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Figure S1. Optimization of tetrahedrons with NETGEN1. top: tetrahedron face swap: The 
separating wall between two adjacent tetrahedrons is swapped, which requires that one 
triangle from each tetrahedron must be in the same plane. If two triangles are only nearly in 
the same plane, the corresponding nodes are shifted slightly to establish planarity before 
applying the face swap. middle: tetrahedron split: A tetrahedron with a long edge is split in 
two by a plane which cuts the long edge and contains the two nodes opposite to this edge. 
bottom: tetrahedron collapse: If two triangles have a short common edge, the tetrahedrons 
built on top of such slim triangles can collapse to triangles by merging the two corner points 
of the short common edge. As a result one grid point and two tetrahedrons are eliminated.  
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Figure S2. Four proteins used for the computation of solvation energies. top, left to right: 
bovine pancreatic trypsin inhibitor2 (bpti), barnase3, lysozyme 4. bottom: cytochrome c 
oxidase5.  

 
Table S1. NIST constants and expressions used in calculations  

expression / 
constant 

values units 

ε0 8.85418782×10-12 
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e0 1.60217656× 10
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Table S2. ΔGBorn electrostatic solvation energy of a unit charge in center of sphere of radius 
r Born = 3 Å, in = 4, out = 80. Comparison of APBS and mFES solver with varying ionic 
strength I, listing the numerical values for Fig. (8) in main text.  
 
I [mol/l] APBS finea,b APBS coarsea,c mFESd analytical result 

0.01 -40.6542 -40.9927 -40.7276 -40.6188 
0.02 -37.7509 -38.0969 -37.8258 -37.7153 
0.05 -33.9976 -34.3215 -34.0675 -33.9565 
0.1 -31.4309 -31.7182 -31.4927 -31.3823 
0.15 -30.0910 -30.3521 -30.1470 -30.0374 
0.2 -29.2216 -29.4631 -29.2734 -29.1643 

a The point density at the atomic vdW  spheres is set to 10 points/Å2, which is the recommended value 
in APBS.  
b n3  = 1933 = 7.2 106 grid points with 0.05 Å lattice constant  
c n3 = 653 = 2.7 105 grid points with 0.25 Å lattice constant  
d Second order approximation is used corresponding to an average distance between neighbor grid 
points of 0.175 Å inside the Born ion sphere resulting in a total of 34,335 grid points, which is 1/8 of 
the number grid points used for the coarse resolution with FD. The spherical asymptotic boundary 
surface is at a distance of 105 Å from the center.  

 

CPU time ratio of solving linear equation systems 

 Solving the linear equation system is the computationally most expensive part in FD 

methods. Hence, CPU times for solving the linear equations for four different proteins are 

shown as a ratio between APBS and mFES (Fig. S5). Here, CPU times for preparing the 

linear equation system like generating the tetrahedral grid of the molecular model are not 

included. mFES reduces the CPU time to solve the linear equation system by at least one 

order of magnitude because the number of equations is significantly smaller with the FE 

method. mFES uses the linear equation solver MUMPS (Multifrontal Massively Parallel 

sparse direct Solver).6-8  
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Figure S3. CPU time ratios solving linear equation systems for four proteins. Solver time 
ratio of APBS fine to mFES () and APBS coarse to mFES () are plotted versus the 
average edge length hS on the molecular surface using mFES. Calculations are done with two 
APBS models (fine and coarse) for every molecule and one model for each average surface 
edge length generated with mFES. The ratio between APBS to mFES is increasing from lower 
to higher lattice constant because the molecular models computed by mFES are getting 
coarser without losing much accuracy in electrostatic calculations compared to FD method.  
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