed by using the SHELXL-97 package. The X-ray crystallographic files, in CIF format, are available from the Cambridge Crystallographic Data Centre on quoting the deposition numbers CCDC 999743 for 2d, CCDC 999802 for 2x, and CCDC 999742 for 3b. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 IEZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Empirical formula	C ₁₂ H ₁₃ NOS	
Formula weight	219.29	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system, space group	Monoclinic, P2(1)/n	
Unit cell dimensions	a = 5.262(6) Å	alpha = 90°
	b = 16.416(19) Å	beta = 99.99(2) $^{\circ}$
	c = 13.074(15) Å	gamma = 90°
Volume	$1112(2) \text{ Å}^3$	
Z, Calculated density	4, 1.310 Mg/m^3	
Absorption coefficient	0.263 mm^{-1}	
F(000)	464	
Crystal size	0.212 x 0.156 x 0.123 m	m
Theta range for data collection	2.01 to 26.00°	
Limiting indices	-6<=h<=6, -20<=k<=20	, -16<=l<=14
Reflections collected/unique	6383 / 2183 [R(int) = 0.	0734]
Completeness to theta $= 26.00$	99.8 %	
Absorption correction	Empirical	
Max. and min. transmission	1.00000 and 0.37703	2
Refinement method	Full-matrix least-square	s on F^2
Data/restraints/parameters	2183 / 0 / 144	
Goodness-of-fit on F^2	1.067	
Final R indices [I > 2 sigma(I)]	R1 = 0.0537, wR2 = 0.1	344
R indices (all data)	R1 = 0.0598, WR2 = 0.1	403
Largest diff. peak and hole	0.335 and -0.311 e.Å ⁻³	

 Table S2. Crystal data and structure refinement for 2d

Table S3. Crystal data and structure refinement for $2 \mathbf{x}$

Empirical formula Formula weight	C ₁₉ H ₁₉ NO ₂ S 325.41	
Temperature Wavelength	293(2) K 0.71073 Å	
Crystal system, space group	Orthorhombic, Pbca	
Unit cell dimensions	a = 14.0334(9) Å	alpha = 90°
	$b = 10.0587(7) \text{ Å}_{0.0587(7)}$	beta = 90 °
	c = 23.4532(15) A	gamma = 90°
Volume	3310.6(4) Å ³	
Z, Calculated density	8, 1.306 Mg/m^3	
Absorption coefficient	0.205 mm^{-1}	
F(000)	1376.0	

Crystal size	0.231 x 0.175 x 0.101 mm
Theta range for data collection	1.74 to 26.00°
Limiting indices	-17<=h<=16, -12<=k<=10, -28<=l<=28
Reflections collected/unique	18897 / 3259 [R(int) = 0.0418]
Completeness to theta $= 26.00$	100.0 %
Absorption correction	Empirical
Max. and min. transmission	1.00000 and 0.66890
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	3259 / 0 / 214
Goodness-of-fit on F ²	1.056
Final R indices $[I > 2 \text{ sigma}(I)]$	R1 = 0.0365, wR2 = 0.0975
R indices (all data)	R1 = 0.0476, $wR2 = 0.1043$
Largest diff. peak and hole	$0.240 \text{ and } -0.188 \text{ e.Å}^{-3}$

Empirical formula	C ₁₇ H ₁₅ NO		
Formula weight	249.30		
Temperature	140(2) K		
Wavelength	0.71073 Å		
Crystal system, space group	monoclinic, P 21/c		
Unit cell dimensions	a = 14.094(3) Å	alpha = 90°	
	b = 7.3935(15) Å	beta = $90.653(4)^{\circ}$	
	c = 12.576(3) Å	gamma = 90°	
Volume	1310.4(5) Å ³		
Z, Calculated density	4, 1.264 Mg/m^3		
Absorption coefficient	0.078mm^{-1}		
F(000)	528		
Crystal size	0.250 x 0.150 x 0.150 mm	1	
Theta range for data collection	1.445 to 30.583°		
Limiting indices	-20<=h<=19, -10<=k<=10), -17<=l<=15	
Reflections collected/unique	12603 / 4009 [R(int) = 0.0571]		
Completeness to theta $= 30.554$	99.8 %		
Absorption correction	Semi-empirical from equiv	valents	
Max. and min. transmission	0.6728 and 0.7461	2	
Refinement method	Full-matrix least-squares of	$\operatorname{on} \mathbf{F}^2$	
Data/restraints/parameters	4009 / 0 / 178		
Goodness-of-fit on F^2	1.155		
Final R indices [I > 2 sigma(I)]	R1 = 0.0539, wR2 = 0.107	76	
R indices (all data)	R1 = 0.0987, wR2 = 0.120)7	
Largest diff. peak and hole	$0.289 \text{ and } -0.356 \text{ e.}\text{\AA}^{-3}$		

3. Copies of NMR Spectra for Known Compounds

HF171 1H NMR IN CDC13

HF171 13C NMR IN CDC13

hf257-1 1H NMR hf257 in CDC13

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

hf261 1H NMR hf261 in CDC13

hf261 13C NMR hf261 CDC13

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

HF339 13C NMR IN DMSO-d6

4. Copies of NMR Spectra for New Compounds

S12

hf209 1H NMR (hf209 in CDC13)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

hf218 1H NMR (hf218 in CDC13)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

hf216 1H NMR (hf216 in CDC13)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

hf163-1 1H NMR (hf163 in CDC13)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

HF158 1H NMR IN CDC13

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 f1 (ppm) 50 40 30 20 10 0

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

hf294-2

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

hf141 1H NMR (hf141in CDC13)

hf141 13C NMR (hf141 in CDC13)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

HF546 1H NMR IN CDC13

HF546 13C NMR IN CDC13

	-170.216	140.359 136.845 136.002 138.347 128.347 127.138		— 18.241 — 14.301
--	----------	--	--	----------------------

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

HF199 1H NMR IN DMSO-d6

S37

HF221 1H NMR IN DMSO-d6

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S44

~2.7369 ~2.6746 ~2.4996

---3.3894

HF241 13C NMR IN DMSO-d6

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S48

S49

HF341 1H NMR IN DMSO-d6

Me

Ď 2r[D₄]

HF267 1H NMR IN DMSO-d6

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

HF268 1H NMR IN DMSO-d6

S53

HF269 1H NMR IN DMSO-d6

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

HF270 1H NMR IN DMSO-d6

HF297 1H NMR IN DMSO-d6

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

HF313 1H NMR IN DMSO-d6

HF569 1H NMR IN CDC13

HF569 13CNMR IN CDC13

--200.931

HF406 1H NMR IN DMSO-d6

HF406 13C NMR IN DMSO-d6

