Supporting Information (file 1 of 2)

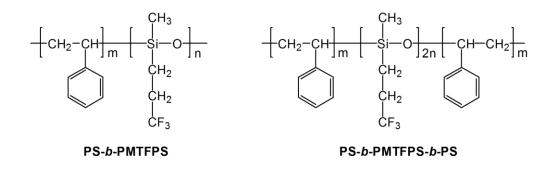
Wettability of Electrospun Films of Microphase-Separated Block Copolymers with 3,3,3-Trifluoropropyl Substituted Siloxane Segments

Lingmin Yi,^{1,2,3,*} Xiaomei Meng,^{1,2} Xiaoping Tian,^{1,2} Wei Zhou,^{1,2} and Ruiwen Chen^{1,2}

¹ Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China

² Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China

³ Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA


*To whom correspondence should be addressed. Tel.: +86 571 86843383. Fax: +86 571 86843255. E-mail: lmyi@zstu.edu.cn.

Full Reference 36:

(36) Yeung, L. W. Y.; So, M. K.; Jiang, G.; Taniyasu, S.; Yamashita, N.; Song, M.; Wu, Y.; Li, J.; Giesy, J. P.; Guruge, K. S.; Lam, P. K. S. Perfluorooctanesulfonate and Related Fluorochemicals in Human Blood Samples from China. *Environ. Sci. Technol.* **2006**, *40*, 715–720.

Full Reference 61:

(61) Ruotsalainen, T.; Turku, J.; Heikkilä, P.; Ruokolainen, J.; Nykänen, A.; Laitinen, T.; Torkkeli, M.; Serimaa, R.; ten Brinke, G.; Harlin, A.; Ikkala, O. Towards Internal Structuring of Electrospun Fibers by Hierarchical Self-Assembly of Polymeric Comb-Shaped Supramolecules. *Adv. Mater.* **2005**, *17*, 1048–1052.

Figure S1. Chemical structures of PS-*b*-PMTFPS diblock copolymers and PS-*b*-PMTFPS-*b*-PS triblock copolymers.

$T_{ m g,\ homo-PS}$ (°C) b	$T_{ m g,PS}$ ($^{ m C}$) c	$T_{ m g,\ PMTFPS}$ ($^{ m C})^{d}$
104	98	_ e
99	97	-66
99	97	-68
99	98	-69
98	96	-67
98	96	-68
	104 99 99 99 99 98	1049899979997999799989896

Table S1. Glass transition temperature of PS precursors, PS-*b*-PMTFPS diblock copolymers and PS-*b*-PMTFPS-*b*-PS triblock copolymers.^{*a*}

^{*a*} The glass transition temperature (T_g) was measured with a Q100 differential scanning calorimetry (DSC) (TA Instruments Inc.) calibrated with indium. After annealed at 150 ~ 160 °C, the samples were quenched down to -120°C at the maximum cooling rate of the instrument, and then scanned at a heating rate of 10°C /min from -120°C up to 150 °C.

^b Glass transition temperature of PS precursors.

^c Glass transition temperature of PS block in block copolymers.

^d Glass transition temperature of PMTFPS block in block copolymers.

^{*e*} The glass transition temperature of PMTFPS block was difficult to be clearly discerned due to a short length of PMTFPS block.

Sample ^{<i>a</i>}	salad oil ^b						
	static (°)	advancing ()	receding ()	roll-off (°)			
S198FS26	131.7±1.4	135.9±0.4	127.0±1.9	8.9			
$S_{106}FS_{54}$	137.2±5.2	140.2±1.5	132.2±1.3	8.0			
$S_{105}FS_{97}$	143.6±1.6	145.7±1.2	140.0±1.8	5.7			
$S_{100}FS_{191}$	143.4±1.6	145.1±1.4	139.0±1.4	6.1			
S99FS111S99	138.7±2.1	141.0±1.2	135.0±1.0	6.0			
$S_{95}FS_{175}S_{95}$	139.1±3.7	143.4±1.1	137.6±1.2	5.8			

Table S2. Contact angles and roll-off angles of salad oil on the electrospun films.

^{*a*} The concentration of electrospinning solutions: (1) 15wt% in DMF: S₁₀₀FS₁₉₁; (2) 25wt% in DMF: S₁₉₈FS₂₆, S₁₀₅FS₉₇; (3) 25wt% in DMF and THF (1/1, v/v): S₉₉FS₁₁₁S₉₉, S₉₅FS₁₇₅S₉₅; (4) 30wt% in DMF and THF (1/1, v/v): S₁₀₆FS₅₄. Electrospinning conditions: tip-to-plate distance = 15 cm; humidity = 38%; flow rate = 0.6 mL/h; spinning voltage = 15 kV.

^{*b*} Colored by Oil Red O (1-(2,5-Dimethyl-4-(2,5-dimethylphenylazo)phenylazo)-2-naphthol) with a concentration of 0.4mg/mL.

Sample ^{<i>a</i>}	white mineral oil ^b						
	static (°)	advancing ()	receding ()	roll-off (°)			
S ₁₉₈ FS ₂₆	126.6±2.5	131.4±1.1	120.6±0.9	10.8			
$S_{106}FS_{54}$	130.1±3.5	134.7±1.9	125.4±1.8	9.3			
$S_{105}FS_{97}$	140.7±2.9	143.7±1.2	137.0±1.1	6.7			
$S_{100}FS_{191}$	141.7±1.4	143.6±0.9	137.1±1.7	6.5			
S99FS111S99	138.1±1.2	139.4±1.2	133.2±0.6	6.2			
$S_{95}FS_{175}S_{95}$	138.2±5.2	139.5±0.4	133.1±1.1	6.4			

Table S3. Contact angles and roll-off angles of white mineral oil on the electrospun films.

^{*a*} The concentration of electrospinning solutions: (1) 15wt% in DMF: S₁₀₀FS₁₉₁; (2) 25wt% in DMF: S₁₉₈FS₂₆, S₁₀₅FS₉₇; (3) 25wt% in DMF and THF (1/1, v/v): S₉₉FS₁₁₁S₉₉, S₉₅FS₁₇₅S₉₅; (4) 30wt% in DMF and THF (1/1, v/v): S₁₀₆FS₅₄. Electrospinning conditions: tip-to-plate distance = 15 cm; humidity = 38%; flow rate = 0.6 mL/h; spinning voltage = 15 kV.

^{*b*} Colored by Oil Red O (1-(2,5-Dimethyl-4-(2,5-dimethylphenylazo)phenylazo)-2-naphthol) with a concentration of 0.4mg/mL.

Sample ^{<i>a</i>}	hexadecane ^b						
	static (°)	advancing ()	receding ()	roll-off (°)			
S198FS26	116.6±1.7	119.8±0.9	105.9±1.4	13.9			
$\mathbf{S}_{106}\mathbf{F}\mathbf{S}_{54}$	122.6±3.2	124.5±1.0	113.3±1.7	11.2			
S ₁₀₅ FS ₉₇	134.2±4.1	135.3±1.4	126.2±0.7	9.1			
$S_{100}FS_{191}$	136.5±3.3	137.6±1.3	129.3±1.1	8.3			
S99FS111S99	134.5±0.7	138.3±0.7	129.4±1.2	8.9			
$S_{95}FS_{175}S_{95}$	135.0±2.4	137.8±1.2	130.3±1.3	7.5			

Table S4. Contact angles and roll-off angles of hexadecane on the electrospun films.

^{*a*} The concentration of electrospinning solutions: (1) 15wt% in DMF: S₁₀₀FS₁₉₁; (2) 25wt% in DMF: S₁₉₈FS₂₆, S₁₀₅FS₉₇; (3) 25wt% in DMF and THF (1/1, v/v): S₉₉FS₁₁₁S₉₉, S₉₅FS₁₇₅S₉₅; (4) 30wt% in DMF and THF (1/1, v/v): S₁₀₆FS₅₄. Electrospinning conditions: tip-to-plate distance = 15 cm; humidity = 38%; flow rate = 0.6 mL/h; spinning voltage = 15 kV.

^{*b*} Colored by Oil Red O (1-(2,5-Dimethyl-4-(2,5-dimethylphenylazo)phenylazo)-2-naphthol) with a concentration of 0.4mg/mL.

Sample ^{<i>a</i>}	Si 2p (%)		C 1s (%)		O 1s (%)		F 1s (%)		$X(\%)^{b}$	
	60 °	30 °	60 °	30 °	60 °	30 °	60 °	30 °	60 °	30 °
S ₁₉₈ FS ₂₆	7.6	9.9	77.1	71.5	8.8	11.4	6.5	7.2	56.5	71.3
$S_{106}FS_{54}$	10.1	12.9	61.5	56.2	10.1	12.4	18.3	18.6	79.2	95.5
S ₁₀₅ FS ₉₇	12.8	14.1	49.5	45.9	13.2	13.2	24.5	26.9	101.5	110.3
S100FS191	11.1	12.7	53.2	49.9	11.6	11.9	24.1	25.5	90.9	100.8
S99FS111S99	9.7	10.2	57.4	53.1	10.5	12.1	22.3	24.6	80.9	86.7
S95FS175S95	12.3	12.7	50.3	46.9	11.9	14.0	25.5	26.4	98.9	104.1

Table S5. Surface composition of the thin films of block copolymers determined by ARXPS at 30° and 60 ° takeoff angle.

^{*a*} The thin films were prepared by spin coating on the aluminum foil (0.1 mm thick, 99.9% metals basis) from a concentration of 1.0 wt% in THF. The solvent was allowed to evaporate in air at room temperature, and then the films were further annealed at 120 °C under vacuum over 24 hours.

^b X is the PMTFPS molar fraction at the surface, which is estimated by the carbon to silicon atomic ratios (C/Si) and given by the equation C/Si = [4X + 8 (1-X)]/X. It needs to be noted that some values of X are greater than 100%, which is likely caused by the interactions of fluorines with adjacent silicon atoms (Reference: Owen, M. J. Surface Tension of Polytrifluoropropylmethylsiloxane. *J. Appl. Polym. Sci.* **1988**, *35*, 895–901), and then more silicon atoms arrange at the outmost layer of block copolymer films.