Supplementary Information

Rapid *in vitro* metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes

Guanyong Su, †,‡ Doug Crump, †,* Robert J. Letcher, †,‡,* Sean W. Kennedy, †,§

- † Environment Canada, National Wildlife Research Centre, Ottawa, ON, K1A 0H3, Canada
- ‡ Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
- § Centre for Advanced Research in Environmental Genomics, Department of Biology,

University of Ottawa, Ottawa, Ontario, Canada

* Corresponding author.

Phone +1-613-998-7383 (D. C.) and 1-613-998-6696 (R. J. L.); Fax +1-613-998-0458

(D.C. and R.J.L.); E-mail: Doug.Crump@ec.gc.ca (D.C.) and

Robert.Letcher@ec.gc.ca (R.J.L.)

Table S1. Pathways, RefSeq accession numbers and descriptions of 32 genes on the Avian ToxChip PCR array

Pathway	Gene	RefSeq	Description		
ı anıway	Symbol	Accession			
Phase I and II Metabolism	CYP3A37	NM_001001751	Cytochrome P450 A 37		
	CYP1A4	NM_205147	Cytochrome P450 1A4		
	UGT1A9	XM 001234353	UDP glucuronosyltransferase 1 family,		
	UGITA9	AWI_001234333	polypeptide A9		
	SULT1B1	NM_204545	Sulfotransferase family, cytosolic, 1B, member 1		
	SULT1E1	NM 420616	Sulfotransferase family 1E, estrogen-preferring		
	SOLITEI	NWI_420010	member 1		
	BATF3	XM 419428	Basic leucine zipper transcription factor, ATF-like		
Immune	DITTI	AWI_417420	3		
Function	IL16	NM 204352	Interleukin 16 (lymphocyte chemoattractant		
Tunction	ILIO	1111_20 1332	factor)		
	HSP90AB1	NM_206959	Heat shock 90kDa protein 1, beta		
Glucose and					
fatty acid	PDK4	NM_001199909	Pyruvate dehydrogenase kinase, isozyme 4		
metabolism					
Oxidative	MT4	NM_205275	Metallothionein 4		
Stress	TXN	NM_205453	Thioredoxin		
	ACSL5	NM_001031237	Acyl-CoA synthetase long-chain family member :		
	HMGCR	NM 204485	3-hydroxy-3-methylglutaryl-Coenzyme A		
Lipid/Cholest		_	reductase		
erol	SLCO1A2	XM_416421	Solute carrier organic anion transporter family,		
Metabolism		_	member 1A2		
	LBFABP	NM_204634	Fatty acid binding protein 1, liver		
	CD36	NM_001030731	CD36 molecule (thrombospondin receptor)		
	SCD	NM_204890	Stearoyl-CoA desaturase (delta-9-desaturase)		
	TTR	NM_205335	Transthyretin		
Thyroid	DIO1	NM_001097614	Deiodinase, iodothyronine, type I		
Hormone	THRSP	NM 213577	Thyroid hormone responsive (SPOT14 homolog,		
Pathway		_	rat)		
	IGF1	NM_001004384	Insulin-like growth factor 1 (somatomedin C)		
	NCOA3	XM_417385	Nuclear receptor coactivator 3		
FXR and	CYP7B1	XM_418276	Cytochrome P450, family 7, subfamily B,		
LXR		_	polypeptide 1		
Cell Death	CASP1	NM_204924	Caspase 1, apoptosis-related cysteine peptidase		
			(interleukin 1, beta, convertase)		
	LOC100859	XM_003641931	Cell death activator CIDE-3-like		
	733		Hadron dale 5 daniel 1 1 1 2 2 1		
Steatosis	HSD3B1	NM_205118	Hydroxy-delta-5-steroid dehydrogenase, 3 beta-		
C4 1	AT A C1	NIM 001010012	and steroid delta-isomerase 1		
Steroid	ALAS1	NM_001018012	Aminolevulinate, delta, synthase1		

Metabolism					
	EEF1A1	NM_204157	Eukaryotic translation elongation factor 1 alpha 1		
	RPL4	NM_001007479	Ribosomal protein L4		
Controls	GGDC	SA_00517	Chicken Genomic DNA Contamination		
	RTC	SA_00104	Reverse Transcription Control		
	PPC	SA_00103	Positive PCR Control		

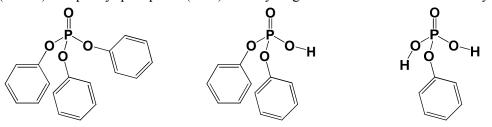
Table S2. Instrumental parameters, selected reaction monitoring (SRM) mass-to-charge (m/z) transitions, performance evaluation results (instrumental linearity, precision (RSD %), and method limit of quantification (MLOQ) for triphenyl phosphate (TPHP) and diphenyl phosphate (DPHP) using the method based on liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-MS/MS) operating in the positive mode.

Compound	Acronym	SRM ion transitions (m/z)	Cone voltage(V)	Collision energy (eV)	Linearity, R ² (0.2-200 ng/mL) ^a	MLOQ (ng/mL, injection concentration)	Precision (RSD %) (20 ng/mL)	Matrix effects (%) ^b
Diphenyl phosphate	DPHP	507.3>243.3	67	28	0.9989	0.19	n/a	n/a
d ₁₀ -diphenyl phosphate	d ₁₀ -DPHP	517.4>243.3	42	28	n/a	n/a	5.5	94±4
Triphenyl phosphate	ТРНР	327.1>77.1	100	40	0.9986	0.19	n/a	n/a
d ₁₅ -triphenyl phosphate	d ₁₅ -TPHP	342.2>82.0	100	40	n/a	n/a	4.2	94±5

^a Six concentration points included 0.2, 1, 5, 20, 50 and 200 ng/mL, respectively.

^b Minimal ESI(+) matrix effects were demonstrated by the ESI(+) response of 20 ng/mL for the TPHP and DPHP internal standards in treated medium/cell samples as compared to the pure internal standards, with values of $94 \pm 4\%$ and $94 \pm 5\%$ for d_{15} -TPHP and d_{10} -DPHP, respectively.

Table S3. Compound-dependent operation parameters and the precursor and daughter ions monitored using Waters ACQUITY UPLC® I-Class system coupled to Waters® XevoTM TQ-S mass spectrometer (UPLC-TQ-S/MS) operated in multiple reaction monitoring (MRM) mode.


Compounds ^a	Precursor ion	Daughter ion	cone voltage	collision energy
	(m/z)	(m/z)	(v)	(eV)
PHP	172.83	78.94	10	20
OH-TPHP	343.07	76.88	10	30
$(OH)_2$ -TPHP	359.07	76.88	10	30

^aThe electrospray ionization (ESI) was operated in negative mode for PHP analysis and positive mode for OH-TPHP and (OH)₂-TPHP analysis.

Table S4. Fold changes and p-values of 27 target genes on the Avian ToxChip PCR array following exposure of chicken embryonic hepatocytes to 10 μ M TPHP or DPHP, respectively. The fold change represents the mean value of three replicates and significant differences in fold change compared to the DMSO vehicle control were determined using a Student's t-test. The numbers in red signify that the mRNA levels were significantly altered (fold change ≥ 1.5 , p < 0.05).

Symbol		ТРНР	DPHP		
Symbol	p value	Fold Change	p value	Fold Change	
CYP3A37	0.018	1.26	0.001	-1.68	
CYP1A4	0.166	4.31	0.223	1.78	
UGT1A9	0.081	1.46	0.236	1.26	
SULT1B1	0.235	1.14	0.266	1.11	
BATF3	0.221	1.27	0.868	1.02	
PDK4	0.002	-2.46	0.001	-2.54	
TXN	0.033	1.30	0.237	1.16	
ACSL5	0.134	-1.33	0.005	-2.05	
HMGCR	0.001	-1.48	0.000	-2.11	
SLCO1A2	0.201	-1.12	0.002	-1.59	
TTR	0.325	-1.11	0.025	-1.47	
DIO1	0.629	-1.04	0.009	-1.86	
THRSP	0.000	-1.83	0.002	-1.65	
IGF1	0.022	-1.63	0.275	1.20	
NCOA3	0.086	-1.28	0.273	-1.17	
SULT1E1	0.002	1.30	0.630	1.02	
CYP7B1	0.084	-1.31	0.001	-3.05	
CASP1	0.002	-1.34	0.162	-1.08	
LOC100859733	0.074	1.24	0.279	-1.13	
HSD3B1	0.755	-1.05	0.749	1.05	
ALAS1	0.020	1.24	0.196	1.11	
IL16	0.878	-1.01	0.816	1.02	
MT4	0.003	2.08	0.346	1.25	
HSP90AB1	0.511	-1.08	0.713	-1.04	
CD36	0.281	-1.68	0.010	-2.35	
SCD	0.669	-1.04	0.621	-1.05	
LBFABP	0.082	1.18	0.925	1.01	

Figure S1. Chemical structures of triphenyl phosphate (TPHP), diphenyl phosphate (DPHP) and phenyl phosphate (PHP). The hydrogen atoms are omitted for clarity.

triphenyl phosphate diphenyl phosphate

phenyl phosphate

Figure S2. Cytotoxic effects of diphenyl phosphate (DPHP) in chicken embryonic hepatocytes (CEH). CEH were treated with different concentrations (0.01, 0.1, 1, 10, 100 and 1000 μ M) of DPHP for 36 h. One-way ANOVA was conducted to compare viability of each treatment group to the DMSO control; no significant differences were observed for any of the treatment groups. (p>0.05)

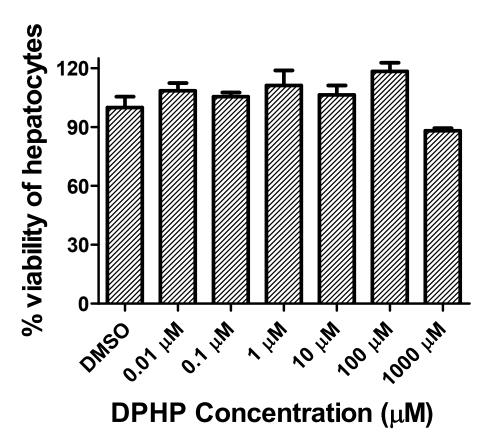


Figure S3. Total ion chromatogram of culture medium of triphenyl phosphate (TPHP)-exposed chicken embryonic hepatocytes using Waters ACQUITY UPLC® I-Class system coupled to Waters® XevoTM TQ-S mass spectrometer (UPLC-TQ-S/MS) operated in daughters scan mode (daughter ions of m/z 343.07 (upper, A) and m/z 359.07 (lower, B and C), respectively). See the detailed daughter ions of peak A, B, and C in Figure S4.

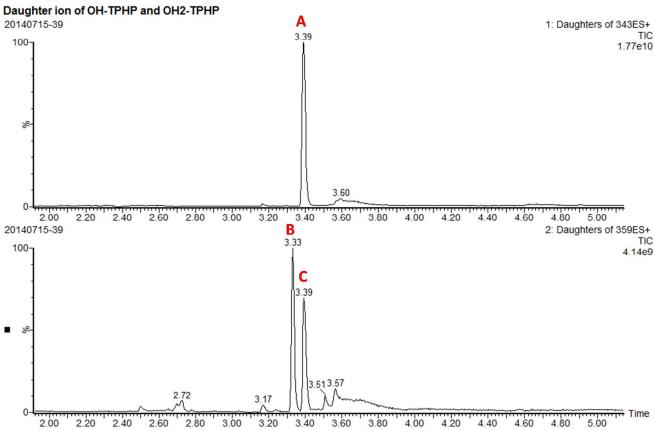


Figure S4. Daughter ions of m/z 343.07 (A) and m/z 359.07 (B and C) using Waters ACQUITY UPLC[®] I-Class system coupled to Waters XevoTM TQ-S mass spectrometer (UPLC-TQ-S/MS) operated in daughters scan mode. Daughter ion 'A' was assigned to be OH-TPHP; 'B' and 'C' were assigned to two (OH)₂-TPHP isomers. See the total ion chromatogram of peak A, B and C in the Figure S3.

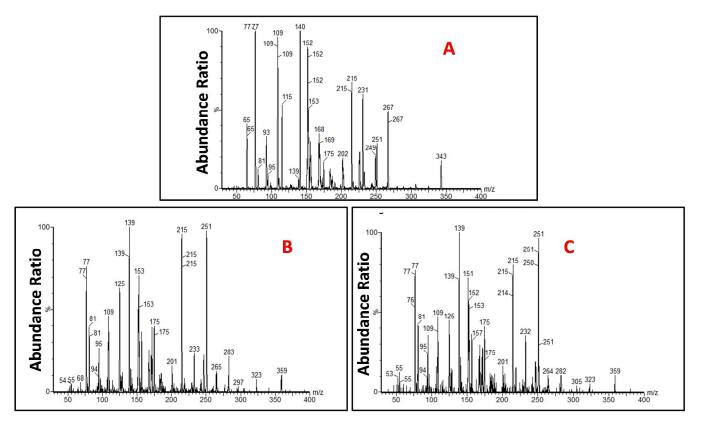
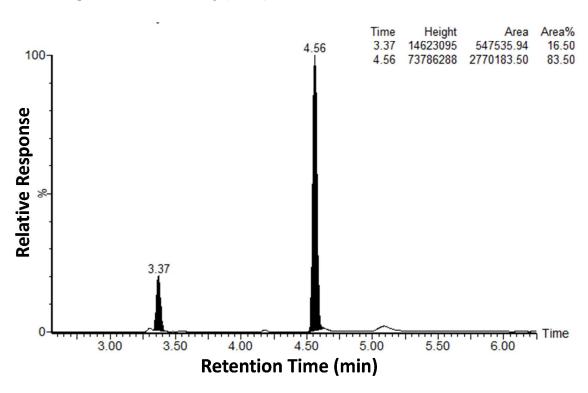



Figure S5. Response comparison between the initial TPHP concentration (retention time (RT) = 4.56) and formed OH-TPHP (RT = 3.37) in chicken embryonic hepatocyte (CEH) samples. This total ion chromatogram was generated by injecting 1:1 CEH medium (collected at 0 and 36 h, respectively) mixture into Waters ACQUITY UPLC® I-Class system coupled to a Waters® XevoTM TQ-S mass spectrometer (UPLC-TQ-S/MS) operated in multiple reaction monitoring (MRM) mode.

