Supporting Information

Formation of [4Fe-4S] clusters in the mitochondrial iron-sulfur cluster assembly machinery

Diego Brancaccio[†], Angelo Gallo^{‡,§}, Maciej Mikolajczyk^{‡,§}, Kairit Zovo[¶], Peep Palumaa[¶], Ettore Novellino[†], Mario Piccioli^{‡,§}, Simone Ciofi-Baffoni^{‡,§} and Lucia Banci^{‡,§,*}

[†]Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy, [‡]Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy, [§]Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy, [¶]Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia

*To whom correspondence should be addressed: <u>banci@cerm.unifi.it</u>

Table of Contents:

Table S1. Parameters of the data-driven docking model of dimeric apo human ISCA2 (pg S1)

Figure S1. Temperature dependence of the chemical shifts for the hyperfine-shifted signals of the three different species (A, B, C) of chemically reconstituted [4Fe-4S] hISCA2 (pg S2)

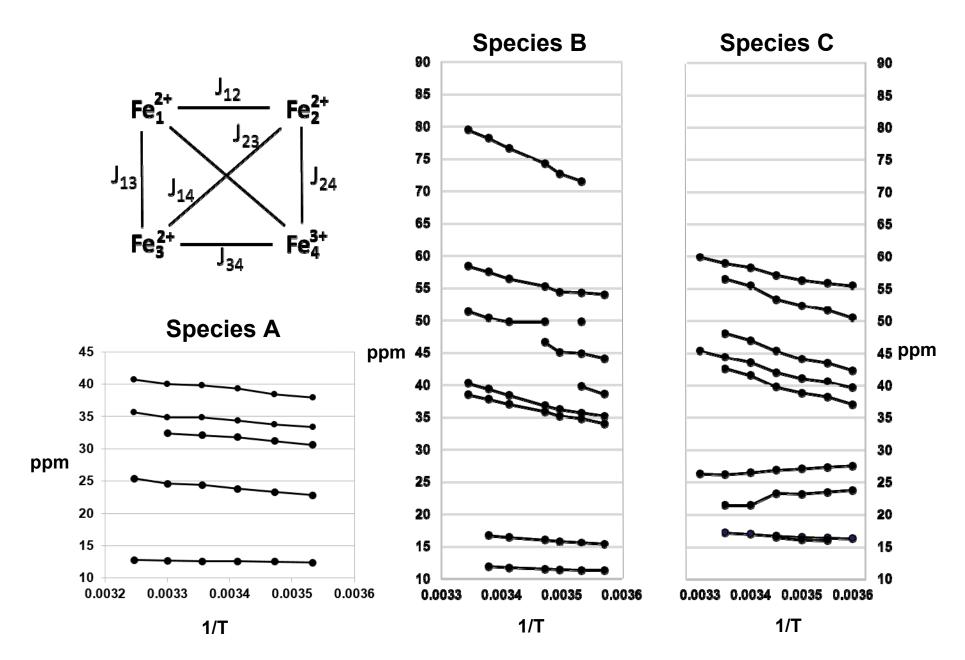

Figure S2. Changes in the redox conditions affect the nature of the cluster bound to hISCA2 (pg S3)

Figure S3. Monitoring the switching from homodimeric hISCA2 to heterodimeric hISCA1/hISCA2 complex by NMR (pg S4)

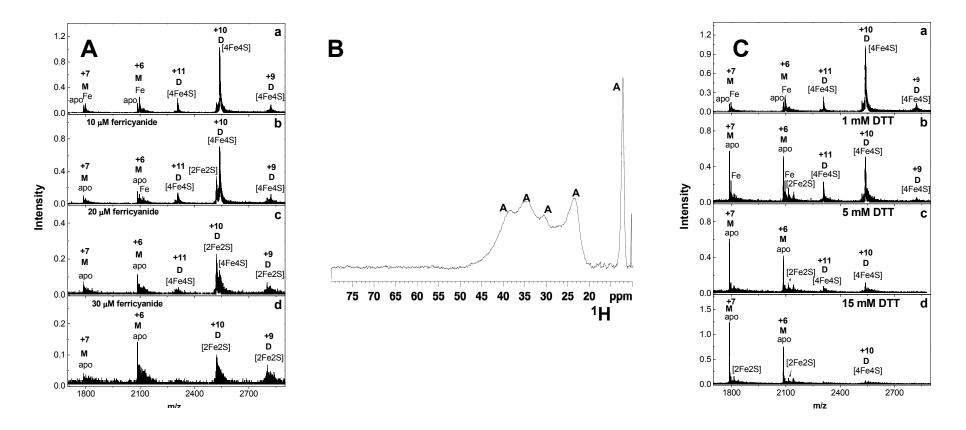

Supporting Information

Table S1. Parameters of the data-driven docking model of dimeric apo human ISCA2.

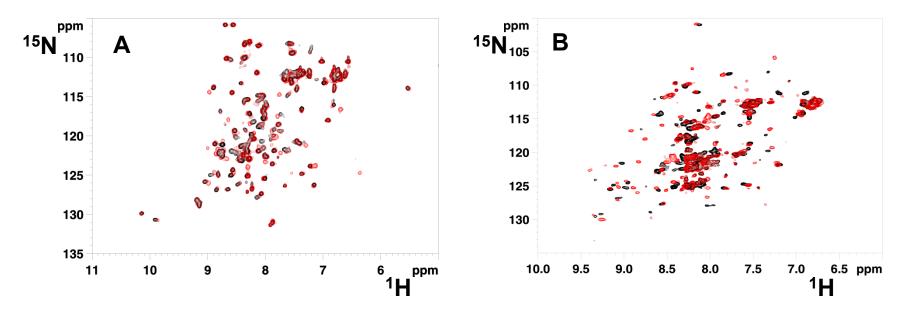

HADDOCK parameters for Cluster 1 (all)	Values
HADDOCK score	-83.1 +/- 1.9
Cluster size	200
RMSD from the overall lowest-energy structure (Å)	0.8 +/- 0.5
Van der Waals energy (kcal mol ⁻¹)	-44.8 +/- 2.4
Electrostatic energy (kcal mol ⁻¹)	-206.8 +/- 27.4
Desolvation energy (kcal mol ⁻¹)	2.8 +/- 5.9
Restraints violation energy (kcal mol ⁻¹)	3.0 +/- 1.47
Buried Surface Area (Å ²)	1240.9 +/- 70.5
Z-Score	0.0

Figure S1. Temperature dependence of the chemical shifts for the hyperfine-shifted signals of the three different species (A,B,C) of chemically reconstituted [4Fe-4S] hISCA2. Experiments were recorded at 600 MHz, pH 7.0 in the temperature range of 280-308 K. A schematic representation of [4Fe-4S] cluster and its coupling scheme in the reduced state [4Fe-4S]⁺ is also shown (upper left panel).

Figure S2. Changes in the redox conditions affect the nature of the cluster bound to hISCA2. (A) ESI-MS spectra of [4Fe-4S] hISCA2 in the presence of ferricyanide. Conditions: 20 mM ammonium acetate, pH 7.5, T = 25°C. Chemically reconstituted 20 μ M [4Fe-4S] hISCA2 in the absence (a) and in the presence of 10 μ M ferricyanide (b); 20 μ M ferricyanide (c) or 30 μ M ferricyanide (d). +7 and +6 charge states are presented for apo and Fe hISCA2 monomer (M); +11, +10 and +9 charge states are presented for holo hISCA2 dimer (D). Metal or iron-sulfur cluster contents are indicated on the top of the peaks. (B) Paramagnetic 1D 1H NMR spectrum of chemically reconstituted [4Fe-4S] hISCA2 after the addition of 1 equivalent of ferricyanide in 50 mM phosphate buffer pH 7.0 at 600 MHz and 283 K. Signals labeled A arise from Hb and Ha from cysteine ligands coordinated to a [2Fe-2S]²⁺ cluster. (C) ESI-MS spectra of [4Fe-4S] hISCA2 in the presence of DTT. Conditions: 20 mM ammonium acetate, pH 7.5, T = 25°C. Chemically reconstituted 20 μ M [4Fe-4S] hISCA2 in the absence (a) and in the presence of 1 mM DTT (b); 5 mM DTT (c) or 15 mM DTT (d). +7 and +6 charge states are presented for apo and Fe hISCA2 monomer (M); +11, +10 and +9 charge states are presented for apo and Fe hISCA2 monomer (M); +11, +10 and +9 charge states are presented for holo hISCA2 in the presence of DTT.

Figure S3. Monitoring the switching from homodimeric hISCA2 to heterodimeric hISCA1/hISCA2 complex by NMR. (A) Superimposition of ¹H-¹⁵N HSQC spectra of ¹⁵N-labelled apo hISCA2 free (black) and in a 1:1 complex with unlabelled apo hISCA1 (red). (**B**) Superimposition of ¹H-¹⁵N HSQC spectra of ¹⁵N-labelled apo hISCA1 free (black) and in a 1:1 complex with unlabelled apo hISCA2 (red).