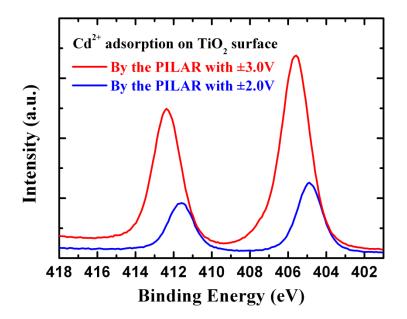
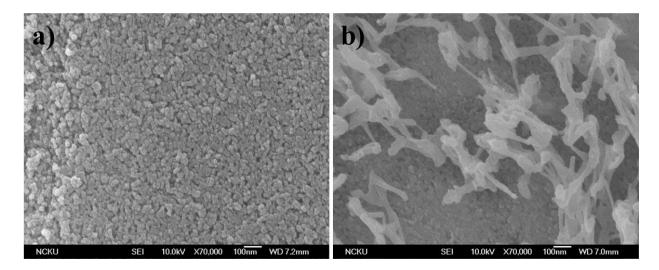
Supporting Information

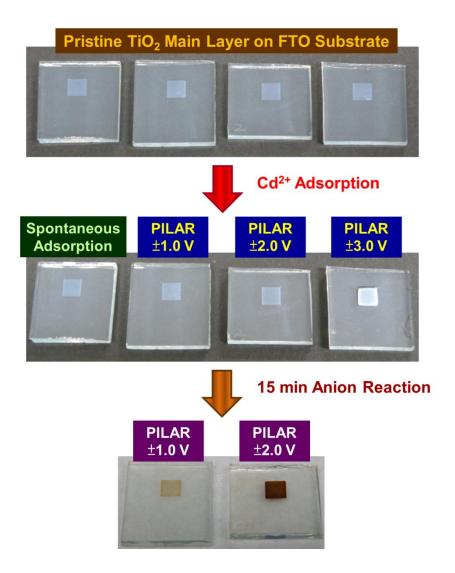
Performance Enhancement of Quantum-Dot-Sensitized Solar Cells by Potential-Induced Ionic Layer Adsorption and Reaction


I-Ping Liu[†], Chien-Wei Chang[†], Hsisheng Teng^{†,‡,§}, Yuh-Lang Lee^{*,†,§}

[†]Department of Chemical Engineering, [‡]Center for Micro/Nano Science and Technology, [§]Research Center for Energy Technology and Strategy (RCETS), National Cheng Kung University, Tainan 70101, Taiwan


AUTHOR INFORMATION

Corresponding Author: Yuh-Lang Lee


*E-mail: yllee@mail.ncku.edu.tw.

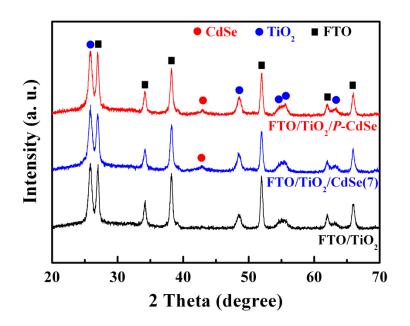

Figure S1. XPS spectra of Cd^{2+} adsorbed TiO_2 films prepared by the PILAR method with different applied biases.

Figure S2. Top-view SEM images of PILAR treated TiO₂ films prepared by the applied biases of (a) ± 2.0 V and (b) ± 3.0 V.

Figure S3. Comparative photographs of pristine TiO_2 films, Cd^{2+} anchored TiO_2 films prepared by different method, and the corresponding CdSe QD-sensitized photoelectrodes.

Figure S4. XRD patterns of FTO/TiO₂ electrode, FTO/TiO₂/CdSe(7) electrode fabricated by the SILAR process, and FTO/TiO₂/*P*-CdSe electrode prepared by the PILAR technique with 25-min anion reaction. The XRD peaks of FTO, TiO₂, and CdSe were characterized according to the ref. S1, JCPDS file No. 21–1272, and 19–0191, respectively.

Supporting Information Reference

[S1] Song, X.; Wang, M.; Deng, J.; Yang, Z.; Ran, C.; Zhang, X.; Yao, X. One-Step Preparation and Assembly of Aqueous Colloidal CdS_xSe_{1-x} Nanocrystals within Mesoporous TiO₂ Films for Quantum Dot-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2013, 5, 5139–5148.