Support Information

Hybrids of Phenylsulfonylfuroxan and Coumarin as Potent Antitumor Agents

Ming-Ming Liu,^{†,‡,§} Xiao-Yu Chen,^{†,§} Yao-Qing Huang,[†] Pan Feng,[†] Ya-Lan Guo,[†] Gong Yang,^{‡, I,} * and Ying Chen^{†,}*

[†] Department of Medicinal Chemistry, School of Pharmacy, Fudan University,

Shanghai 201203, China.

[‡]Cancer Institute, Fudan University Shanghai Cancer Center, and Department of

Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.

¹Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University,

Shanghai, 200240, China.

*Corresponding Authors: Y.C. and G.Y.

[§]M.-M.L. and X.-Y.C. are co-first-authors and contributed equally to this work.

TABLE OF CONTENTS	S 1
The Effect of Hemoglobin on the Proliferation of Cells.	S2
Method for MEK1 Kinase Inhibitory Activity	S2
High Resolution Mass Spectral Data for Target Compounds	S 3
HPLC Assessment of Compound Purity	S3 ~ S13
¹ H NMR and ¹³ C NMR Spectra	S13 ~ S30

The Effect of Hemoglobin on the Proliferation of Cells.

Figure S1. The effect of Hemoglobin on Cellular Proliferation.

Cells were treated with vehicle (PBS) and different concentrations of hemoglobin for 24h, and MTT assay was used to detect the cellular proliferation.

Methods for MEK1 Inhibitory Activity¹.

Caliper Mobility Shift assay (MSA) was used to test MEK1 inhibitory activity. The active MEK1 was obtained from Invitrogen and was tested at the concentration of 0.015 nM with 100 μ M ATP, 0.05 μ M unactive ERK1, 2 mM DTT and the reaction buffer contained 20 mM Ph 7.5 HEPES, 10 mM MgCl₂, and 0.01% Triton X100. The kinase assay was carried out for 120 min at 28 °C and was terminated by addition 25 uL stop buffer (100 mM HEPES, pH 7.5, 0.015% Brij-35, 0.2% Coating Reagent #3, 50 mM EDTA). Then the data was collected on Caliper EZ Reader.

compd.	High resolution mass spectra			
	Chemical formula	Calculated	Measured	ppm error
6а	$C_{17}H_{10}N_2O_7S + H \\$	387.0287	387.0292	1.3
6b	$C_{18}H_{12}N_2O_7S + H \\$	401.0443	401.0446	0.7
6с	$C_{19}H_{14}N_2O_7S + H \\$	415.0600	415.0600	0
8a	$C_{19}H_{14}N_2O_8S + H \\$	431.0549	431.0557	1.8
8b	$C_{20}H_{16}N_2O_8S + H \\$	445.0706	445.0712	1.3
8c	$C_{20}H_{16}N_2O_7S_2 + H \\$	461.0477	461.0489	2.6
8d	$C_{21}H_{18}N_2O_8S + H$	459.0862	459.0864	0.4
8e	$C_{22}H_{20}N_2O_8S + H \\$	473.1019	473.1021	0.4
8 f	$C_{21}H_{18}N_2O_8S + H$	459.0862	459.0864	0.4
8g	$C_{20}H_{17}N_3O_7S + H$	444.0865	444.0867	0.4
10a	$C_{21}H_{19}N_3O_7S + H$	458.1022	458.1033	2.4
1 3 a	$C_{21}H_{16}N_2O_{10}S + H \\$	489.0604	489.0613	1.8
13b	$C_{22}H_{18}N_2O_{10}S + H \\$	503.0760	503.0762	0.4
15	$C_{19}H_{14}N_2O_7S + H$	415.0600	415.0604	0.9
17a	$C_{21}H_{18}N_2O_8S + H \\$	459.0862	459.0859	0.6
17b	$C_{22}H_{20}N_2O_8S + H \\$	473.1019	473.1011	1.7

High Resolution Mass Spectral Data for Target Compounds.

Table S1. High Resolution Mass Spectra for Target Compounds.

HPLC Assessment of Compound Purity.

As showed in Table W, all tested compounds (**6a-c**, **8a-g**, **10a**, **13a-b**, **15**, **17a-b** and **18**) with a purity of > 95% (HPLC analysis) were used for subsequent experiments. We provided the spectra of HPLC assays as below. (8g, 8e, 8b, 10a) utilized the Column: ODS-C₁₈ (150 mm×4.6 mm×3.5 μ m); the rest compounds utilized the Column: ODS –C₁₈ (150 mm×4.6 mm×5 μ m).

Mobile phase: acetonitrile-water (70: 30)

Wavelength: 254 nm

Rate: 1 mL/min

Temperature: 25 °C

 Table S2. Purity of Target Compounds.

Compound	Purity (area %)	Retention time (min)
6a	98.24	5.856
6b	99.77	6.618
6с	99.76	7.376
8a	96.64	5.89
8b	97.82	5.33
8c	96.25	7.816
8d	97.09	7.432
8e	98.21	5.978
8f	99.65	7.031
8g	99.29	4.74
10 a	98.06	5.799
13 a	97.7	5.595
13b	99.02	6.036
15	99.33	6.597
17 a	98.52	6.111
17b	98.69	7.293
18	97.01	3.350

The details are listed as below:

6a, 98.24%, retention time: 5.856 min.

6b, 99.77%, retention time: 6.618 min.

6c, 99.76%, retention time: 7.376 min.

8a, 96.64%, retention time: 5.890 min.

8b, 97.82%, retention time: 5.330 min.

8c, 96.25%, retention time: 7.816 min.

8d, 97.09%, retention time: 7.432 min.

8e, 98.21%, retention time: 5.978 min.

8f, 99.65%, retention time: 7.031 min.

8g, 99.29%, retention time: 4.740 min.

10a, 98.06%, retention time: 5.799 min.

13a, 97.70%, retention time: 5.595 min.

13b, 99.02%, retention time: 6.036 min.

15, 99.33%, retention time: 6.597 min.

0.95 0.90 6.111-0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 ₹ 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 -3.289 5.042 0.05 2.702 7.346 7.911 0.00 5.00 5.50 分钟 9.50 10.00 2.50 3.00 3.50 7.00 7.50 9.00 0.50 1.00 1.50 2.00 4.00 4.50 6.00 8.00 0.00 6.50 8.50

17a, 98.52%, retention time: 6.111 min.

17b, 98.69%, retention time: 7.293 min.

18, 97.01%, retention time: 3.350

¹H NMR and ¹³C NMR Data of Target Compounds 6a-c, 8a-g, 10a, 13a-b, 15, 17a-b.

Compound 6a: ¹H NMR (400 MHz, CDCl₃)

Compound 6a: ¹³C NMR (101 MHz, CDCl₃)

Compound 6b: ¹H NMR (400 MHz, CDCl₃)

Compound 6b: ¹³C NMR (101 MHz, CDCl₃)

Compound 6c: ¹H NMR (400 MHz, CDCl₃)

Compound 6c: ¹³C NMR (101 MHz, CDCl₃)

Compound 8a: ¹H NMR (400 MHz, CDCl₃)

Compound 8a: ¹³C NMR (101 MHz, CDCl₃)

Compound 8b: ¹H NMR (400 MHz, CDCl₃)

Compound 8b: ¹³C NMR (101 MHz, CDCl₃)

Compound 8c: ¹H NMR (400 MHz, CDCl₃)

Compound 8c: ¹³C NMR (101 MHz, CDCl₃)

Compound 8d: ¹H NMR (400 MHz, CDCl₃)

Compound 8d: ¹³C NMR (101 MHz, CDCl₃)

Compound 8e: ¹H NMR (400 MHz, CDCl₃)

Compound 8e: ¹³C NMR (101 MHz, CDCl₃)

Compound 8f: ¹H NMR (400 MHz, CDCl₃)

Compound 8f: ¹³C NMR (101 MHz, CDCl₃)

Compound 8g: ¹H NMR (400 MHz, DMSO-*d6*)

Compound 8g: ¹³C NMR (101 MHz, DMSO-*d6*)

Compound 10a: ¹H NMR (400 MHz, CDCl₃)

Compound 10a: ¹³C NMR (101 MHz, CDCl₃)

Compound 13a: ¹H NMR (400 MHz, CDCl₃)

Compound 13a: ¹³C NMR (101 MHz, CDCl₃)

Compound 13b: ¹H NMR (400 MHz, CDCl₃)

Compound 13b: ¹³C NMR (101 MHz, CDCl₃)

Compound 15: ¹H NMR (400 MHz, CDCl₃)

Compound 15: ¹³C NMR (101 MHz, CDCl₃)

Compound 17a: ¹H NMR (400 MHz, CDCl₃)

Compound 17a: ¹³C NMR (101 MHz, CDCl₃)

Compound 17b: ¹H NMR (400 MHz, CDCl₃)

Compound 17b: ¹³C NMR (101 MHz, CDCl₃)

Compound 18: ¹H NMR (400 MHz, CDCl₃)

Compound 18: ¹³C NMR (101 MHz, CDCl₃)

REFERENCE

 Heald, R. A.; Jackson, P.; Savy, P.; Jones, M.; Gancia, E.; Burton, B.; Newman, R.; Boggs, J.; Chan, E.; Chan, J.; Choo, E.; Merchant, M.; Rudewicz, P.; Ultsch, M.; Wiesmann, C.; Yue, Q.; Belvin, M.; Price, S. Discovery of Novel Allosteric Mitogen-Activated Protein Kinase Kinase (MEK) 1,2 Inhibitors Possessing Bidentate Ser212 Interactions. J. Med. Chem. 2012, 55, 4594–4604.