A Comprehensive Study of Extended Tetrathiafulvalene Cruciform Molecules for Molecular Electronics: Synthesis and Electrical Transport Measurements

Christian R. Parker, ${ }^{\dagger}$ Edmund Leary, ${ }^{*,+, \%}$ Riccardo Frisenda, ${ }^{〔}$ Zhongming Wei, ${ }^{*}{ }^{\dagger}, \|$ Karsten S. Jennum, ${ }^{\dagger}$ Emil Glibstrup, ${ }^{\dagger}$ Peter Bæch Abrahamsen, ${ }^{\dagger}$ Marco Santella, ${ }^{\dagger, \|}$ Mikkel A. Christensen, ${ }^{\dagger}$ Eduardo Antonio Della $\mathrm{Pia},{ }^{\dagger}$ Tao Li, ${ }^{\dagger}$ Maria Teresa Gonzalez, ${ }^{\$}$ Xingbin Jiang, ${ }^{,}$ Thorbjørn J. Morsing, ${ }^{\dagger}$ Gabino Rubio-Bollinger, ${ }^{\ddagger}$ Bo W. Laursen, ${ }^{\dagger}$ Kasper Nørgaard, ${ }^{\dagger}$ Herre van der Zant, ${ }^{*}{ }^{\boldsymbol{\uparrow}}$ Nicolas Agrait, ${ }^{\ddagger, \$}$ Mogens Brøndsted Nielsen*, ${ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry \& Center for Exploitation of Solar Energy \& Danish-Chinese Center for Nano-Electronics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark. E-mail: zmwei@iccas.ac.cn, mbn@kiku.dk
${ }^{\ddagger}$ Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada Módulo 3, Universidad Autónoma de Madrid, E-28049, Madrid, Spain. E-mail: edmund.leary@imdea.org
§ IMDEA-Nanoscience, Campus de Cantoblanco, Calle Faraday 9, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
${ }^{9}$ Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, The Netherlands. E-mail: H.S.J.vanderZant@tudelft.nl
${ }^{\text {I }}$ Sino-Danish Centre for Education and Research (SDC), Niels Jensens Vej 2, DK-8000 Aarhus C, Denmark.
${ }^{\text {J }}$ National Center for Nanoscience and Technology, Beijing 100190, P. R. China

SUPPORTING INFORMATION

Summary of Photophysical Properties S2
UV-Vis Absorption Spectra S3
Electrochemistry S6
X-Ray Crystallography S9
CP-AFM Studies on SAMs S11
Single-Molecule Conductance Studies S13
Sulfur-Sulfur Distances S16
Isomerism - Overview S17
Experimental S18
NMR Spectra S49

Summary of Photophysical Properties

Table S1. Photophysical properties (UV-Vis absorption and fluorescence data; sh = shoulder; $\mathrm{Q} . \mathrm{Y} .=$ quantum yield).

Compound	$\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$	$\lambda_{\text {exc, max }} / \mathrm{nm}$	$\lambda_{\text {em, max }} / \mathrm{nm}$	Q. Y.
OPE3 1	$\begin{aligned} & 250(12.7), 319(63.8, \text { sh), } 332 \\ & (80.0), 352(52.0), 380(1.5, \text { sh }) \end{aligned}$	344, 355	366, 382	0.38
OPE5 2	$\begin{gathered} 230(43.3), 289(30.7), 362(123.6), \\ 384(89.9, \text { sh) } \end{gathered}$	$\begin{gathered} 244,292, \\ 356 \end{gathered}$	400, 421	0.61
OPE3 3	334 (72.4), 397 (14.8, sh)	334, 351	370, 386	8.6×10^{-3}
OPE5 5	292 (38.1), 351 (108.6)	288, 366	394,416	0.13
OPE3 6	$\begin{gathered} 250 \text { (36.0), } 301 \text { (31.6), } 345 \text { (72.6), } \\ 412(38.8), 436(36.4, \text { sh) } \end{gathered}$	337, 394	478	5×10^{-4}
OPE3 7	$\begin{gathered} 250 \text { (39.1), } 311 \text { (29.2), } 367 \text { (76.7), } \\ \quad 408(52.0), 431(47.4, \text { sh) } \end{gathered}$		No emission	
OPE3 8	336 (68), 417 (49) 425 (48, sh)			
OPE3 9	$\begin{gathered} 250(43.6), 320(50.0, \mathrm{sh}), 340 \\ (73.9), 359(58.3), 408(8.2) \end{gathered}$		No emission	
OPE5 10	$\begin{gathered} 316 \text { (57.2, sh) } 365 \text { (115.5), } 427 \\ (39.3) \end{gathered}$	356	497	2×10^{-4}
OPE5 11	360 (117.2)	$\begin{aligned} & 244,260, \\ & 360,383 \end{aligned}$	410, 426	6×10^{-3}
12a	255 (16.8), 400 (37.9), 413 (35.6)	420	478	1.0×10^{-3}
OPE3 13a	250 (32.0), 403 (97.0), 419 (87.9, sh)	424	461	1.3×10^{-3}
OPE3 14a	$\begin{gathered} 250(37.9), 331(42.3), 408(91.7), \\ 436(68.5, \mathrm{sh}) \end{gathered}$	428	486	1.2×10^{-3}
OPE3 15a	$\begin{gathered} 250(42.1), 336(37.7), 401(100.3), \\ 449(58.5, \mathrm{sh}) \end{gathered}$	410	488	5×10^{-4}
OPE3 26	$\begin{gathered} 250 \text { (31.0), } 302 \text { (32.8), } 346 \text { (73.0), } \\ 364 \text { (61.8, sh.), } 403 \text { (17.6) } \end{gathered}$		No emission	
OPE3 54	250 (20.8), 357 (70.5), 375 (59.6)	363	405	0.1
OPE3 55	$\begin{gathered} 250(33.0), 318(41.0), 358(74.5), \\ 409(36.2), 445(27.0, \mathrm{sh}) \end{gathered}$	400	459	5×10^{-4}

UV-Vis Absorption Spectra

Figure S1. UV-Vis absorption spectra of $\mathbf{1}[0.0], \mathbf{3}$ [0.1], $\mathbf{6}$ [0.2], $\mathbf{9}$ [0.2], and 13a [2.0] in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S2. UV-Vis absorption spectra of 12a [2.0], 13a [2.0], 14a [2.1], and 15a [2.2] in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S3. UV-Vis absorption spectra of $\mathbf{2}[0.0], \mathbf{5}[0.1], \mathbf{1 0}[0.2]$, and $\mathbf{1 1}[0.2]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S4. UV-Vis absorption spectra of OPE3 di-aldehyde compounds 54 [0.0], 26 [0.1], and 55 [0.2] in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure S5. UV-Vis absorption spectra of OPE3 cruciforms [0.2] with different termini: $\mathbf{6}$ (SAc), $7\left(\mathrm{NH}_{2}\right), \mathbf{8}(\mathrm{H}), \mathbf{1 5 a}\left\{\mathrm{DTF}\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right)_{2}\right\}$, and $55(\mathrm{CHO})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Electrochemistry

Table S2. Cyclic Voltammetry and Differential Pulse Voltammetry data of compounds in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with $0.1 \mathrm{M}\left[\mathrm{NBu}_{4}\right] \mathrm{PF}_{6}$ as a supporting electrolyte. ${ }^{\text {a) }}$ Potentials os $\mathrm{Fc} / \mathrm{Fc}^{+}$.

Compound	Cyclic Voltammetry				Differential Pulse Voltammetry			
	$E_{\mathrm{ox}}{ }^{1} / \mathrm{V}$	$E_{\mathrm{ox}}{ }^{2} / \mathrm{V}$	$E_{\text {red }}{ }^{1} / \mathrm{V}$	$E_{\text {red }}{ }^{2} / \mathrm{V}$	$E_{\mathrm{ox}}{ }^{1} / \mathrm{V}$	$E_{\mathrm{ox}}{ }^{2} / \mathrm{V}$	$E_{\text {red }}{ }^{1} / \mathrm{V}$	Other
1	$+1.26{ }^{\text {i }}$							
$\begin{aligned} & 3 \text { (very } \\ & \text { dilute) } \end{aligned}$	$+0.57^{\text {b }}$				+0.53	+0.88		
6	$+0.49^{\text {i }}$	$+0.85{ }^{\text {i }}$	$\begin{gathered} -1.93^{i} \\ \text { sh } \end{gathered}$	$-2.00^{\text {i }}$	+0.46	+0.85	-1.80	-1.94
8	$+0.49^{\text {i }}$	$+0.85{ }^{\text {i }}$	$-2.12^{\text {i }}$					
9	$+0.74{ }^{\text {i }}$		-2.34 ${ }^{\text {i }}$					
12a	$+0.25{ }^{\text {i }}$	$+0.47^{\text {i }}$	$-2.48{ }^{\text {i }}$		+0.23	+0.45	-2.36	
15a	$+0.42^{\text {i }}$	$+0.85{ }^{\text {i }}$	$-2.17^{\text {i }}$		+0.30	+0.74	-1.85	-2.05
21	$+0.75{ }^{\text {i }}$	$+0.86{ }^{\text {i }}$ sh	$-1.96{ }^{\text {i }}$	$-2.43{ }^{\text {i }}$	+0.70	+0.84	-1.81	$\begin{aligned} & -2.36, \\ & -2.45 \end{aligned}$
37	$\begin{gathered} +0.54^{\mathrm{i}} \\ (+0.45)^{\mathrm{c}} \end{gathered}$	$\begin{gathered} +0.62^{\mathrm{i}} \mathrm{sh} \\ (+0.59 \mathrm{sh})^{\mathrm{c}} \end{gathered}$	$-1.83{ }^{\text {i }}$		+0.51	+0.64	-1.74	+0.89
$37^{\text {d }}$	$\begin{aligned} & +0.59^{\mathrm{i}} \mathrm{sh} \\ & (+0.47)^{\mathrm{c}} \end{aligned}$	$\begin{gathered} +0.66^{\mathrm{i}} \\ (+0.58)^{\mathrm{c}} \end{gathered}$						
43	+0.72		$-1.97^{\text {i }}$		+0.73		-1.86	

[^0]

Figure S6. Cyclic voltammograms of compound $\mathbf{3 7}$ at scan rates of $100 \mathrm{mV} / \mathrm{s}$ (black trace) and $1000 \mathrm{mV} / \mathrm{s}$ (red trace).

Figure S7. Cyclic Voltammogram of $\mathbf{3}$ under dilute conditions, cycled eight times to show the reversibility under dilute conditions, recorded in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with $0.1 \mathrm{M} \mathrm{Bu} \mathrm{NPF}_{6}$. Inset shows Differential Pulse Voltammogram of the compound in the same solvent.

Figure S8. Cyclic voltammogram of $\mathbf{4 3}$ showing 10 cycles highlighting the reversibility at the scan rate of $100 \mathrm{mV} / \mathrm{s}$.

X-Ray Crystallography

Crystals of $\mathbf{4 3}$ were grown by vapour diffusion of MeOH into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Single crystal X-ray diffraction studies were performed using a Bruker D8 Venture diffractometer monochromated with a doubly curved silicon crystal (Mo $\mathrm{K} \alpha$). The datasets were collected and processed using Brukers Apex2, with the SAINT [Bruker (2007). Apex2, SAINT. Bruker AXS Inc., Madison, Wisconsin, USA] and SADABS [Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.] programs and refined using Olex2 [Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339341]. All hydrogens were added using a riding model and refined with an isotropic displacement factor of $1.2 U_{e q}$ of the parent atom.

Figure S9. ORTEP plot showing the molecular structure of $\mathbf{4 3}$ (top) and crystal packing (bottom, H -atoms are omitted for clarity). Crystals were grown by vapour diffusion of MeOH into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution.

Table S3. Crystallographic data for compound 43.

Compound	$\mathbf{4 3}$
Formula	$\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{O}_{8} \mathrm{~S}_{4} \mathrm{Si}_{2}$
$M\left(\mathrm{~g} \mathrm{~mole}{ }^{-1}\right)$	759.11
Crystal size $\left(\mathrm{mm}^{3}\right)$	$0.28 \times 0.17 \times 0.08$
Crystal system	Orthorhombic
Space group	Pbca
$a(\AA)$	$20.3534(10)$
$b(\AA)$	$8.3596(5)$
$c(\AA)$	$22.6457(11)$
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	90
$\gamma\left({ }^{\circ}\right)$	90
$U\left(\AA^{3}\right)$	$3853.1(4)$
Z	4
$D_{x}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	1.3085
$T(\mathrm{~K})$	$122(1)$
μ	0.355
No. measured / unique reflections	$49188 / 4097$
Parameters refined	222
Final $R 1$	0.0426
$w R_{2}[I>2 \sigma(I)]$	0.0856
$R 1, w R_{2}($ all data $)$	$0.0750,0.0981$
$S($ GoF $)$	1.043

CP-AFM Studies on SAMs

Figure S10. CP-AFM conductance histograms of the OPE molecular junctions (SAMs).

Figure S11. Average $I-V$ curves of molecular junctions based on the OPE SAMs measured by CP-AFM. Standard deviation (error bars) is included in the curve for the "OPE1" 12d (top).

Single-Molecule Conductance Studies

STM-BJ

Table S4. The data in the table corresponds to the experimental run with the largest

Compound	Highest \% of Plateaus Observed	$\mathbf{N}_{\text {Total }}$	$\mathbf{N}_{\text {Plateaus }}$	Mean Plateau Length $\mathbf{(n m})$	Log Histogram max $\left(\mathbf{L o g}\left(\mathbf{G} / \mathbf{G}_{\mathbf{0}}\right)\right)$	Log Histogram max $\left(\mathbf{G} / \mathbf{G}_{\mathbf{0}}\right)$	Linear Histogram max $\left(\mathbf{G} / \mathbf{G}_{\mathbf{0}}\right)$
$\mathbf{1}$	26	10486	2696	1.28 ± 0.37	-3.82 ± 0.88	1.5×10^{-4}	5.2×10^{-5}
$\mathbf{3}$	18	15944	2862	1.25 ± 0.41	-3.85 ± 1.04	1.4×10^{-4}	5.0×10^{-5}
$\mathbf{6}$	12	13551	1603	1.21 ± 0.46	-3.80 ± 1.28	1.6×10^{-4}	3.0×10^{-5}
$\mathbf{9}$	20	3115	295	1.06 ± 0.49	-4.49 ± 1.14	3.2×10^{-5}	7.4×10^{-6}
$\mathbf{7}$	17	3188	754	1.13 ± 0.46	-3.74 ± 1.12	1.8×10^{-4}	6.3×10^{-5}
$\mathbf{1 5 c}$	3	4231	129	1.22 ± 0.58	-4.54 ± 1.34	2.9×10^{-5}	5.0×10^{-6}
$\mathbf{2}$	22	2737	594	2.00 ± 0.89	-6.03 ± 0.59	9.3×10^{-7}	6.7×10^{-7}
$\mathbf{1 0}$	24	5825	1401	2.17 ± 0.64	-6.14 ± 0.82	7.2×10^{-7}	3.3×10^{-7}

percentage of plateaus observed in any run. This is the same data from the same runs we present in the main text. $\mathrm{N}_{\text {Total }}$ and $\mathrm{N}_{\text {Plateaus }}$ are the total number of recorded traces and the number displaying a plateau respectively in the particular run. The mean plateau lengths are taken as the maximum from the fitted Gaussian curve to the distributions shown in Figure S6. The error quoted is the full width at half maximum (FWHM). The conductance values are taken from fitting the conductance histograms shown in Figure S13 with single Gaussian curves. The error is the FWHM. The linear conductance histogram maximum is calculated from the Gaussian fit to the log histogram.

Figure S12. (a-g). Histograms of the plateau lengths measured in each G(z) trace determined to contain a plateau. The plateau length of each trace is calculated as the total displacement $\Delta \mathrm{z}$ needed to change the junction conductance from 0.5 to $1 \times 10^{-5} \mathrm{G}_{0}$ for compounds $\mathbf{1 , 2 , 4}$ and 7. For the others, the lower limit was changed according to the position of the conductance peak. The black square represents the mean value whilst the blue square shows the $95^{\text {th }}$ percentile.

Figure S13. (a-f) One-dimensional (1D) conductance histograms for OPE3 compounds 1, 3, $\mathbf{6}, \mathbf{9}, \mathbf{7}, \mathbf{1 5} \mathrm{c}$, obtained in air after exposing a substrate to a 1 mM dichlorometane solution for 30 minutes followed by rinsing with ethanol. The red, blue and black histograms represent all the traces, traces with plateaus and traces without plateaus respectively. (g-l) Further examples of individual $\mathrm{G}(\mathrm{z})$ traces showing plateaus used to build the blue histograms in a-f.

Figure S14. (a and b) One-dimensional (1D) conductance histograms for OPE5 compounds $\mathbf{2}$ and $\mathbf{1 0}$ obtained in air after exposing a substrate to a 1 mM dichloromethane solution for 30 minutes followed by rinsing with ethanol. (c) 2D histogram of compound $\mathbf{2}$ built from the same 594 traces displaying plateaus as for the blue 1D in a. (d) Examples of individual G(z) traces of compound $\mathbf{1 0}$ showing plateaus used to build the blue histogram in \mathbf{b}.

MC-BJ

Figure S15. (a-f) One-dimensional (1D) conductance histograms for OPE compounds 1, 3, 6, $\mathbf{7 , 9}$, and 10, obtained in air after exposing the MCBJ device to a 1 mM dichlorobenzene solution containing the molecule of interest.

Sulfur-Sulfur Distances

Figure S16. PM3 geometry-optimized structure of [2.2] OPE3 cruciform (with peripheral SH groups on the DTF termini and $\mathrm{CO}_{2} \mathrm{Me}$ groups on the central DTF groups) and selected S-S distances.

Isomerism - Overview

Compounds with asymmetrically substituted DTF groups:

Figure S17. A mixture of isomers for $\mathbf{1 2 - 1 5 b} \mathbf{- d}(Z, Z / E, E / Z, E / E, Z-Z, E$ and E / Z are identical for $\mathrm{X}=\mathrm{Y}$) and $\mathbf{5 2 b}, \mathbf{d}(Z / E)$ are obtained when the substituents on the DTF are different ($R \neq R$ ', Priority: $R>R$ ').

Experimental

UV-Vis Absorption and Fluorescence Measurements. Optical spectra were recorded at rt using a quartz cell of 1 cm path. Room temperature fluorescence spectra were recorded on a spectrofluorometer using an integration time of 0.5 s and a band width of 3 nm . Emission and excitation spectra were corrected for the instrumental function and the analyzed data represent the average of at least 5 independent measurements.

Electrochemistry. Electrochemical samples were measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing 0.1 M $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{PF}_{6}\right]$ as the supporting electrolyte. External reference: $\mathrm{FeCp}_{2} /\left[\mathrm{FeCp}_{2}\right]^{+}(E=0.00 \mathrm{~V})$ scanned at $100 \mathrm{mV} / \mathrm{s}$. A glassy carbon disk electrode was used as working electrodes, a platinum wire as counter electrode and a silver electrode soaked in the electrolyte solution was used as reference

Formation and Characterization of SAMs. The OPE compounds were dissolved at 0.25 mM in $15 \% \mathrm{Et}_{3} \mathrm{~N}$ in THF which had been purged of O_{2} with a steady flow of Ar. Freshly stripped ultraflat gold substrates were immediately immersed into the solutions. The containers were filled with Ar and sealed, then left in absence of light for 48 h at room temperature to grow the SAMs. After removal from the solutions, the sample was extensively rinsed with ethanol and then dried under a stream of N_{2} before all measurements. The SAMs were studied by conventional cyclic voltammetry measurements using a three-electrode cell containing a Au work electrode ($\sim 0.4 \mathrm{~cm}^{2}$), a platinum electrode, and a $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode in $5.0 \mathrm{mM} \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6} / \mathrm{K} 4 \mathrm{Fe}(\mathrm{CN})_{6}$ solution with $1 \mathrm{M}_{\mathrm{KNO}}^{3}$ as supporting electrolyte. XPS experiments were performed using a monochromated Al $\mathrm{K} \alpha(\mathrm{hv}=1486.6 \mathrm{eV}$, power $=150 \mathrm{~W}$) X-ray source. The base pressure in the chamber was $5 \times 10^{-10} \mathrm{mbar}$ and never exceeds $5 \times 10^{-9} \mathrm{mbar}$ during an experiment. A pass energy (PE) of 160 eV was used for wide scan and $\mathrm{PE}=10 \mathrm{eV}$ for high resolution scan. All samples were energy calibrated using the Au $4 f 7 / 2$ line at 84 eV .

CP-AFM Measurements. CP-AFM measurements were performed at room temperature in air. A tip (spring constant: $2 \mathrm{~N} / \mathrm{m}$) with a 30 nm Au coating was used. The current-voltage ($I-$ V) characteristics of the SAM were measured by a tunneling current AFM application mode. The conductive tip in contact with SAM was the top electrode and the Au substrate at the bottom of SAM was connected with a conducting wire as one external electrode. The load force was maintained at about 4 nN to achieve a soft contact. $I-V$ curves were recorded using the same tip and at different places (at least 100~200 places and 2 cyclic measurements at each place). The voltage range was 1 to -1 V or 1.5 to -1.5 V , and at each point, the adding voltage was swept in both directions.

STM-BJ Methods. The molecules were deposited onto a freshly flame-annealed gold substrate from a 1 mM dichloromethane solution, using an immersion time of 30 minutes. After, the sample was rinsed copiously with ethanol to remove unbound material and blown dry with a stream of nitrogen. The sample was mounted directly in the microscope and allowed to dry further for 1-2 hours. All measurements were carried out in air using a bias voltage $\mathrm{V}_{\text {bias }}=0.2 \mathrm{~V}$ and a retraction rate of approximately $40 \mathrm{nms}^{-1}$ with a resolution of 1 pm . We recorded approximately ten thousand opening and closing traces per sample. During a measurement sequence we varied the location of the tip over the surface by pausing the experiment and manually rotating the head of the microscope. In the analysis we focus on the opening stages of the cycle, and search for conductance versus distance plateaus, which are the typical signal of molecular junction formation. We separated traces containing such plateaus using an automated routine after completion of the measurements. The criteria used
depend slightly on the molecule as the plateau appearance varies from molecule to molecule. For molecules 1, 2, 4 and 7 a trace was judged to contain a plateau whenever an elongation δz larger than 0.18 nm is needed to produce a decay in conductance of $\delta \log \left(\mathrm{G} / \mathrm{G}_{0}\right)=0.2$ at any conductance below $0.5 \mathrm{G}_{0}$.

MCBJ Methods. The MCBJ device was mounted in the setup in a three-point bending configuration and the gold wire electrically contacted. The gold nano-electrodes were firstly formed, by breaking the gold wire, and then few thousands opening and closing traces were recorded. All the measurements were perfomed in air at room temperature, the bias voltage was $\mathrm{V}_{\text {bias }}=0.1 \mathrm{~V}$ and the electrode separation speed $\mathrm{V}_{\text {electrode }}=5 \mathrm{~nm} / \mathrm{s}$. After the characterization of the clean gold sample, we deposited the molecule of interest by dropcasting $2 \mu \mathrm{~L}$ of a $1 \mathrm{mmol} / \mathrm{L}$ solution (dichlorobenzene) onto the device. For each molecule, we record between one and two thousands conductance traces, during the opening and closing cycles.

General Synthesis Methods and Characterization Techniques. 2,5-

 Dihydroxybenzaldehyde, methyl 2,5-dihydroxybenzoate, trimethylsilylacetylene, phenylacetylene, (triisopropylsilyl)acetylene, 4-iodoaniline, terephthalaldehyde, triethyl phosphite $\mathrm{P}(\mathrm{OEt})_{3}$, and 4-iodobenzaldehyde were commercially available. Literature references for synthesis of starting materials: 17 (Wang, L.-G.; Zhan, T.-G.; Zhao, X.; Jiang, X.-K.; Li, Z.-T. Tetrahedron 2012, 68, 5303-5310), 20 (Sato, M.; Gonnella, N. C.; Cava, M. P. J. Org. Chem. 1979, 44, 930-934), 23 (Jennum, K.; Vestergaard, M.; Pedersen, A. H.; Fock, J.; Jensen, J.; Santella, M.; Led, J. J.; Kilså, K.; Bjørnholm, T.; Nielsen, M. B. Synthesis 2011, 539-548), 30 (Stuhr-Hansen, N.; Sørensen, J. K.; Moth-Poulsen, K.; Christensen, J. B.; Bjørnholm, T.; Nielsen, M. B. Tetrahedron 2005, 61, 12288-12295), 38 and 40 (Sørensen, J. K.; Vestergaard, M.; Kadziola, A.; Kilså, K.; Nielsen, M. B. Org. Lett. 2006, 8, 1173-1176; Jennum, K.; Vestergaard, M.; Pedersen, A. H.; Fock, J.; Jensen, J.; Santella, M.; Led, J. J.; Kilså, K.; Bjørnholm, T.; Nielsen, M. B. Synthesis 2011, 539-548), 42 (Baffreau, J.; Dumur, F.; Hudhomme, P. Org. Lett. 2006, 8, 1307-1310), 51a and 51b (Svenstrup, N.; Rasmussen, K. M.; Hansen, T. K.; Becher, J. Synthesis 1994, 809-812; Simonsen, K. B.; Svenstrup, N.; Lau, J.; Simonsen, O.; Mørk, P.; Kristensen, G. J.; Becher, J. Synthesis 1996, 407-418), IV (Hu, L.-Y.; Ryder, T. R.; Rafferty, M. F.; Taylor, C. P.; Feng, M. R.; Kuo, B.-S.; Lotarski, S. M.; Miljanich, G. P.; Millerman, E.; Siebers, K. M.; Szoke, B. G. Bioorg. Med. Chem. 2000, 8, 1203-1212). 1-Propanol was dried over molecular sieves (4 \AA), THF was either distilled over $\mathrm{Na} /$ benzophenone or obtained from a solvent drying tower, DMF was obtained from a solvent drying tower. When amine bases $\left(\mathrm{NEt}_{3}, \mathrm{NH}(i-\mathrm{Pr})_{2}\right)$ were used as a major component in a solvent they were passed through basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ just prior to use. Sonogashira couplings were performed under inert atmosphere with the solvents carefully flushed beforehand with inert gas. $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ was easily dissolved in 1-propanol to form a ca. 0.17 M (ca. 25 mg in 1 mL) solution; at higher concentrations solubility became an issue. $\mathrm{NaOPr} / 1-\mathrm{PrOH}$ was freshly prepared by addition of Na into $1-\mathrm{PrOH}$ under inert atmosphere. Standard washing procedure for substituting cyanoethyl groups in DMF: 5 min after the electrophile (MeI or AcCl) was added to the thiolate the solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and then it was washed with water ($5-10 \times 50 \mathrm{~mL}$) to remove the DMF. The organic phase was then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed before the residue was loaded onto a column. Compounds with DTF-SAc anchoring groups are quite sensitive and can degrade on silica and in solution for prolonged period (a more expensive brand of silica is milder on these compounds and does not cause a large amount of degradation during column chromatography or darkening and degradation once the compound is off the column). For NMR analysis, CDCl_{3} should be avoided or at least passed through a plug of basic alumina prior to use; better alternatives are $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ or $\mathrm{C}_{6} \mathrm{D}_{6}$, if the compound is soluble enough in thelatter. If there is only a minor impurity in the sample after the column chromatography, it can often be purified by taking it up in minimal $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and triturating the compound in either MeOH or heptanes and then collecting the precipitate and washing with pentane. A mixture of isomers are obtained for compounds with different peripheral groups on the DTFs (12-15b-d $Z, Z / Z, E / E, Z / E, E$ and $\mathbf{5 2 b}, \mathbf{d} Z / E)$, which complicates the NMR spectra by increasing the number of peaks. In general, there is some overlap in signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. There is also a possibility that some of the quaternary carbons are not observed when relaxing too slowly, especially on the DTF groups. Missing carbon resonances based on the number of different carbon atoms, whether due to overlap or due to too weak intensities, are indicated for all compounds except for the Z / E isomeric compounds. IR spectra were obtained using the attenuated total reflectance (ATR) method on either neat oils or on a solution of the compound being dropped onto the diamond and waiting for the solvent to evaporate off and measuring on a thin film. The relative peak intensities were recorded, where $\mathrm{vw}=$ very weak, $\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{s}=$ strong, $\mathrm{vs}=$ very strong, $\mathrm{br}=$ broad, $\mathrm{sh}=$ shoulder. Mass spectrometry (MS) was performed using either Electrospray Ionization (ESI), Matrix Assisted Laser Desorption Ionization (MALDI), Fast Atom Bombardment (FAB), or using a gas chromatograph coupled with a mass selective detector (GC); HR = High Resolution. Elemental analysis was either performed at University of Copenhagen or at London Metropolitan University. Melting points are uncorrected.

Compound 16. To a solution of 2,5-dihydroxybenzaldehyde (I) ($1.00 \mathrm{~g}, 7.24 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added 2,6-lutidine (2.5 mL). The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and then triflic anhydride ($6.13 \mathrm{~g}, \sim 3.7 \mathrm{~mL}, 21.7 \mathrm{mmol}$) was added dropwise. The reaction mixture was then stirred for 30 min before the solvents were removed under reduced pressure and the remaining solids were redissolved in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The ether was then washed with water $(2 \times 50 \mathrm{~mL})$, brine (50 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was then evaporated off and the red oily crude was poured through a short plug (SiO_{2}, heptane / $\mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1$). Fractions containing the product were collected and concentrated to a white powder ($2.55 \mathrm{~g}, 87 \%$). Mp 53-54 ${ }^{\circ} \mathrm{C}$. Anal. Calcd $\left(\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{~F}_{6} \mathrm{O}_{7} \mathrm{~S}_{2}\right)$: C, 26.87; H, 1.00. Found: C, 26.65; H, $0.68 .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.26(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=9.1,3.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 184.33,148.77,148.76,130.33$, $128.70,125.01,123.12,118.79\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=321 \mathrm{~Hz}\right), 118.73\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=321 \mathrm{~Hz}\right) . \mathrm{MS}(\mathrm{GC}-\mathrm{MS})$ m/z: $402[\mathrm{M}]^{+}$.

Compound 18. Compound $16(1.00 \mathrm{~g}, 2.49 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(175 \mathrm{mg}, 0.25 \mathrm{mmol}, 10$ $\mathrm{mol} \%$), CuI ($48 \mathrm{mg}, 0.25 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and trimethylsilylacetylene ($733 \mathrm{mg}, \sim 1.1 \mathrm{~mL}$, 7.46 mmol) were dissolved in argon degassed, dry THF (8 mL) and $\mathrm{NH}(i-\operatorname{Pr})_{2}(2 \mathrm{~mL})$. The reaction mixture was then stirred for 1 h at rt and then at $45^{\circ} \mathrm{C}$ for 15 min before it was cooled to rt and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added. The ether phase was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ and brine (100 mL) before it was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The oily crude was then subjected to flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ / petroleum spirit 1:2) giving the product as white powder ($739 \mathrm{mg}, 99 \%$).

Compound 18. To a solution of the alcohol II ($1.26 \mathrm{~g}, 4.2 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added $4 \AA$ molecular sieves (2.57 g), Celite (1.25 g) and PCC ($1.48 \mathrm{~g}, 6.87 \mathrm{mmol}$). The reaction mixture changed color from yellow to black. After 2 h , further PCC $(0.11 \mathrm{~g}, 0.51$ $\mathrm{mmol})$ was added. The crude was run through a short plug $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give the product as a thick, slightly yellow oil that slowly solidified ($1.18 \mathrm{~g}, 94 \%$) Mp $54-55{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.49(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{dd}, J=1.7,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}), 7.50(\mathrm{dd}, J=8.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.28(\mathrm{~s}, 9 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(125MHz,CDCl}_{3}\right) \delta$ 191.17, 136.51, 135.98, 133.49, 130.56, 126.27, 124.00, 104.41, 103.23, 99.78, 98.04, -0.09, -0.16. MS (GC-MS) m/z: $298[\mathrm{M}]^{+}$.

Compound II. Method A: Compound III ($1.966 \mathrm{~g}, 6.08 \mathrm{mmol}$) was weighed off in a dried round-bottomed flask, put under argon atmosphere and then dry THF (15 mL) was added. $\mathrm{LiAlH}_{4}(6.1 \mathrm{~mL}, 6.1 \mathrm{mmol}, 1 \mathrm{M}$ in THF) was added to the yellow solution, this made the solution change color to black, which after 15 min slowly changed back to yellow. Any excess LiAlH_{4} was neutralized by dropwise addition of $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$. The reaction mixture was poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added. The water phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and the combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were removed under reduced pressure and the crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. After removal of solvents in vacuo the product was isolated as a thick oil which solidified to a white solid ($0.40 \mathrm{~g}, 22 \%$). Method B: Compound III ($1.474 \mathrm{~g}, 4.49 \mathrm{mmol}$) was weighed off in a dried round-bottomed flask, put under argon atmosphere, dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL), and DIBAL-H ($11.2 \mathrm{~mL}, 11.2 \mathrm{mmol}, 1 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was then added to the yellow
solution. After 45 min , the reaction mixture was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (50 mL) and ice, which resulted in a thick gel. After extensive extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 100$ $\mathrm{mL})$, the combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were removed in vacuo giving the product as a yellow oil ($1.262 \mathrm{~g}, 94 \%$). Mp 75.1-76.7 ${ }^{\circ} \mathrm{C}$. Anal. Calcd $\left(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{OSi}_{2}\right)$: C, 67.94; H, 8.05. Found: C, $67.98 ; \mathrm{H}, 8.03 .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=7.9$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.26(\mathrm{~s}, 9 \mathrm{H}), 0.24(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.23,132.35,130.77,130.60,123.73,121.17,104.63,102.20$, 101.72, 96.61, 63.75, 0.04, 0.02. MS (GC-MS) m/z: $300[\mathrm{M}]^{+}$.

Compound 21. Aldehyde $18(0.751 \mathrm{~g}, 2.52 \mathrm{mmol})$ and phosphonium salt $20(1.92 \mathrm{~g}, 3.77$ mmol) were dissolved in dry degassed MeCN (9 mL) and THF (36 mL), which gave a yellow colored solution. $\mathrm{NEt}_{3}(0.7 \mathrm{~mL}, 5.03 \mathrm{mmol})$ was then added to the solution, which made the solution turn to an orange color. After stirring for 2 h , the solution was poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, the combined organic phases were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo. The crude product was purified with flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and the major orange band was collected and removal of solvents in vacuo yielded the product as an orange solid ($1.165 \mathrm{~g}, 92 \%$). Mp 166.1-167.7 ${ }^{\circ} \mathrm{C}$. Anal. Calcd ($\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Si}_{2}$): C, 57.56; H, 5.64. Found: C, 57.87; H, 5.53. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.36(\mathrm{~d}, J$ $=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 0.26(\mathrm{~s}$, $9 \mathrm{H}), 0.26(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.18,160.08,137.49,133.46,132.68$, $131.08,129.89,129.87,127.95,123.53,121.36,113.20,104.41,102.85,102.45,96.83,53.69$ $-53.54\left(\mathrm{~m}, 2 \mathrm{C}\right.$, due to incomplete decoupling), 0.05 ; 1 signal missing due to overlap $\left(\mathrm{SiMe}_{3}\right)$. MS (ESP+) m/z: $501[\mathrm{M}+\mathrm{H}]^{+}$.

Compound 22. Compound $21(0.502 \mathrm{~g}, 1.00 \mathrm{mmol})$ was dissolved in THF (20 mL) and 1propanol (60 mL), and then $\mathrm{K}_{2} \mathrm{CO}_{3}(1.504 \mathrm{~g}, 10.88 \mathrm{mmol})$ was added to this stirring orange colored solution. After stirring for 24 h , the reaction mixture was poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (150 mL) and run through a short silica plug $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The silica was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 100 \mathrm{~mL}$), solvents were removed in vacuo to give an orange colored oil, which solidified after 1 week as an orange solid ($345 \mathrm{mg}, 83 \%$). Mp 49.3-52.1 ${ }^{\circ} \mathrm{C}$. Anal. Calcd $\left(\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}_{2}\right)$: C, 64.05 ; H: 4.89. Found: C, $63.67 ; \mathrm{H}, 4.83$. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$7.47(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}$, $1 \mathrm{H}), 4.21,4.21(2 \mathrm{x} \mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.43(\mathrm{~s}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 1 \mathrm{H}), 1.73(\mathrm{~m}, 4 \mathrm{H}), 0.98,0.97(2$ $\mathrm{x} \mathrm{t}, J=7.4,6 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.73,159.60,137.98,134.64$, 133.31, 131.26, 129.82, 129.70, 128.51, 122.96, 120.78, 112.30, 84.49, 83.11, 81.49, 79.44, 68.49, 68.45, 21.93, 21.92, 10.46, 10.44. MS (ESP+) m/z: $413[\mathrm{M}+\mathrm{H}]^{+}$.

Compound 3. A mixture of $22(166 \mathrm{mg}, 597 \mu \mathrm{~mol})$, $\mathrm{CuI}(11 \mathrm{mg}, 58 \mu \mathrm{~mol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($16 \mathrm{mg}, 23 \mu \mathrm{~mol}$) was dissolved in THF (15 mL) and stirred. To this solution was added $\mathrm{NH}(i-\operatorname{Pr})_{2}(1 \mathrm{~mL})$ followed 5 min later by $23(152 \mathrm{mg}, 368 \mu \mathrm{~mole})$ and a further portion of $\mathbf{2 3}$ ($151 \mathrm{mg}, 543 \mu \mathrm{~mol}$). After 3 h , the reaction mixture had turned an orange color and after an additional $1 \mathrm{~h}, \mathrm{Ac}_{2} \mathrm{O}(0.1 \mathrm{~mL}, 1 \mathrm{mmole})$ was added. After stirring for 30 min , the reaction mixture was poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(55 \mathrm{~mL})$, washed with water saturated with $\mathrm{NH}_{4} \mathrm{Cl}(55 \mathrm{~mL})$ and then washed with brine $(50 \mathrm{~mL})$. The water phases were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and the combined organic phases were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvents were removed in vacuo. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; the first band was unreacted 23 while the second major orange band gave the product as an orange solid ($127 \mathrm{mg}, 48 \%$). Mp 139.3-141.4 ${ }^{\circ} \mathrm{C}$. Anal. Calcd $\left(\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{~S}_{4}\right)$: C, 64.02; H, 4.52. Found: C, 63.68; H, 4.28. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.34$ (dd, $J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 4.22$, $4.21(2 \mathrm{xt}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.44$ (s, 3H), $1.73(\mathrm{~m}, 4 \mathrm{H}), 0.99,0.98(2 \mathrm{x} \mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $193.50,193.46,159.71,159.67,137.58,134.44,134.37,132.80,132.42,132.26,131.11$, 130.04, 129.49, 128.72, 128.60, 128.12, 124.27, 124.20, 123.50, 121.25, 112.63, 95.97, $90.90,90.75,89.15,68.49,68.45,30.46$ (2x), 21.92, 10.48, 10.44; 2 signals missing. MS (ESP+) m/z: $713[\mathrm{M}+\mathrm{H}]^{+}$.

Compound 26. Compounds 22 ($290 \mathrm{mg}, 703 \mu \mathrm{~mol}$), 4-iodobenzaldehyde 24 ($421 \mathrm{mg}, 1.81$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(84 \mathrm{mg}, 73 \mu \mathrm{~mol})$ and $\mathrm{CuI}(14 \mathrm{mg}, 72 \mu \mathrm{~mol})$ were weighed off in a roundbottomed flask and put under Ar atmosphere. The solids were dissolved in degassed $\mathrm{NH}(i-$ $\left.\mathrm{Pr}_{2}\right)(100 \mathrm{~mL})$ and the reaction mixture was sonicated at $40{ }^{\circ} \mathrm{C}$ for 40 min and was then stirred at rt. After 21 h , the amine was evaporated off in vacuo and the crude product was redissolved in toluene and filtered through cotton. The solvent was removed under reduced pressure and the residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The fourth
band was orange and gave 26 as an orange solid ($180 \mathrm{mg}, 41 \%$). Mp 142.7-143.9 ${ }^{\circ} \mathrm{C}$. Anal. Calcd $\left(\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~S}_{2}\right): \mathrm{C}, 69.66 ; \mathrm{H}, 4.55$. Found: C, 69.23 ; $\mathrm{H}, 4.33$. IR(ATR, $\left.\mathrm{cm}^{-1}\right): v=2967 \mathrm{w}$, $2879 \mathrm{vw}, 2842 \mathrm{vw}, 2741 \mathrm{vw}, 2210 \mathrm{vw}(\mathrm{C} \equiv \mathrm{C}), 1733 \mathrm{~m}$ sh $\left(\mathrm{CO}_{2} \mathrm{Pr}\right), 1702 \mathrm{vs}(\mathrm{CH}=\mathrm{O}), 1599 \mathrm{~m}$, $1560 \mathrm{~m}, 1508 \mathrm{vw}, 1466 \mathrm{w}, 1412 \mathrm{vw}, 1388 \mathrm{w}, 1349 \mathrm{vw}, 1300 \mathrm{~m}, 1283 \mathrm{~m}$ sh, $1239 \mathrm{~s}, 1205 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 10.03(\mathrm{~s}, 2 \mathrm{H}), 7.91-7.88(\mathrm{~m}, 4 \mathrm{H}), 7.75-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.61-$ $7.59(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 4.20,4.20(2 \mathrm{x} \mathrm{t}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.76-1.68$ $(\mathrm{m}, 4 \mathrm{H}), 0.97,0.97(2 \mathrm{xt}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ 191.82, 191.78, 160.07, 159.90, 138.28, 136.47, 136.43, 135.54, 133.52, 132.80, 132.65, 131.76, 130.09, $130.05,129.98,129.42,129.34,128.61,123.94,121.63,112.61,96.35,92.96,91.43,91.26$, 69.01, 68.91, 22.35, 22.34, 10.64; 2 signals missing. HR-MS (MALDI) $m / z: 620.1317$ [M] ${ }^{+}$; calcd for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{~S}_{2}{ }^{+}: 620.1322$.

Compound 27. A mixture of $\mathbf{2 2}(407 \mathrm{mg}, 987 \mu \mathrm{~mol}), 25(891 \mathrm{mg}, 2.97 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($70 \mathrm{mg}, 0.10 \mathrm{mmol}$) and $\mathrm{CuI}(19 \mathrm{mg}, 0.10 \mathrm{mmol})$ was dissolved in dry argon degassed THF $(20 \mathrm{~mL})$, and 1 min later argon degassed $\mathrm{NEt}_{3}(1.38 \mathrm{~mL}, 9.87 \mathrm{mmol})$ was added whereupon the reaction mixture turned black. After stirring for 7 h , the solvent was evaporated in vacuo and the crude was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, heptane $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 3\right)$; collection of the first major orange band gave the product 27 as an orange solid ($535 \mathrm{mg}, 72 \%$). Mp 153.4-155.7 ${ }^{\circ} \mathrm{C}$. Anal. Calcd $\left(\mathrm{C}_{44} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Si}_{2}\right)$: C, 69.80; H, 5.86. Found: C, 69.51; H, 5.62. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.45(\mathrm{~m}, 12 \mathrm{H}), 7.32(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H})$, 4.22, $4.21(2 \mathrm{x} \mathrm{t}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.73(\mathrm{~m}, 4 \mathrm{H}), 0.99,0.98(2 \mathrm{x} \mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.26(\mathrm{~s}$, $9 \mathrm{H}), 0.26(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.74,159.69,137.46,134.24,132.77$, $132.13,132.08,131.66,131.49,131.10,130.06,129.44,128.06,123.52,123.51,123.39$, $123.08,123.00,121.31,112.73,104.73,104.69,96.80,96.68,96.43,91.33,91.04,89.45$, $68.51,68.46,21.93,10.48,10.45,0.07 ; 2$ signals missing. MS (ESP +) $m / z: 757[\mathrm{M}+\mathrm{H}]^{+}$.

Compound 28. Method A : In a dried round-bottomed flask, $27(90 \mathrm{mg}, 119 \mu \mathrm{~mol})$ was weighed off and dissolved in THF $(20 \mathrm{~mL})$ after which TBAF• $3 \mathrm{H}_{2} \mathrm{O}(130 \mathrm{mg}, 412 \mu \mathrm{~mol})$ was added. The reaction mixture went from an orange color to black. After stirring for 4.5 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ ($2 \times 50 \mathrm{~mL}$). The water phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and the combined organic phases were run through a short silica column $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Concentration in vacuo yielded the pure product $\mathbf{2 8}$ as an orange solid ($57.5 \mathrm{mg}, 79 \%$). Method B : Using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as
solvent for the reaction under otherwise similar conditions, the product was obtained in a yield of 64%. Mp 119.7-122.4 ${ }^{\circ} \mathrm{C}$. Anal. Calcd $\left(\mathrm{C}_{38} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{~S}_{2}\right)$: C, 74.48; H, 4.61. Found: C, 74.56; H, 4.18. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.49(\mathrm{~m}, 11 \mathrm{H}), 7.33(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 4.22,4.21(2 \mathrm{xt}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.20(\mathrm{~s}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 1 \mathrm{H}), 1.73(\mathrm{~m}, 4 \mathrm{H})$, $0.99,0.98(2 \mathrm{xt}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.74,159.70,137.52$, $134.33,132.79,132.32,132.26,131.75,131.59,131.09,130.07,129.47,128.10,123.51$, $123.44,122.48,122.37,121.28,112.68,96.22,91.14,91.09,89.50,83.38,83.35,79.35$, $79.26,68.52,68.47,21.93,10.47,10.45 ; 2$ signals missing. MS (ESP +) $m / z: 613[\mathrm{M}+\mathrm{H}]^{+}$.

Compound 5. To a mixture of 28 ($69 \mathrm{mg}, 113 \mu \mathrm{~mol}$), 23 ($102 \mathrm{mg}, 367 \mu \mathrm{~mol}$) and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(10 \mathrm{mg}, 14 \mu \mathrm{~mol})$ was added dry argon degassed THF (14 mL). This was followed by addition of $\mathrm{NH}(i-\mathrm{Pr})_{2}(0.4 \mathrm{~mL})$, and 5 min later, $\mathrm{CuI}(8 \mathrm{mg}, 42 \mu \mathrm{~mol})$ was added. After stirring for 22 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 75 \mathrm{~mL})$ and the water phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL). The combined organic phases were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated in vacuo. The crude product was purified by flash column chromatography ($\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); the first two bands gave starting materials 23 and 28, respectively, while the third band gave the OPE5 5 as an orange solid ($28 \mathrm{mg}, 27 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.52(\mathrm{~m}$, $14 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.35(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 4.22,4.22(2 \mathrm{xt}$, $J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.44(\mathrm{~s}, 6 \mathrm{H}), 1.74(\mathrm{~m}, 4 \mathrm{H}), 0.99,0.98(2 \mathrm{xt}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.54,159.75,159.71,137.52,134.40,134.30,132.80,132.35,131.86$, $131.85,131.81,131.68,131.10,130.08,129.48,128.53,128.50,128.10,124.40,124.37$, $123.55,123.31,123.20,123.17,123.09,121.33,112.73,96.48,91.38,91.18,90.90,90.86$, $90.83,90.81,89.59,68.53,68.48,30.47,21.94,10.48,10.47$; 5 signals missing. HR-MS (MALDI) $m / z: 912.1690[M]^{+}$; calcd for $\mathrm{C}_{54} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{~S}_{4}^{+}$: 912.1702.

Compound 29. A mixture of $\mathbf{2 8}$ ($128 \mathrm{mg}, 209 \mu \mathrm{~mol}$), $\mathbf{2 3}$ ($240 \mathrm{mg}, 862 \mu \mathrm{~mol}$), CuI (4.3 mg , $22.6 \mu \mathrm{~mol}$), Xphos ($19.8 \mathrm{mg}, 41.5 \mu \mathrm{~mol})$ and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(11.2 \mathrm{mg}, 12.2 \mu \mathrm{~mol})$ was dissolved in THF (5 mL), and 5 min later, $\mathrm{NH}(i-\mathrm{Pr})_{2}(1 \mathrm{~mL})$ was added. After stirring for 20 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solvent was evaporated in vacuo. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; the third band was orange and gave 29 as a slightly impure product as an orange solid. The product was dissolved in a minimal amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and triturated by $\mathrm{MeOH}(60 \mathrm{~mL})$ and the fine orange powder was collected ($71 \mathrm{mg}, 49 \%$). Mp 121-124 ${ }^{\circ} \mathrm{C}$. Anal. Calcd $\left(\mathrm{C}_{42} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{~S}_{2}\right)$: C,
72.39; H, 4.63. Found: C, 72.20; H, 4.52. IR(ATR, $\left.\mathrm{cm}^{-1}\right): v=2967 \mathrm{~m}, 2936 \mathrm{w}, 2879 \mathrm{w}, 2855 \mathrm{w}$, 2199vs, $2164 \mathrm{w}, 2136 \mathrm{w}$ ($3 \mathrm{x} \mathrm{C} \equiv \mathrm{C}$), 1732m ($\mathrm{CO}_{2} \operatorname{Pr}$), $1667 \mathrm{vs}(\mathrm{CO}), 1599 \mathrm{~m}, 1583 \mathrm{~m}, 1550 \mathrm{w}$, 1531w, $1509 \mathrm{~m}, 1464 \mathrm{w}, 1408 \mathrm{w}, 1390 \mathrm{w}, 1559 \mathrm{~m}, 1282 \mathrm{~s}$, 1239 s. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.62-7.55(\mathrm{~m}, 10 \mathrm{H}), 7.38(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 4.20,4.20(2 \mathrm{x} \mathrm{t}, J=6.7$ $\mathrm{Hz}, 4 \mathrm{H}), 2.44,2.44(2 \mathrm{x} \mathrm{s}, 6 \mathrm{H}), 1.75-1.70(\mathrm{~m}, 4 \mathrm{H}), 0.97,0.97(2 \mathrm{x} \mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 184.67, 160.07, 159.91, 138.14, 135.32, 133.55, 133.51, 133.40, $132.39,132.24,131.72,130.12,129.90$, 128.51, 125.81, 125.74, 123.90, 121.63, 120.60, $120.51,112.71,96.39,92.41,91.27,90.87,90.09,90.04,89.39,89.35,68.99,68.90,33.18$, $22.34,10.64 ; 4$ signals missing. MS (FAB) $m / z: 697[\mathrm{M}+\mathrm{H}]^{+}$.

Compound 31. Compound 16 ($380 \mathrm{mg}, 0.94 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(70 \mathrm{mg}, 0.10 \mathrm{mmol}, 10$ $\mathrm{mol} \%$), CuI ($19 \mathrm{mg}, 0.10 \mathrm{mmol}, 10 \mathrm{~mol} \%$), and $30(539 \mathrm{mg}, 2.83 \mathrm{mmol})$ were dissolved in argon degassed dry THF $(8 \mathrm{~mL})$ and $\mathrm{NH}\left(i-\mathrm{Pr}_{2}\right)(2 \mathrm{~mL})$. The reaction mixture was then stirred for 16 h at $50{ }^{\circ} \mathrm{C}$ before it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude was then subjected to flash column chromatography (SiO_{2}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / petroleum spirit 2:3) giving the product 31 as a yellow powder ($276 \mathrm{mg}, 61 \%$). Mp 153-155 ${ }^{\circ} \mathrm{C}$. Anal. Calcd $\left(\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{OS}_{2}\right)$: C, 77.14; H, 6.26. Found: C, 76.80; H, 6.15. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.61(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{dd}, J=1.8,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.63(\mathrm{dd}, J=8.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 8 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.91,137.48,137.43,136.34,135.97,134.89,134.28,133.45$, $131.75,131.74,130.77,126.04,124.06$, 122.97, 122.54, $97.59,92.14,89.44,86.35,46.90$, 46.79, 31.18, 31.17. MS (MALDI-TOF) $m / z: 483[\mathrm{M}+\mathrm{H}]^{+}$.

Compound 32. Compound 31 ($55 \mathrm{mg}, 0.11 \mathrm{mmol}$) and phosphonium salt $20(173 \mathrm{mg}, 0.33$ $\mathrm{mmol})$ were dissolved in THF (2 mL) and $\mathrm{MeCN}(1 \mathrm{~mL})$. $\mathrm{NEt}_{3}(0.2 \mathrm{~mL})$ was added and the mixture stirred for 30 min before water $(10 \mathrm{~mL})$ was added. The mixture was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and the red organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the volatile removed under reduced pressure. The residue was then subjected to flash column chromatography ($\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) giving the product as an orange solid ($69 \mathrm{mg}, 92 \%$). Mp 145-147 ${ }^{\circ} \mathrm{C}$. Anal. Calcd $\left(\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{~S}_{4}\right)$: C, 66.63; H, 5.30. Found C, 66.33; H, 5.23. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.55-7.50(\mathrm{~m}, 10 \mathrm{H}), 7.37(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 3.85$
(s, 3H), $3.83(\mathrm{~s}, 3 \mathrm{H}), 1.31(2 \mathrm{x} \mathrm{s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 160.53, 160.23, 137.90 , 137.84, 137.81, 134.69, 134.65, 134.56, 133.22, 132.12, 131.96, 131.87, 129.97, $129.88,128.35,123.95,123.66,123.60,121.81,113.30,96.71,91.48,90.75,89.18,53.87$, 47.05, 47.01, 31.34; 2 signals missing. MS (FAB) $m / z: 685[\mathrm{M}]^{+}$.

Compound 33. Compounds 17 ($1.55 \mathrm{~g}, 4.42 \mathrm{mmol}$) and $20(2.32 \mathrm{~g}, 4.6 \mathrm{mmol})$ were dissolved in Ar degassed THF (60 mL) and $\mathrm{MeCN}(20 \mathrm{~mL}) . \mathrm{NEt}_{3}(0.8 \mathrm{~mL})$ was then added whereupon the solution turned to a red color. After stirring for 2 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$, brine (200 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ / heptane $\left.4: 1\right)$ to provide the product as a red oil which slowly crystallized to an orange solid ($2.05 \mathrm{~g}, 84 \%$). Mp 101.3-102.3 ${ }^{\circ} \mathrm{C}$. Anal. Calcd $\left(\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{7} \mathrm{~S}_{3} \mathrm{Si}_{2}\right): \mathrm{C}, 43.47$; $\mathrm{H}, 3.47$. Found: C, $43.46 ; \mathrm{H}, 3.34 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~s}$, $1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 0.27(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.81$, 159.79, $145.20,137.84,131.75,131.41,130.47,129.85,129.61,124.18,122.00,118.70\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $321 \mathrm{~Hz})$, 105.84, 102.84, 97.18, 53.66, 53.61, -0.03. MS (FAB) m/z: $553[\mathrm{M}+\mathrm{H}]^{+}$.

Compound 34. Compound 17 ($0.40 \mathrm{~g}, 1.14 \mathrm{mmol}$) was dissolved in Ar degassed dry THF (6 $\mathrm{mL})$ and Ar degassed $\mathrm{NEt}_{3}(2 \mathrm{~mL})$ under Ar atmosphere; then $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(74 \mathrm{mg}, 0.10$ mmol) and $\mathrm{CuI}(20 \mathrm{mg}, 0.11 \mathrm{mmol})$ were added. Phenylacetylene $(0.3 \mathrm{~mL}, 0.3 \mathrm{mmol})$ was added, and the mixture turned black. After stirring for 15 min , the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$, washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$, brine (100 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The compound was purified by repeated flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane / $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$; then petroleum spirit / EtOAc $10: 1$) to give 34 as a white solid ($240 \mathrm{mg}, 70 \%$). $\mathrm{Mp} 63-64{ }^{\circ} \mathrm{C}$. Anal. Calcd ($\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{OSi}$): C, 79.42; H, 6.00. Found: C, 79.60; H, 5.58. ${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.59(\mathrm{~s}, 1 \mathrm{H}), 8.02$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.39(\mathrm{~m}, 3 \mathrm{H})$, $0.26(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.00,136.62,135.78,133.24,131.88,131.07$, 129.43, 128.73, 126.43, 123.88, 122.28, 103.38, 98.10, 98.04, 84.90, -0.04. MS (GC-MS) $\mathrm{m} / \mathrm{z}: 302[\mathrm{M}]^{+}$.

Compound 35. A mixture of $34(130 \mathrm{mg}, 0.43 \mathrm{mmol})$ and $20(0.49 \mathrm{~g}, 0.96 \mathrm{mmol})$ was dissolved in Ar degassed dry THF (6 mL) and $\mathrm{MeCN}(3 \mathrm{~mL})$, then $\mathrm{NEt}_{3}(1 \mathrm{~mL})$ was added whereupon the reaction mixture turned red. After stirring for 30 min , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$, brine $(100 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum spirit / $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:1) to give the product as an orange solid ($202 \mathrm{mg}, 93 \%$). Mp 144-145 ${ }^{\circ} \mathrm{C}$. Anal. Calcd ($\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Si}$): C, $64.25 ; \mathrm{H}, 4.79$. Found: C, 64.47; H, 4.75. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ (d, $J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 0.28(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.15$, 160.08, 137.21, 133.56, 132.52, 131.70, 131.07, 130.12, 129.97, 128.84, 128.61, 128.27, 123.43, 122.97, 121.71, 113.37, 104.55, 96.80 (2 x alkyne-C), 87.46, 53.58, 53.53, 0.10. MS (FAB) $m / z: 505[\mathrm{M}+\mathrm{H}]^{+}$.

Compound 36. Compound $\mathbf{3 5}(151 \mathrm{mg}, 0.30 \mathrm{mmol})$ was dissolved in THF (10 mL) and 1propanol (15 mL). Molecular sieves (10 sieves, $4 \AA$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~g}, 3.6 \mathrm{mmol})$ were added. After stirring for 5 h , the reaction mixture was filtered on a short plug $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and concentrated under reduced pressure to give the product as an orange solid (130 mg , 89%). This compound was used immediately for further reaction. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.57-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}$, $1 \mathrm{H}), 4.20(2 \mathrm{x} \mathrm{t}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.29(\mathrm{~s}, 1 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 4 \mathrm{H}), 0.99(2 \mathrm{xt}, J=7.4,6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 160.08,159.85,137.77,134.77$, 133.08, 132.09, 131.72, $130.19,130.03,129.33,129.03,128.91,123.29,122.71,122.41,112.95,97.23,87.61,83.51$, $79.66,68.90,68.82,22.35,22.33,10.68,10.65$.

Compound 4. A mixture of $\mathbf{3 6}(130 \mathrm{mg}, 0.27 \mathrm{mmol}), \mathbf{2 3}(91.3 \mathrm{mg}, 0.33 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ $(9 \mathrm{mg}, 0.013 \mathrm{mmol})$, and $\mathrm{CuI}(6.7 \mathrm{mg}, 0.035 \mathrm{mmol})$ was dissolved in Ar degassed dry THF (6 mL) and Hünig's base (2 mL) under Ar atmosphere. After stirring for 2 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, brine (50 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give a red oil. To solidify 4 it was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and $\mathrm{MeOH}(1 \mathrm{~mL})$ and the solvent removed under reduced pressure to give a red solid ($110 \mathrm{mg}, 65 \%$). Mp 71.5-72.8 ${ }^{\circ} \mathrm{C}$. Anal. Calcd $\left(\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{~S}_{3}\right)$: C, 67.69; H, 4.73. Found: C, $67.60 ; \mathrm{H}, 4.55 .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.62-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.44-7.37$ (m, 6H), $7.02(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.74-$ $1.70(\mathrm{~m}, 4 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ $\delta 193.75,160.13,159.95,137.91,134.91,134.75,133.18,132.70,132.10,131.68,130.13$, $129.90,129.39,129.34,129.06,128.43,124.57,123.59,123.34,122.13,113.11,97.25,91.04$ (2 x alkyne-C), $87.77,68.93,68.85,30.70,22.33,10.65 ; 2$ signals missing. MS (MALDI) $m / z: 639[\mathrm{M}]^{+}$.

Compound 7. To a mixture of $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(18 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\mathrm{CuI}(3 \mathrm{mg}, 0.015 \mathrm{mmol})$, $38(100 \mathrm{mg}, 0.14 \mathrm{mmol})$ and $39(66 \mathrm{mg}, 0.30 \mathrm{mmol})$ under Ar atmosphere was added argon degassed $\mathrm{NH}(i-\operatorname{Pr})_{2}(15 \mathrm{~mL}, 35 \mathrm{mmol})$. After stirring for 18 h at $40^{\circ} \mathrm{C}$, the resulting mixture was filtered through a short silica plug $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and the solvent was removed under reduced pressure. The crude material was purified by dry column vacuum chromatography $\left(\mathrm{SiO}_{2}\right.$, $12.6 \mathrm{~cm}^{2}, 0-80 \%$ heptanes / EtOAc, 5% steps, 50 mL fractions) to yield 7 as a red solid (57 $\mathrm{mg}, 46 \%)$. Mp 178-180 ${ }^{\circ} \mathrm{C}$. Anal. Calcd ($\mathrm{C}_{46} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{4}$): C, 62.70; H, 5.03; N, 3.18. Found: $\mathrm{C}, 62.82 ; \mathrm{H}, 4.98 ; \mathrm{N}, 2.96$. $\mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): v=3468 \mathrm{w}, 3380 \mathrm{~m}, 3233 \mathrm{w}\left(3 \mathrm{x} \mathrm{NH}_{2}\right), 2966 \mathrm{~m}$, 2936w, 2878w, 2197w (C $=\mathrm{C}$), 1737s, 1715s ($2 \times \mathrm{CO}_{2} \mathrm{Pr}$), 1621m, 1605s, 1581s, 1517s, $1464 \mathrm{w}, 1389 \mathrm{w}, 1238 \mathrm{vs} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45$ (s, 2H), 7.37 (d, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}$), $6.95(\mathrm{~s}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.21,4.21(2 \mathrm{x} \mathrm{t}, J=6.7 \mathrm{~Hz}, 8 \mathrm{H}), 3.87(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 1.77$ $-1.69(\mathrm{~m}, 8 \mathrm{H}), 0.98,0.98(2 \mathrm{x} \mathrm{d}, J=7.4 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.86$, $159.75,147.16,134.56,133.23,132.83,131.12,130.24,121.79,114.89,113.18,112.34$, $97.39,85.80,68.44,68.38,21.93,21.93,10.48,10.46 ; 1$ signal missing. MS (FAB, m-NBA) $m / z: 880[\mathrm{M}]^{+}$.

Compound V. In a microwave vial were placed $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(15 \mathrm{mg}, 0.02 \mathrm{mmol})$, $\mathrm{CuI}(4$ $\mathrm{mg}, 0.02 \mathrm{mmol}), \mathbf{3 8}(100 \mathrm{mg}, 0.14 \mathrm{mmol})$ and IV ($110 \mathrm{mg}, 0.35 \mathrm{mmol})$. The vial was sealed and filled with an inert atmosphere of Ar. Then dry argon degassed DMF (4 mL) was added. To the resulting mixture was then added $\mathrm{NEt}_{3}(1.5 \mathrm{~mL})$ and the vial was placed inside a microwave reactor. After stirring for 5 min inside the microwave reactor the temperature was raised to $120^{\circ} \mathrm{C}$ and the mixture was heated for 30 min . To the resulting solution was added $0.2 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ and it was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The organic phase was further washed with $\mathrm{NaHCO}_{3}(2 \times 15 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and dried over MgSO_{4}, filtered and the solvent was removed in vacuo to yield the crude product. The crude material was purified by dry column vacuum chromatography $\left(\mathrm{SiO}_{2}, 12.6 \mathrm{~cm}^{2}, 0-50 \%\right.$ heptanes / EtOAc, 4% steps, 40 mL fractions) to yield pure \mathbf{V} as a red solid ($65 \mathrm{mg}, 43 \%$). Mp $184-189{ }^{\circ} \mathrm{C}$. Anal. Calcd ($\mathrm{C}_{56} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}_{4}$): C, 62.20; H, 5.59; N, 2.59. Found: C, 61.71; H, 5.52; N, 2.78. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.39(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.94(\mathrm{~s}, 2 \mathrm{H})$, $6.55(\mathrm{~s}, 2 \mathrm{H}), 4.22,4.21(2 \mathrm{x} \mathrm{t}, J=7.0 \mathrm{~Hz}, 8 \mathrm{H}), 1.73(\mathrm{~m}, 8 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 0.99,0.98(2 \mathrm{xt}, J$ $=7.0 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.78,159.69,152.46,139.00,134.77$, 133.41, 132.71, 131.20, 131.02, 130.19, 128.95, 128.66, 121.65, 118.19, 117.19, 112.78, 96.61, 86.93, 68.48, 68.42, 38.88, 28.47, 21.93, 10.48, 10.46. MS (FAB, m-NBA) m/z: 1080 $[\mathrm{M}]^{+}$.

Compound 41. The dialdehyde $40(225 \mathrm{mg}, 0.69 \mathrm{mmol})$ was dissolved in dry THF (10 mL), placed under an Ar atmosphere and cooled to $0^{\circ} \mathrm{C}$. Methylmagnesium bromide solution (0.7 $\mathrm{mL}, 2.07 \mathrm{mmol}, 3 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}$) was added and the mixture left to stir for 30 min at rt . The mixture was poured onto $2 \mathrm{M} \mathrm{HCl}(25 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The ether phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure into an off-white solid $(\sim 270 \mathrm{mg})$. The mixture of diol stereoisomers was subsequently reacted with pyridinium chlorochromate (PCC) ($594 \mathrm{mg}, 2.76 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ under argon. After 1 h of stirring, Celite (0.5 g) was added and the mixture was stirred for additional 5 h at rt . The mixture was then poured through a short plug of silica $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$) to remove the black tar formed under the reaction. The solvent was removed under reduced pressure and the product 41 was isolated after column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane / $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:2) as white powder (207 mg, 85%). Mp $74-76{ }^{\circ} \mathrm{C}$. Anal. Calcd $\left(\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}_{2}\right)$: C, $67.74 ; \mathrm{H}, 7.39$. Found: C,
67.37; H, 7.50. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~s}, 2 \mathrm{H}), 2.73(\mathrm{~s}, 6 \mathrm{H}), 0.26(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 199.44,142.93,134.45,121.43,104.40,102.59,30.18,-0.31 . \mathrm{MS}$ (GC-MS) $m / z: 354[M]^{+}$.

Compound 43. The phosphonate ester $42(231 \mathrm{mg}, 0.71 \mathrm{mmol})$ was dissolved in dry THF $(10 \mathrm{~mL})$, placed under argon and cooled to $-78^{\circ} \mathrm{C}$. Sodium bis(trimethylsilyl)amide solution (NaHMDS) ($1.1 \mathrm{~mL}, 0.7 \mathrm{mmol}, 0.6 \mathrm{M}$ in toluene) was added and the mixture left to stir for 20 min at $-78^{\circ} \mathrm{C}$. Hereafter, a solution of the diketone $41(100 \mathrm{mg}, 0.28 \mathrm{mmol})$ in dry THF $(10 \mathrm{~mL})$ was cannulised into the purple colored ylide solution. The entire mixture was allowed to warm up to rt over approximate 30 min , whereupon the mixture adopted an orange color. The mixture was then poured onto aqueous $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure into a red solid. The product was isolated after column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ as an orange powder ($208 \mathrm{mg}, 98 \%$). Crystals suitable for single-crystal X-Ray diffraction studies were grown from vapour diffusion of MeOH into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. $\mathrm{Mp} 236-238{ }^{\circ} \mathrm{C}$ (decomp.). Anal. Calcd $\left(\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{O}_{8} \mathrm{~S}_{4} \mathrm{Si}_{2}\right)$: C, 53.80; H, 5.05. Found: C, 54.09; H, 5.01. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.34(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 1.99(\mathrm{~s}, 6 \mathrm{H}), 0.23(\mathrm{~s}$, $18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 160.89,160.66,144.61,133.29,132.35,130.11$, $128.28,122.92,121.67,102.92,101.86,53.72$ (OMe; the other signal masked by solvent), 22.88, 0.00. MS (MALDI-TOF) $m / z: 766[\mathrm{M}+\mathrm{Li}]^{+}$.

Compound 44. Compound 43 ($200 \mathrm{mg}, 0.26 \mathrm{mmol}$) was dissolved in THF (7 mL); then 1propanol (25 mL) and $\mathrm{K}_{2} \mathrm{CO}_{3}(500 \mathrm{mg}, 3.62 \mathrm{mmol})$ were added. The reaction was monitored by TLC and after 3 h of stirring, the mixture was poured through a short plug $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and the yellow filtrate collected. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield the product 44 as an orange solid ($150 \mathrm{mg}, 79 \%$). Mp 144-145 ${ }^{\circ} \mathrm{C}$. Anal. Calcd. $\left(\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{O}_{8} \mathrm{~S}_{4}\right)$: C, 59.48; H, 5.27. Found: C, 59.50; H, $4.91{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.43(\mathrm{~s}, 2 \mathrm{H}), 4.16$ (t, $J=6.7$
$\mathrm{Hz}, 4 \mathrm{H}), 4.10(\mathrm{t}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 6 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 8 \mathrm{H}), 0.97(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 160.49,160.24$, $144.75,134.28,132.25,130.21,128.76,122.41,121.06,83.65,81.46,68.70,68.64,22.98$, $22.35,22.27,10.65,10.58$. MS (MALDI-TOF) $m / z: 726[\mathrm{M}]^{+}$.

Compound 9. Compound $44(140 \mathrm{mg}, 0.19 \mathrm{mmol})$ was mixed with $23(214 \mathrm{mg}, 0.77 \mathrm{mmol})$, $\mathrm{CuI}(4 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(14 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in a flame-dried flask. The mixture was placed under argon before argon degassed dry THF (5 mL) and Hünig's base (2 mL) were added. The reaction mixture was stirred for 5 h at $45^{\circ} \mathrm{C}$ before it was poured onto an aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50$ mL). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure into a red oil. The product was isolated after column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ as a red oil, which slowly turned into a solid after cooling ($110 \mathrm{mg}, 55 \%$). Mp $48-49{ }^{\circ} \mathrm{C}$. Anal. Calcd. $\left(\mathrm{C}_{52} \mathrm{H}_{50} \mathrm{O}_{10} \mathrm{~S}_{6}\right)$: C, 60.79; H 4.91. Found: C 60.71, H 4.95. IR (ATR, $\left.\mathrm{cm}^{-1}\right) v=2967 \mathrm{~m}$, 2936w, 2895w, 2879w, 2216vw (C $\equiv \mathrm{C})$, 1709vs ($\mathrm{C}=\mathrm{O}$), $1591 \mathrm{~m}, 1497 \mathrm{~m}, 1463 \mathrm{~m}, 1390 \mathrm{~m}$, $1350 \mathrm{~m}, 1310 \mathrm{w}, 1238 \mathrm{vs} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.57(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.53(\mathrm{~s}$, $2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.17(\mathrm{t}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.10(\mathrm{t}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.43(\mathrm{~s}, 6 \mathrm{H})$, $2.11(\mathrm{~s}, 6 \mathrm{H}), 1.75-1.60(\mathrm{~m}, 8 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 193.72,160.55,160.22,144.36,134.97,133.36,132.66,132.53$, $130.05,129.60,128.83,124.47,122.76,121.40,95.21,89.47,68.68,68.63,30.70,23.18$, $22.36,22.26,10.67,10.57$. MS (MALDI-TOF) $m / z: 1026[\mathrm{M}]^{+}$.

Compound 19. Compound $17(1.1 \mathrm{~g}, 3.1 \mathrm{mmol})$ was dissolved in a solution of Ar degassed THF (15 mL) and $\mathrm{NEt}_{3}(5 \mathrm{~mL})$ under an Ar atmosphere; then $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(113 \mathrm{mg}, 0.15$ mmol) and $\mathrm{CuI}(28 \mathrm{mg}, 0.15 \mathrm{mmol})$ were added. Triisopropylsilylacetylene ($1.1 \mathrm{~mL}, 5$ mmol) was added whereupon the solution darkened into a black color. After stirring for 10 min , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$, brine $(100 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The compound was purified by repeated flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$) to a light yellow oil $(0.95 \mathrm{~g}, 79 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $10.55(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=1.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=8.0$,
$0.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~m}, 21 \mathrm{H}), 0.26(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.05, 136.47, 136.16, 133.86, 130.65, 126.61, 123.97, 103.33, 101.79, 101.35, 98.00, 18.81, 11.41, -0.05. MS (GC-MS) $m / z: 367\left[\mathrm{M}_{-\mathrm{CH}}^{3}\right]^{+}(30 \%), 339[\mathrm{M}-(i-\mathrm{Pr})]^{+}(100 \%), 297$ (80%), 269 (85%).

Compound 45. The compounds $19(0.60 \mathrm{~g}, 1.6 \mathrm{mmol})$ and $20(1.2 \mathrm{~g}, 2.4 \mathrm{mmol})$ were dissolved in Ar degassed dry THF (10 mL) and MeCN (5 mL). The solution was then treated with $\mathrm{NEt}_{3}(2 \mathrm{~mL})$, whereupon the mixture turned red. After stirring for 20 min , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$, brine (50 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The compound was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum spirit / $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1\right)$ to give compound 45 as an orange oil ($865 \mathrm{mg}, 94 \%$). Anal. Calcd. $\left(\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Si}_{2}\right)$: C, 61.60 ; H 6.89. Found: C 61.50, H 7.20. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 3.84,3.84(2 \mathrm{x} \mathrm{s}, 6 \mathrm{H}), 1.15-1.14(\mathrm{~m}, 21 \mathrm{H})$, $0.26(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 160.59,160.24,138.17,134.25,133.24,131.95$, 130.17, 129.72, 128.21, 123.89, 122.34, 113.39, 105.00, 104.66, 99.60, 97.19, 53.97, 53.87, 19.04, 11.90, 0.11. HR-MS (ESP+) m/z: $585.1967[\mathrm{M}+\mathrm{H}]^{+}$; calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Si}_{2}{ }^{+}$: 585.1979.

Compound 46. Compound 45 ($720 \mathrm{mg}, 1.2 \mathrm{mmol}$) was dissolved in THF (20 mL) and then 1-propanol (40 mL), molecular sieves ($1 \mathrm{~g}, 4 \AA$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.5 \mathrm{~g}, 1.1 \mathrm{mmol})$ were added. After stirring for 5 h , the reaction mixture was filtered through a short plug $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and concentrated under reduced pressure to give a yellow colored oil ($650 \mathrm{mg}, 93 \%$), which was immediately used for further reaction. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.46-7.44$ (m, $2 \mathrm{H}), 7.26(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 4.19(2 \mathrm{x} \mathrm{t}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.26(\mathrm{~s}, 1 \mathrm{H})$, $1.74-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.15(\mathrm{~s}, 21 \mathrm{H}), 0.97(2 \mathrm{x} \mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 160.20,159.86,138.30,134.74,133.29,131.98,130.05,129.76,128.71,122.74$, $122.67,112.98,104.86,99.70,83.44,79.57,68.94,68.84,22.35,22.31,19.03,11.89,10.61$; one signal missing. HR-MS (ESP +) m / z : $591.2027[\mathrm{M}+\mathrm{Na}]^{+}$; calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{SiNa}^{+}$: 591.2029.

Compound 48. Compound 46 ($569 \mathrm{mg}, 1.00 \mathrm{mmol}$) was dissolved in Ar degassed dry THF $(15 \mathrm{~mL})$ and Hünig's base (5 mL) under Ar atmosphere; then $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(125 \mathrm{mg}, 0.1 \mathrm{mmol})$, $\mathrm{CuI}(20 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 1,4 -diiodobenzene $47(165 \mathrm{mg}, 0.50 \mathrm{mmol})$ were added to the mixture. The temperature was raised to $40^{\circ} \mathrm{C}$. After stirring for 20 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{ml})$, brine (50 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ / petroleum spirit 2:1) to give $\mathbf{4 8}$ as a dark red oil ($405 \mathrm{mg}, 67 \%$). Anal. Calcd $\left(\mathrm{C}_{68} \mathrm{H}_{82} \mathrm{O}_{8} \mathrm{~S}_{4} \mathrm{Si}_{2}\right)$: C, $67.40 ; \mathrm{H}, 6.82$. Found: C, 67.14; H, 6.90. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.57(\mathrm{~s}, 4 \mathrm{H}), 7.51(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H}), 4.19(2 \mathrm{x} \mathrm{t}, J=6.7 \mathrm{~Hz}, 8 \mathrm{H})$, $1.76-1,68(\mathrm{~m}, 8 \mathrm{H}), 1.16(\mathrm{~s}, 42 \mathrm{H}), 0.97(2 \mathrm{x} \mathrm{t}, J=7.4 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 160.20,159.91,138.38,134.62$, 133.37, 132.24, 131.95, 129.87, 129.65, 128.14, $123.70,123.60$, $122.31,113.12,105.09,99.71,91.47,91.45,68.94,68.84,22.36,22.32$, 19.05, 11.92, 10.64, 10.62. MS (MALDI) m/z: $1211[\mathrm{M}+\mathrm{H}]^{+}$.

Compound 49. Compound 48 ($100 \mathrm{mg}, 0.0825 \mathrm{mmol}$) was dissolved in THF (3 ml) and two drops of $\mathrm{H}_{2} \mathrm{O}$ were added, followed by $\mathrm{Bu}_{4} \mathrm{NF}(53 \mathrm{mg}, 0.20 \mathrm{mmol}$). After stirring for 30 min , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and filtered on a short plug $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and concentrated under reduced pressure to an orange oil ($70 \mathrm{mg}, 94 \%$), which was immediately used for further reaction. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.56(\mathrm{~s}, 4 \mathrm{H}), 7.50(\mathrm{~d}, J$ $=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 2 \mathrm{H}), 4.19(2 \mathrm{x}$ $\mathrm{t}, J=6.7 \mathrm{~Hz}, 8 \mathrm{H}), 1.75-1,67(\mathrm{~m}, 8 \mathrm{H}), 0.97,0.97(2 \mathrm{xt}, J=7.4 \mathrm{~Hz}, 12 \mathrm{H})$.

Compound 11. $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(6.5 \mathrm{mg}, 9 \mu \mathrm{~mol})$ was mixed with Ar degassed Hünig's base (3 mL) and stirred for 10 min under Ar atmosphere, followed by addition of compound 23 (178 mg ; 0.64 mmol) and $\mathrm{CuI}(2.5 \mathrm{mg}, 0.013 \mathrm{mmol})$. Compound $49(70 \mathrm{mg}, 0.078 \mathrm{mmol})$ was dissolved in Ar degassed dry THF (4 mL) and was transferred via cannula into the reaction mixture. After stirring for 2.5 h , the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, brine (50 mL), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The residue was purified by repeated flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent $1 \% \mathrm{EtOAc}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, last flash column was 6 cm and neat $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used as the eluent) to furnish the product as a thick orange oil ($28 \mathrm{mg}, 30 \%$). Mp $168-170{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.59-7.54(\mathrm{~m}, 12 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.00$ (s, 2H), $4.20(2 \mathrm{xt}, J=6.7 \mathrm{~Hz}, 8 \mathrm{H}), 2.43(\mathrm{~s}, 6 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 8 \mathrm{H}), 0.98(2 \mathrm{xt}, J=7.4 \mathrm{~Hz}$, $12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 193.72,160.10,159.92,138.03,135.00,134.96$, 133.30, 132.56, 132.26, 131.73, 130.11, 129.83, 129.53, 128.39, 124.47, 124.00, 123.60, 121.62, 112.91, $96.35,91.68,91.47,89.45,68.94,68.86,30.71,22.35,22.33,10.66$; one signal missing. MS (MALDI) $m / z: 1199[\mathrm{M}+\mathrm{H}]^{+}$. HR-MS (MALDI) $m / z: 1198.2021[\mathrm{M}]^{+}$; calcd for $\mathrm{C}_{66} \mathrm{H}_{54} \mathrm{O}_{10} \mathrm{~S}_{6}^{+}: 1198.2036$.

Compound 12a. A degassed suspension of terephthalaldehyde 50 ($200 \mathrm{mg}, 1.49 \mathrm{mmol}$), thione 51a ($1.818 \mathrm{mg}, 5.97 \mathrm{mmol}$) and $\mathrm{P}(\mathrm{OEt})_{3}(8 \mathrm{~mL})$ was heated to $110{ }^{\circ} \mathrm{C}$ under an Ar atmosphere. The mixture turned into a red color and most of the solids dissolved before a yellow solid started to form. After stirring for about 150 min , the suspension was allowed to cool to rt and $\mathrm{MeOH}(25 \mathrm{~mL})$ was added to precipitate more of the product and help remove the pungent phosphite. The solid was isolated by filtration and washed with $\mathrm{MeOH}(25 \mathrm{~mL}$) and petroleum spirit ($3 \times 30 \mathrm{~mL}$ or until the phosphite smell was gone) to give a dark orangeyellow colored solid which was not quite pure (according to NMR). The solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, initially $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then a gradient to $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / EtOAc 1:1). First there was a yellow band, followed by a darker orange band, which contained the product 12a ($686 \mathrm{mg}, 71 \%$) as an orange-yellow solid. Mp 141.5$144{ }^{\circ} \mathrm{C}$ (darkens and melts). Anal. Calcd $\left(\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{~S}_{8}\right)$: C, 48.27; H, 3.43; N, 8.66. Found: C, 48.07; H, 2.96; N, 8.51. IR(ATR, $\left.\mathrm{cm}^{-1}\right): v=2990 \mathrm{w}, 2953 \mathrm{w}, 2928 \mathrm{w}, 2249 \mathrm{~m}(\mathrm{CN}), 1569 \mathrm{~s}$, $1547 \mathrm{~m}, 1505 \mathrm{~m}, 1410 \mathrm{~s}, 1322 \mathrm{~m}, 1278 \mathrm{~m}, 1232 \mathrm{~m}, 1209 \mathrm{~m}, 1165 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20(\mathrm{~s}, 4 \mathrm{H}), 6.50(\mathrm{~s}, 2 \mathrm{H}), 3.12-3.08(\mathrm{~m}, 8 \mathrm{H}), 2.79-2.74(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta 133.92,130.02,127.88,127.31,125.16,117.63,117.54,116.36,31.23,31.19$, 19.13, 19.08. MS (MALDI) $m / z: 646[M]^{+}$.

Compound 12b. A degassed suspension of terephthalaldehyde $50(100 \mathrm{mg}, 0.75 \mathrm{mmol})$, thione 51b ($791 \mathrm{mg}, 2.99 \mathrm{mmol}$) and $\mathrm{P}(\mathrm{OEt})_{3}(4 \mathrm{~mL})$ was heated to $110{ }^{\circ} \mathrm{C}$ under an Ar atmosphere. The solution turned a red color and most of the solids dissolved before a yellow precipitate started to form. After stirring for about 150 min , the suspension was allowed to cool to rt and $\mathrm{MeOH}(15 \mathrm{~mL})$ was added to precipitate more compound. The solid was filtered and washed with $\mathrm{MeOH}(15 \mathrm{~mL})$ and petroleum spirit ($3 \times 20 \mathrm{~mL}$ or until the pungent phosphite smell was gone) to give an orange-yellow colored solid which contains some minor impurities. This crude compound can be purified by flash column chromatography (SiO_{2}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). There were two minor yellow bands before the major yellow band (closely followed by a minor orange band) which contained $\mathbf{1 2 b}$ as a yellow solid ($339 \mathrm{mg}, 80 \%$). Mp 141.5$143.5^{\circ} \mathrm{C}$ (melts and darkens). Anal. Calcd $\left(\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}_{8}\right)$: C, $46.44 ; \mathrm{H}, 3.54 ; \mathrm{N}, 4.92$. Found: C, $46.00 ; \mathrm{H}, 3.25 ; \mathrm{N}, 4.86$. IR(ATR, $\left.\mathrm{cm}^{-1}\right): v=3020 \mathrm{w}, 2990 \mathrm{w}, 22920 \mathrm{~m}, 2248 \mathrm{~m}(\mathrm{CN})$, $1568 \mathrm{vs}, 1545 \mathrm{~s}, 1504 \mathrm{~s}, 1494 \mathrm{~s}, 1411 \mathrm{~s}, 1339 \mathrm{~m}, 1317 \mathrm{~m}, 1281 \mathrm{~m}, 1229 \mathrm{~m}, 1213 \mathrm{~m}, 1183 \mathrm{w}, 1165 \mathrm{w}$, $1135 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 7.22-7.21(\mathrm{~m}, 4 \mathrm{H}), 6.50 \mathrm{Br}, 6.49 \mathrm{Br}(2 \mathrm{x} \mathrm{s}, 2 \mathrm{H})$, $3.04 / 3.04(2 \mathrm{xt}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.73(2 \mathrm{x} \mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.49,2.48(2 \mathrm{x} \mathrm{s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 135.20,135.16,134.31,134.27,132.74,132.72,131.77,131.76$, 131.62, 131.61, 127.50, 120.77, 120.72, 118.33, 118.26, 117.67, 117.64, 115.54, 115.38, 31.74, 19.44, 19.31, 19.19. MS (MALDI) m/z: 568 [M] ${ }^{+}$.

Compound 12c. A Schlenk flask containing a degassed solution of 12a ($50 \mathrm{mg}, 0.077 \mathrm{mmol}$) in DMF (7 mL) was treated with $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ solution $(0.98 \mathrm{~mL}, 0.165 \mathrm{M}$ in $\mathrm{PrOH}, 0.162$ mmol) over a period of 90 s and the yellow solution turned into a bronze-red color. After stirring for 20 min , acetyl chloride ($16 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$) was added and the solution immediately turned orange, and material started to precipitate. After stirring for 5 min , $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}$) was added and the solution was washed with water (ca. $5-10 \times 50 \mathrm{~mL}$ to remove DMF), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash column chromatography (SiO_{2}, gradient 1-10 \% EtOAc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave 12c as a dark yellow solid ($40 \mathrm{mg}, 83 \%$). Mp ca. $165-167^{\circ} \mathrm{C}$ (darkens at $155{ }^{\circ} \mathrm{C}$). Anal. Calcd $\left(\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{8}\right)$: C, 46.12; H, 3.23; N, 4.48. Found: C, 45.84; H, 2.90; N, 4.44. IR(ATR, cm^{-1}): $v=3022 \mathrm{vw}, 2987 \mathrm{vw}, 2956 \mathrm{vw}, 2924 \mathrm{w}$, $2853 \mathrm{vw}, 2249 \mathrm{w}(\mathrm{CN}), 1727 \mathrm{vs}, 1708 \mathrm{vs}(2 \mathrm{xCO}), 1569 \mathrm{vs}, 1546 \mathrm{~m}, 1506 \mathrm{~m}, 1413 \mathrm{~s}, 1352 \mathrm{~m}$, $1324 \mathrm{w}, 1281 \mathrm{~m}, 1229 \mathrm{w}, 1213 \mathrm{w}, 1165 \mathrm{w}, 1113 \mathrm{vs} .{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.23,7.21$, $7.21,7.18(4 \mathrm{x} \mathrm{s}$ of different isomers, 4 H$), 6.51,6.51,6.50,6.50(4 \mathrm{x} \mathrm{s}$ of different isomers, $2 \mathrm{H}), 3.03,3.03(2 \mathrm{xt}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.71-2.66(\mathrm{~m}, 4 \mathrm{H}), 2.44(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 191.69,191.67,191.45,134.32,134.30,134.26,132.53,131.46,131.39,131.35$,

Compound 12d. To a solution of 12b ($61 \mathrm{mg}, 0.11 \mathrm{mmol}$) in DMF (10 mL) was added a solution of sodium propoxide ($0.50 \mathrm{~mL}, 0.652 \mathrm{M}$ in $1-\mathrm{PrOH}, 0.33 \mathrm{mmol}$). The solution immediately turned red and was stirred for 30 min at rt . Acetyl chloride ($32 \mu \mathrm{~L}, 0.45 \mathrm{mmol}$) was added whereupon the color changed to light orange. After stirring for $5 \mathrm{~min}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(150 \mathrm{~mL})$ was added and the standard washing procedure used. Purification by flash column chromatography (SiO_{2}, gradient $50-70 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in petroleum spirit) and the first major yellow band gave $\mathbf{1 2 d}$ as a yellow solid ($45 \mathrm{mg}, 77 \%$). Mp ca. $168{ }^{\circ} \mathrm{C}$ (darkens at $162^{\circ} \mathrm{C}$). Anal. Calcd $\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}_{8}\right)$: C, 43.92; H, 3.32. Found: C, 44.30; H, 3.22. IR(ATR, $\left.\mathrm{cm}^{-1}\right): v=$ 3020w, 2993w, 2920m, 2851w, 1729vs, 1708vs (2 x CO), 1598w, 1568s, 1545s, 1503m, $1410 \mathrm{~m}, 1351 \mathrm{~m}, 1316 \mathrm{~m}, 1282 \mathrm{w}, 1219 \mathrm{~m}, 1184 \mathrm{w}, 1166 \mathrm{w}, 1110 \mathrm{vs} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.24,7.21,7.20,7.18(4 \mathrm{x} \mathrm{s}, 4 \mathrm{H}), 6.50,6.49,6.49,6.47(4 \mathrm{x} \mathrm{s}, 2 \mathrm{H}), 2.44,2.44 \mathrm{br}$, 2.43 ($3 \mathrm{x} \mathrm{s}, 6 \mathrm{H}$), 2.42, $2.42 \mathrm{br}, 2.41$ ($3 \mathrm{x} \mathrm{s}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 191.98, 191.62, 137.67, 135.95, 135.93, 134.36, 134.32, 134.28, 134.24, 132.18, 132.15, 132.12, $127.52,127.49,127.45,127.43,116.27,116.16,115.32,115.31,115.14,115.13,113.77$, $30.26,30.21,19.45,19.43,19.29$; pentane residuals observed in NMR spectra. MS (MALDI) $m / z: 546[\mathrm{M}]^{+}$.

Compound 52b. To a stirring degassed solution of 52a ($1.0 \mathrm{~g}, 2.05 \mathrm{mmol}$) in DMF (20 mL) was added a degassed methanolic solution (ca. 5 mL) containing $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(379 \mathrm{mg}, 2.26$ mmol) dropwise over 1-2 min, upon which the color of the solution darkened. After stirring for 20 min , $\mathrm{MeI}(0.64 \mathrm{~mL}, 10.25 \mathrm{mmol})$ was added and the solution rapidly lightened to a transparent dark orange color. After 5 min , the solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. 100 mL) and washed with water (ca. $10 \times 100 \mathrm{~mL}$ to remove the DMF). The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum spirit / $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 3\right)$ and the first minor yellow-brown fraction gave 52e ($25 \mathrm{mg}, 3 \%$) as an orange-brown oil. The next major yellow-brown band gave 52b as a tan yellow solid ($826 \mathrm{mg}, 90 \%$) which had a slightly unpleasant sulphurous odour. Data 52b: Mp 94-96 ${ }^{\circ} \mathrm{C}$. Anal. Calcd $\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{INS}_{4}\right)$: C, 37.42; H, 2.69; N, 3.12. Found: C, 37.55; H, 2.55; N, 3.06. IR(ATR, $\left.\mathrm{cm}^{-1}\right): v=3044 \mathrm{vw}, 2990 \mathrm{vw}$, 2956vw, 2921w, 2864vw, 2247w (CN), 2228w (CN), 1567vs, 1541vs, 1491s, 1477s, 1420vs,
$1390 \mathrm{vs}, 1314 \mathrm{~s}, 1272 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.94,6.92$ (2 x d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.40,6.39(2 \mathrm{x} \mathrm{s}, 1 \mathrm{H}), 3.02(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) 2.72(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, 2.48, $2.46(2 \mathrm{x} \mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 137.73, 135.51, 135.49, 134.95, 132.60, $132.46,132.38,128.59,120.05,117.70,117.63,116.83,114.60,114.49,91.11,91.07,31.16$, 19.12, 18.88, 18.87, 18.85. MS (FAB) $m / z: 449[\mathrm{M}]^{+}$.

Compound 52d. To a stirring solution of $\mathbf{5 2 b}$ ($100 \mathrm{mg}, 0.22 \mathrm{mmol}$) in dry, degassed DMF (5 mL) was added KOt - Bu ($37 \mathrm{mg}, 0.33 \mathrm{mmol}$), which caused the color of the solution to change from faint yellow to a darker yellow-brown. After $15 \mathrm{~min}, \mathrm{AcCl}(32 \mu \mathrm{~L}, 0.44 \mathrm{mmol})$ was added which caused the solution to turn into a light orange color. After stirring for 5 min , the reaction was quenched by first adding $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and then water $(100 \mathrm{~mL})$. The organic phase was washed with water (ca. $50 \mathrm{~mL} \times 5-10$) to remove the DMF and then dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the crude oily solid was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, initially $2: 3$ then $1: 1$ petroleum spirit / $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. There was a faint band before a major pale yellow band, which contained the desired compound 52d (86 mg , 88%) as an oil, which solidified to a pale yellow solid. Mp $90-92^{\circ} \mathrm{C} . \operatorname{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): v=$ 2995w, 2918m, 2851w, 1728vs, 1704vs (2 x CO), 1570vs, 1543vs, 1494m, 1479s, 1420m, $1395 \mathrm{~s}, 1349 \mathrm{~m}, 1315 \mathrm{~m}, 1203 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.69-7.67(\mathrm{~m}, 4 \mathrm{H}), 6.99-$ $6.98(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.41$ (s, 3H), 2.41 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 191.84, 191.49, 138.12, 138.09, 137.72, 136.16, 136.10, 135.77, 133.91, 133.89, 129.02, 128.96, 116.45, 114.36, 114.16, $113.73,91.11,91.06,30.28,30.22,19.45,19.29$. HR-MS (MALDI) $\mathrm{m} / \mathrm{z}: 437.8732$ [M] ${ }^{+}$; calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{IOS}_{4}^{+}$: 437.8732.

Compound 52e. To a stirring degassed solution of 52a (200 mg, 0.41 mmol) in DMF (5 mL) was added $\mathrm{KOt} t \mathrm{Bu}$ ($184 \mathrm{mg}, 1.64 \mathrm{mmol}$), which caused the solution to instantly turn from transparent dark orange to dark cherry red. After stirring for 15 min , MeI ($0.15 \mathrm{~mL}, 2.46$ mmol) was added and the solution turned orange and a white precipitate also formed. After 5 min , the solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{ca}$.50 mL) and was washed with water (up to 10 x 50 mL). The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum spirit / $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1$) and the first yellow-brown fraction gave the product 52e as an
orange colored viscous oil ($141 \mathrm{mg}, 84 \%$), which had a slight sulphurous odour. IR(ATR, cm^{-} $\left.{ }^{1}\right): v=3042 \mathrm{vw}, 2988 \mathrm{w}, 2915 \mathrm{~m}, 2848 \mathrm{vw}, 2821 \mathrm{vw}, 1568 \mathrm{vs}, 1542 \mathrm{vs}, 1496 \mathrm{~s}, 1478 \mathrm{~s}, 1418 \mathrm{~s}$, $1391 \mathrm{~s}, 1311 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 137.64, 135.79, $133.70,128.53,127.65,124.38,113.61,90.63,19.17,19.03$. MS (FAB) $m / z: 410[\mathrm{M}]^{+}, 411$ $[\mathrm{M}+\mathrm{H}]^{+}$. HR-MS (MALDI) $m / z: 409.8784[\mathrm{M}]^{+}$; calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{IS}_{4}{ }^{+}: 409.8783$.

The coupling of VI, incorporating solubilizing pentyl groups, with trimethylsilyacetylene was quite difficult; methods with THF as solvent and minimal amine base only gave, even upon heating, trace amounts of VII, and some of the monoethynyl derivative VIII, along with mostly starting material VI. Instead, by heating in $\mathrm{PhMe} / \mathrm{NEt}_{3}$ with $\mathrm{Pd}(\mathrm{OAc})_{2}, d p p f, \mathrm{PPh}_{3}$ and CuI, the reaction slowly proceeded to completion. Most couplings reactions in literature involving silyl-protected acetylenes with diiodobenzenes containing alkyl chains (greater than butyl) use amine bases in high concentration or as neat solvent: a) Kukula, H.; Veit, S.; Godt, A. Eur. J. Org. Chem. 1999, 277-286. b) Nielsen, K. T.; Spanggaard, H.; Krebs, F. C. Macromolecules 2005, 38, 1180-1189. c) Lebouch, N.; Garreau, S.; Louarn, G.; Belletête, M.; Durocher, G.; Leclerc, M. Macromolecules 2005, 38, 9631-9637. d) Werz, D. B.; Fischer, F. R.; Kornmayer, S. C.; Rominger, F.; Gleiter, R. J. Org. Chem. 2008, 73, 8021-8029. e) Mössinger, D.; Jester, S.-S.; Sigmund, E.; Müller, U.; Höger, S. Macromolecules 2009, 42, 7974-7978. f) Jenny, N. M.; Wang, H.; Neuburger, M.; Fucjs, H.; Chi, L.; Mayor, M. Eur. J. Org. Chem. 2013, 2738-2747.

Compounds VII and VIII. To a mixture of VI ($355 \mathrm{mg}, 0.76 \mathrm{mmol}$), CuI ($14 \mathrm{mg}, 0.076$), $\mathrm{Pd}(\mathrm{OAc})_{2}(17 \mathrm{mg}, 0.076 \mathrm{mmol})$, dppf ($42 \mathrm{mg}, 0.76 \mathrm{mmol}$) and $\mathrm{PPh}_{3}(99 \mathrm{mg}, 0.38 \mathrm{mmol})$ was added a degassed solution of toluene (35 mL), $\mathrm{NEt}_{3}(14 \mathrm{~mL})$ and trimethylsilylacetylene $(0.63 \mathrm{~mL}, 4.53 \mathrm{mmol})$. The reaction was performed under two different reaction conditions: (a) to $85^{\circ} \mathrm{C}$ and stirred for 12 h in a screw cap Schlenck tube or (b) $45^{\circ} \mathrm{C}$ for 3 d . The reaction was then monitored by TLC (petroleum spirit $40-65^{\circ} \mathrm{C}$, showing no more starting material or mono adduct) and the solvent was removed. The residue was dissolved in heptanes and filtered through cotton wool. This solution was then reduced to $2-3 \mathrm{~mL}$ and purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum spirit). The first UV active bands in order of appearance can be either starting material VI, $\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}$, the mono adduct VIII $\left(\mathrm{R}_{\mathrm{f}}=0.6\right)$ and VII as the major band $\left(\mathrm{R}_{\mathrm{f}}=0.4\right.$ in petroleum spirit $\left.40-65^{\circ} \mathrm{C}\right)$. The product VII was obtained as a clear oil which quickly solidified to an off-white waxy crystalline solid ((a): $220 \mathrm{mg}, 71 \%$ at $85^{\circ} \mathrm{C}$ for 12 h ; (b) 83% at $45^{\circ} \mathrm{C}$ for 3 d). Data for VII: Mp 44-48 ${ }^{\circ} \mathrm{C}$. Anal. Calcd $\left(\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{Si}_{2}\right)$: C, 76.02; H, 10.31. Found: C, 76.08; H, 10.63. IR(ATR, $\left.\mathrm{cm}^{-1}\right): v=2955 \mathrm{~s}, 2927 \mathrm{~s}, 2857 \mathrm{~m}, 2152 \mathrm{~s}(\mathrm{C} \equiv \mathrm{C}), 1487 \mathrm{~m}, 1464 \mathrm{~m}, 1428 \mathrm{~m}, 1374 \mathrm{~m}$, $1248 \mathrm{~s}, 1197 \mathrm{~m}, 894 \mathrm{~m}, 863 \mathrm{~s}, 836 \mathrm{vs}, 758 \mathrm{~s}, 731 \mathrm{~s}, 698 \mathrm{~s}, 623 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.25(\mathrm{~s}, 2 \mathrm{H}), 2.70-2.66(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.33(\mathrm{~m}, 8 \mathrm{H}), 0.90(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 6 \mathrm{H}), 0.25(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.80,132.61,122.70,104.08$, 99.03, 34.22, 31.92, 30.43, 22.69, 14.23, 0.12. MS (ESP) m/z: $411[\mathrm{M}+\mathrm{H}]^{+}, 433[\mathrm{M}+\mathrm{Na}]^{+}$. MS (FAB) $m / z: 410[\mathrm{M}]^{+}$. The monoadduct VIII can be contaminated with $\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}$ when isolated by column chromatography, but this impurity can be
removed by sublimation or even on the rotary evaporator at about $60^{\circ} \mathrm{C}$, leaving VIII as a colorless oil in the flask. Data for VIII: IR(ATR, cm^{-1}): $v=2955 \mathrm{~s}, 2926 \mathrm{~s}, 2857 \mathrm{~m}, 2153 \mathrm{~m}$ $(\mathrm{C} \equiv \mathrm{C}), 1466 \mathrm{~m}, 1374 \mathrm{~m}, 1248 \mathrm{~s}, 1217 \mathrm{~m}, 1140 \mathrm{~m}, 890 \mathrm{~m}, 841 \mathrm{vs}, 759 \mathrm{~s}, 726 \mathrm{~m}, 699 \mathrm{~m}, 663 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 2.66-2.59(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.53(\mathrm{~m}$, should be 4 H but on top of the $\mathrm{H}_{2} \mathrm{O}$ signal), $1.40-1.30(\mathrm{~m}, 8 \mathrm{H}), 0.91,0.90(2 \mathrm{xt}, J=7.0 \mathrm{~Hz}$, $6 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.76,142.78,139.53,132.58,122.74$, 103.47, 101.27, 98.68, 40.27, 33.97, 31.90, 31.69, 30.41, 30.07, 22.65 (2 overlapping signals), $14.22,14.19,0.09$. HR-MS (MALDI) $m / z: 440.1391[\mathrm{M}]^{+}$; calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{ISi}^{+}$: 440.1391 .

Compound 53. General procedure for desilylation of VII to 53: Compound VII (0.1 mmol) was dissolved in THF (2 mL) and $\mathrm{MeOH}(3 \mathrm{~mL}) . \mathrm{K}_{2} \mathrm{CO}_{3}(1.5 \mathrm{mmol})$ was added, and the mixture was stirred for 15 min before the reaction was complete (TLC: product has a slightly higher R_{f} than starting material in petroleum spirit). The mixture was passed through a plug of $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Removal of the solvent gave the terminal alkyne, which was immediately used for further reaction because of instability. When concentrated and heated above $35^{\circ} \mathrm{C}$ or when neat for a short while, the oily film turned a purple color which darkened in time. This color can be removed by passing the compound through a short plug (SiO_{2}, petroleum spirit). IR(ATR, $\left.\mathrm{cm}^{-1}\right): v=3311 \mathrm{~m}(\mathrm{C} \equiv \mathrm{CH}), 2955 \mathrm{~s}, 2925 \mathrm{vs}, 2857 \mathrm{~s}, 2104 \mathrm{w}(\mathrm{C} \equiv \mathrm{C}), 1489 \mathrm{~m}, 1465 \mathrm{~m}$, $1378 \mathrm{w}, 1211 \mathrm{~m}, 897 \mathrm{~m}, 644 \mathrm{~m}, 606 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~s}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 2 \mathrm{H})$, $2.73-2.70(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.32(\mathrm{~m}, 8 \mathrm{H}), 0.92-0.89(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.84,133.09,122.06,82.40,81.67,33.88,31.75,30.30,22.63,14.17$. MS (GC-MS) m/z: 266 [M] ${ }^{+}$.

Compound 54. Compound VII ($136 \mathrm{mg}, 0.331 \mathrm{mmol}$) was desilylated to the unstable bisacetylene 53, as described above, and the residue was reacted straight away. To a Schlenk flask containing the residue of $\mathbf{5 3}$ was added 4-iodobenzaldehyde $\mathbf{2 4}(192 \mathrm{mg}, 0.829 \mathrm{mmol})$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(38 \mathrm{mg}, 0.033 \mathrm{mmol})$ and $\mathrm{CuI}(6.3 \mathrm{mg}, 0.033 \mathrm{mmol})$ and then dried and degassed $\mathrm{NH}(i-\mathrm{Pr})_{2}(20 \mathrm{~mL})$ was added. The compounds took some to time to dissolve but after 5 h of stirring at rt, $\mathbf{5 3}$ had been consumed (TLC). After stirring for 20 h , the solvent was removed and the residue was loaded onto a flash column $\left(\mathrm{SiO}_{2}\right.$, initially petroleum spirit then a
gradient up to petroleum spirit / $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:1). The first major band was the starting material 24, followed by a minor band and the third band, which was highly luminescent under UV light, gave 54 ($112 \mathrm{mg}, 71 \%$) as an off-white waxy solid. Mp 115-117 ${ }^{\circ} \mathrm{C}$. Anal. Calcd $\left(\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{O}_{2}\right)$: C, 86.04; H, 7.22. Found: C, 85.98; H, 7.14. IR(ATR, $\left.\mathrm{cm}^{-1}\right): v=2951 \mathrm{~m}, 2923 \mathrm{~m}$, 2855m, 2814w, 2726w (CHO), 2211w (C \equiv C), 1697vs (CHO), 1597vs, 1560m, 1509w, 1485w, 1456w, 1409w, 1384w, 1301m, 1285w, 1204s, 1166m, 1135w. ${ }^{1}$ H NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 10.03(\mathrm{~s}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.41(\mathrm{~s}, 2 \mathrm{H}), 2.82$ (dd, $J=8.9,6.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.37(\mathrm{~m}, 8 \mathrm{H}), 0.93-0.90(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.49,142.81,135.59,132.78,132.09,129.79,129.76,122.64$, $93.48,92.50,34.23,31.85,30.48,22.69,14.20$. MS (FAB) $m / z: 474[\mathrm{M}]^{+}, 475[\mathrm{M}+\mathrm{H}]^{+}$.

Compound 13a. Method A: Compound VII ($118 \mathrm{mg}, 0.287 \mathrm{mmol}$) was desilylated to the bisacetylene 53, as described above. The crude diyne was dissolved in degassed THF (6 mL) and $\mathrm{NH}(i-\mathrm{Pr})_{2}(2.5 \mathrm{~mL})$. Compound 52a ($\left.280 \mathrm{mg}, 0.574 \mathrm{mmol}\right), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(10 \mathrm{mg}, 0.014$ mmol) and $\mathrm{CuI}(3 \mathrm{mg}, 0.016 \mathrm{mmol})$ were added. The mixture was stirred for 20 h including 4 h of sonication. The reaction did not look like it was proceeding well so the solvent was evaporated, and the residue was dissolved in degassed $\mathrm{NEt}_{3} . \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(10 \mathrm{mg}, 0.014$ mmol) and $\mathrm{CuI}(3 \mathrm{mg}, 0.016 \mathrm{mmol})$ were added. After 6 h of stirring, the solvent was removed. Flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave compound 13a as a yellow solid ($31 \mathrm{mg}, 11 \%$).

Compound 13a. Method B: A suspension of thione 51a ($180 \mathrm{mg}, 0.590 \mathrm{mmol}$) and compound 54 ($70 \mathrm{mg}, 0.147 \mathrm{mmol}$) in $\mathrm{P}(\mathrm{OEt})_{3}(3 \mathrm{~mL})$ was degassed with Ar for 15 min and kept under an Ar atmosphere and then heated to $110^{\circ} \mathrm{C}$. Within 10 min , a yellow precipitate started to form; the reaction was stirred for 3 h and then allowed to cool to ambient temperature. MeOH (ca. 15 mL) was added to the suspension which was then poured onto a
sintered glass funnel (pore 3) and washed with $\mathrm{MeOH}(2 \times 15 \mathrm{~mL}$) and petroleum (3×15 mL) to remove the malodourous $\mathrm{P}(\mathrm{OEt})_{3}$. It is recommended to dissolve the near pure solid in minimal $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then triturate the compound in stirring MeOH (ca. 60 mL) before collecting the solid and purifying this by flash column chromatography (SiO_{2}, load in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then increase to 1% EtOAc to remove the first minor yellow band and then increased to 3% to remove the major yellow band). The solvent was removed to give 13a as a bright yellow solid ($117 \mathrm{mg}, 80 \%$). Mp $170-172{ }^{\circ} \mathrm{C}$. Anal. Calcd $\left(\mathrm{C}_{52} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{~S}_{8}\right)$: C, 63.25 ; H, 5.10; N, 5.67. Found: C, 63.14; H, 4.78; N, 5.65. IR(ATR, $\left.\mathrm{cm}^{-1}\right): v=3026 \mathrm{vw}, 2952 \mathrm{~s}, 2927 \mathrm{~s}, 2865 \mathrm{~m}, 2251 \mathrm{~m}$ (CN), 2201vw (C $\equiv \mathrm{C}$), $1599 \mathrm{vw}, 1567 \mathrm{vs}, 1540 \mathrm{~s}, 1509 \mathrm{~s}, 1495 \mathrm{~m}, 1460 \mathrm{~m}, 1409 \mathrm{~s}, 1377 \mathrm{w}$, $1324 \mathrm{~m}, 1279 \mathrm{~m}, 1232 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.53(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}$), 7.38 (s, $2 \mathrm{H}), 7.23(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.56(\mathrm{~s}, 2 \mathrm{H}), 3.12,3.12(2 \mathrm{x} \mathrm{t}, J=7.0 \mathrm{~Hz}, 8 \mathrm{H}), 2.85-2.75$ $(\mathrm{m}, 12 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 8 \mathrm{H}), 0.96-0.86(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 142.92,136.28,132.82,132.28,132.20,128.53,127.38,125.76,123.09$, $121.54,118.20,118.13,115.97,94.63,89.83,34.61,32.30,31.83,31.79,30.93,23.14,19.52$, 19.48, 14.42. MS (FAB) $m / z: 986[\mathrm{M}]^{+}$.

Compound 13b. To a mixture of $\mathbf{5 3}(60 \mathrm{mg}, 0.23 \mathrm{mmol})$, $\mathbf{5 2 b}(246 \mathrm{mg}, 0.55 \mathrm{mmol}), \mathrm{CuI}(4.3$ $\mathrm{mg}, 0.023 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(5.1 \mathrm{mg}, 0.023 \mathrm{mmol})$, dppf $(13 \mathrm{mg}, 0.023 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(30$ $\mathrm{mg}, 0.11 \mathrm{mmol}$) was added a degassed solution of toluene (12 mL) and $\mathrm{NEt}_{3}(4 \mathrm{~mL})$. The solution was stirred at rt for 17 h , and then it was sonicated at $45^{\circ} \mathrm{C}$ for 24 hr . The solvent was removed and the residue was purified by flash column chromatography (SiO_{2}, gradient from 1:1 to 1:2 petroleum spirit / $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). The first major band was the starting material 52b, then a minor yellow band followed major yellow band which contained slightly crude 13b. The residue was dissolved in minimal $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. 10 mL) and then was triturated in MeOH (ca. 60 mL) to give a bright yellow precipitate ($103 \mathrm{mg}, 50 \%$). Mp $134^{\circ} \mathrm{C}$ starts to melt, 140$143{ }^{\circ} \mathrm{C}$ finishes melting and darkens. Anal. Calcd $\left(\mathrm{C}_{48} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{~S}_{8}\right)$: C, 63.39 ; H, 5.32; N, 3.08. Found: C, $63.16 ; \mathrm{H}, 5.33$; N, 3.00. IR(ATR, $\left.\mathrm{cm}^{-1}\right): v=3028 \mathrm{vw}, 2952 \mathrm{~m}, 2925 \mathrm{~s}, 2857 \mathrm{~m}$, 2248w (CN), 2190vw (C $=\mathrm{C}$), 1599w, 1567vs, 1541s, 1509 s , 1465m, 1408s, 1320m, 1277m. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{~s}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 4 \mathrm{H}), 6.50(\mathrm{~s}$, $1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 3.06-3.03(\mathrm{~m}, 4 \mathrm{H}), 2.82-2.79(\mathrm{~m}, 4 \mathrm{H}), 2.75-2.72(\mathrm{~m}, 4 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H})$, $2.49(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.36(\mathrm{~m}, 8 \mathrm{H}), 0.93-0.90(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.35,135.88,135.12,132.60,132.57,132.44,132.41,131.81,126.86$, $122.66,121.05,121.00,117.74,117.66,116.96,115.17,115.03,94.30,89.49,34.26,31.90$, $31.21,30.46,22.72,19.18,18.91,18.88,14.25$. MS (MALDI) $m / z: 908[\mathrm{M}]^{+}$.

Compound 13c. A solution of 13a ($43 \mathrm{mg}, 0.044 \mathrm{mmol}$) in DMF (8 mL) was treated with a propanolic solution of $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.52 \mathrm{~mL}, 177 \mathrm{mM})$ over the period of 1 min upon which the yellow solution turned red and then black. After stirring for $25 \mathrm{~min}, \mathrm{AcCl}$ (ca. $9 \mu \mathrm{~L}, 0.13$ mmol) was added until the solution returned to a transparent yellow color and it was stirred for a further 5 min . The solution was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{ca} 50 \mathrm{~mL}$.$) and then washed$ with $\mathrm{H}_{2} \mathrm{O}$ (ca. 5-10 x 70 mL to remove the DMF from the organic phase). The yellow organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The yellow residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, the third yellow-orange band (major) gave the desired compound as a yellow solid ($15 \mathrm{mg}, 36 \%$). Mp $129-133{ }^{\circ} \mathrm{C}$ (decomp.). Anal. Calcd ($\mathrm{C}_{50} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{8}$): C, 62.21 ; H, 5.01 ; N, 2.90. Found: C, 62.38; H, $4.84 ; \mathrm{N}, 2.83$. IR(ATR, $\left.\mathrm{cm}^{-1}\right): v=3029 \mathrm{vw}, 2953 \mathrm{~s}, 2926 \mathrm{~s}, 2856 \mathrm{~s}, 2251 \mathrm{vw}(\mathrm{CN}), 2204 \mathrm{vw}$ (C $=\mathrm{C}), 1730 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1709 \mathrm{~s}(\mathrm{C}=\mathrm{O}), 1598 \mathrm{w}, 1567 \mathrm{vs}, 1541 \mathrm{~s}, 1509 \mathrm{~s}, 1463 \mathrm{~m}, 1409 \mathrm{~m}, 1377 \mathrm{w}$, $1352 \mathrm{~m}, 1327 \mathrm{w}, 1277 \mathrm{~m}, 1233 \mathrm{w}, 1208 \mathrm{w}, 1186 \mathrm{w}, 1165 \mathrm{w}, 1113 \mathrm{vs} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 3.05(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.83-2.80(\mathrm{~m}, 4 \mathrm{H}), 2.71(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.45$ $(\mathrm{s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.38(\mathrm{~m}, 8 \mathrm{H}), 0.93-0.90(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 191.64, 191.41, 142.91, 136.36, 136.32, 133.07, 132.96, 132.81, $132.68,132.19,130.93,127.35,127.28,123.98$, 123.09, 122.08, 121.46, 121.40, 118.22, $118.17,115.63,115.52,94.66,89.77,34.61,32.31,31.95,31.89,30.93,30.39,30.34,23.14$, 19.22, 19.18, 14.42. HR-MS (MALDI) m/z: 964.1469 [M] ; calcd for $\mathrm{C}_{50} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{8}{ }^{+}$: 964.1476.

Compound 13d. To a stirred solution of 13b ($61 \mathrm{mg}, 0.067 \mathrm{mmol}$) in DMF (12 mL ; brief heating may be needed to get the compound into solution but it should be ensured that the solution is at ambient temperature when adding the base) was added KOt - Bu ($17 \mathrm{mg}, 0.148$ mmol). This caused the yellow colored solution to rapidly turn dark red. The solution was stirred for a further 12 min before $\mathrm{AcCl}(14.3 \mu \mathrm{~L}, 0.201 \mathrm{mmol})$ was added, reverting the solution back to a yellow color within 30 s . The solution was stirred for a further 10 min , it
was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. 50 mL) and then washed with $\mathrm{H}_{2} \mathrm{O}$ (approximately 5-10 times to remove the DMF from the organic phase). The yellow organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum spirit / $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:1) and the first yellow fraction gave 13d as a yellow solid ($38 \mathrm{mg}, 64 \%$), which had a slightly oily texture on glass. Mp 139$142{ }^{\circ} \mathrm{C}$ (decomposes to a black color and melts after $142{ }^{\circ} \mathrm{C}$). Anal. Calcd ($\mathrm{C}_{48} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{~S}_{8}$): C, 62.26 ; H, 5.22 . Found: C, 61.93 ; H, 4.86. IR(ATR, cm^{-1}): $v=3028 \mathrm{w}, 2953 \mathrm{~m}, 2924 \mathrm{~s}, 2855 \mathrm{~m}$, 2199vw (C=C), 1732s (C=O), 1710m (C=O), 1567s, 1540m, 1508m, 1457w, 1428w, 1408m, $1351 \mathrm{w}, 1273 \mathrm{w}, 1111 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.53$ $(\mathrm{s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 2.83-2.79(\mathrm{~m}, 4 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 6 \mathrm{H}), 1.72-1.69$ $(\mathrm{m}, 4 \mathrm{H}), 1.41-1.38(\mathrm{~m}, 8 \mathrm{H}), 0.93-0.90(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 191.88$, $191.52,142.89,137.84,136.59,136.54,135.94,134.03,134.01,132.79,132.16,132.13$, $127.28,127.21,123.10,123.09,121.17,121.08,116.61,114.85,114.66,113.89,94.74$, 89.66, 89.64, 34.62, 32.31, 30.94, 30.30, 30.24, 23.15, 19.48, 19.31, 14.42. MS (MALDI) $m / z: 886[\mathrm{M}]^{+}$.

Compound 14a. In a dried round-bottomed flask containing $26(75 \mathrm{mg}, 121 \mu \mathrm{~mol})$ and thione 51a (148 mg, $486 \mu \mathrm{~mol}$) under Ar atmosphere was added $\mathrm{P}(\mathrm{OEt})_{3}(1.5 \mathrm{~mL})$ degassed for 20 min . The suspension was heated to $110{ }^{\circ} \mathrm{C}$ for 3 h and then was allowed to cool to rt. Then $\mathrm{MeOH}(10 \mathrm{~mL})$ was added, causing product to crash out, and the solid was filtered and washed with $\mathrm{MeOH}(2 \times 10 \mathrm{~mL})$ and petroleum spirit $(2 \times 10 \mathrm{~mL})$. The crude was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 3 \% \mathrm{EtOAc}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and the major orange fraction gave 14a, but it contained a minor impurity so the residue was dissolved in minimal $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the addition of heptane caused the product to crash out. The solid was washed with heptane (2 x 10 mL), which gave pure product as an orange-red solid ($111 \mathrm{mg}, 81 \%$). Mp $71.2-72.5^{\circ} \mathrm{C}$. Anal. Calcd ($\mathrm{C}_{54} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{10}$): C, 57.21; H, 3.91; N, 4.94. Found: C, 57.05; H, 3.67; N, 4.92. IR(ATR, $\left.\mathrm{cm}^{-1}\right): v=2967 \mathrm{~m}, 2933 \mathrm{~m}, 2880 \mathrm{w}, 2855 \mathrm{w}, 2251 \mathrm{w}(\mathrm{CN}), 2205 \mathrm{w}(\mathrm{C} \equiv \mathrm{C}), 1709 \mathrm{vs}$ $\left(\mathrm{CO}_{2} \mathrm{R}\right), 1580 \mathrm{~s}$ sh, $1568 \mathrm{~s}, 1541 \mathrm{~s}, 1507 \mathrm{~m}, 1464 \mathrm{~m}, 1411 \mathrm{~m}, 1390 \mathrm{~m}, 1361 \mathrm{~m}, 1312 \mathrm{~m}, 1266 \mathrm{~s}$ sh, $1238 \mathrm{~s}, 1222 \mathrm{vs} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.53(\mathrm{~m}, 6 \mathrm{H}), 7.36(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.24(\mathrm{dd}, J=8.5,2.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 2 \mathrm{H}), 4.20,4.19(2 \mathrm{x} \mathrm{t}, J=6.7 \mathrm{~Hz}$, 4H), 3.12, $3.12(2 \mathrm{xt}, J=7.1 \mathrm{~Hz}, 8 \mathrm{H}), 2.78$, $2.77(2 \mathrm{xt}, J=7.1 \mathrm{~Hz}, 8 \mathrm{H}), 1.76-1.68(\mathrm{~m}$, $4 \mathrm{H}), 0.98,0.97(2 \mathrm{xt}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 160.14, 159.97, 137.87, $136.67,136.57,134.66,133.12,132.68,132.56,132.48,132.34,131.62,130.17,129.83$, $128.54,128.53,128.33,127.40,127.37,125.83,125.81,123.95,121.80,120.95,120.87$, $118.19,118.13,115.89,115.85,113.19,97.33,92.10,90.35,88.80,68.95,68.87,31.83$, $31.80,22.35,22.34,19.52,19.49,10.65 ; 7$ signals missing.

Compound 14b. A suspension of dialdehyde 26 ($67 \mathrm{mg}, 0.11 \mathrm{mmol}$), thione 51b (115 mg , $0.43 \mathrm{mmol})$ in $\mathrm{P}(\mathrm{OEt})_{3}(2.5 \mathrm{~mL})$ was degassed for 15 min with Ar and kept under an Ar atmosphere. The orange suspension was heated up to $110^{\circ} \mathrm{C}$, the solid dissolved and the mixture turned red. After stirring for 3 h , the reaction mixture was allowed to cool and an orange precipitate formed. $\mathrm{MeOH}(15 \mathrm{~mL})$ was added to the solution to cause more product to precipitate, it was filtered through a sintered glass funnel and washed with $\mathrm{MeOH}(2 \times 20$ mL) and petroleum spirit (3 x 20 mL). The precipitate was purified by column chromatography (SiO_{2}, gradient elution of EtOAc $0-3 \%$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and the major orange band gave 14b ($42 \mathrm{mg}, 37 \%$) as an orange solid. Anal. Calcd $\left(\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{10}\right)$: C, 56.89 ; H , 4.01; N, 2.65. Found: C, 56.61 ; H, 3.71; N, 2.70. IR(ATR, cm^{-1}): $3027 \mathrm{w}, 2965 \mathrm{~m}, 2922 \mathrm{~m}$, $2878 \mathrm{~m}, 2853 \mathrm{w}, 2250 \mathrm{w}(\mathrm{CN})$, 2205w (C $\equiv \mathrm{C}$), 1710s ($\mathrm{CO}_{2} \mathrm{Pr}$), 1564vs, 1539vs, 1505 s , 1464s, 1408 s , $1389 \mathrm{~m}, 1346 \mathrm{~m}, 1311 \mathrm{~m}, 1230 \mathrm{vs} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.60-7.48(\mathrm{~m}, 6 \mathrm{H})$, $7.35(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.54 / 6.52(2 \mathrm{x} \mathrm{s}, 2 \mathrm{H}), 4.20$, $4.19(2 \mathrm{xt}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.06,3.05(2 \mathrm{xt}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.74,2.74(2 \mathrm{x} \mathrm{t}, J=7.1 \mathrm{~Hz}$, $4 \mathrm{H}), 2.50(\mathrm{~s}, 6 \mathrm{H}), 1.80-1.63(\mathrm{~m}, 4 \mathrm{H}), 0.98,0.97(2 \mathrm{x} \mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 160.13,159.96,137.81,136.88,136.78,135.46,134.57,133.94,133.81$, 133.78 , 133.65, 133.09, 132.93, 132.90, 132.43, 132.34, 132.29, 131.63, 131.61, 130.17, 129.81, 128.29, 127.27, 127.25, 123.93, 121.80, 120.98, 120.94, 120.62, 120.56, 120.54, $120.48,118.31,118.24,117.78,117.76,115.06,115.02,114.90,114.86,113.22,97.43$, $92.19,90.24,88.70,68.94,68.85,31.79,31.78,22.35,22.33,19.46,19.33,19.20,10.65 . \mathrm{MS}$ (MALDI) $\mathrm{m} / \mathrm{z}: 1054$ [M] ${ }^{+}$.

Compound 14c. A solution of $\mathbf{1 4 a}(83 \mathrm{mg}, 0.073 \mathrm{mmol})$ in DMF (16 mL) was treated with a propanolic solution of $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.93 \mathrm{~mL}, 165 \mathrm{mM})$ over the period of 90 s , which caused the solution to turn from yellow-orange to a dark red (burgundy) colour. After stirring for 20 $\mathrm{min}, \mathrm{AcCl}(20 \mu \mathrm{~L}, 0.22 \mathrm{mmol})$ was added and the solution turned a yellow colour again and after a further 5 min , it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}$ (ca. 7×50 mL), the organic fraction dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}, 0.5 \% \mathrm{EtOAc}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; two minor
yellow/orange bands came through before the major orange band (product) came through. This gave 14 c as an orange solid ($55 \mathrm{mg}, 68 \%$). Mp $115-118{ }^{\circ} \mathrm{C}$ (darkens). Anal. Calcd $\left(\mathrm{C}_{52} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{10}\right)$: C, $56.19 ; \mathrm{H}, 3.81$; N, 2.52. Found: C, 55.87 ; H, 4.10; N, 2.52. IR(ATR, cm^{-} ${ }^{1}$): 3029w, 2967m, 2933m, 2879w, 2855w, 2251w (CN), 2207w (C $=\mathrm{C}$), 1729vs (C=O), $1712 \mathrm{vs}(\mathrm{C}=\mathrm{O}), 1568 \mathrm{vs}, 1541 \mathrm{~s}, 1507 \mathrm{~m}, 1465 \mathrm{~m}, 1409 \mathrm{~m}, 1389 \mathrm{~m}, 1351 \mathrm{~m}, 1310 \mathrm{~m}, 1241 \mathrm{vs}$, 1112s. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.60-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.15$ $(\mathrm{m}, 4 \mathrm{H}), 7.04-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.54,6.54(2 \times \mathrm{s}, 2 \mathrm{H}), 4.23-4.17(\mathrm{~m}, 4 \mathrm{H}), 3.11-3.01(\mathrm{~m}$, $4 \mathrm{H}), 2.78-2.63(\mathrm{~m}, 4 \mathrm{H}), 2.45(\mathrm{~s}, 6 \mathrm{H}), 1.83-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.04-0.89(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 191.64,191.63$, 191.40, 160.13, 159.96, 137.83, 136.73, 136.69, 136.63, 136.59, 134.61, 133.47, 133.35, 133.23, 133.10, 132.71, 132.46, 132.43, 132.32, 132.30 , 131.64, 131.62, 130.96, 130.94, 130.17, 130.15, 129.81, 128.30, 127.35, 127.32, $127.28,127.25,124.00,123.93,122.12,122.10,121.79,120.85,120.80,120.77,120.72$, $118.21,118.17,115.54,115.51,115.43,115.39,113.19,97.36,92.13,90.31,90.28,88.74$, 68.93 , $68.85,31.95,31.89,30.39,30.35,22.35,22.33,19.21,19.18,10.65$. HR-MS (MALDI) $m / z: 1110.0237[M]^{+}$; calcd for $\mathrm{C}_{52} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{10}{ }^{+}: 1110.0244$.

Compound 15a. Compound 15a has previously been reported (Parker, C. R.; Wei, Z.; Arroyo, C. R.; Jennum, K.; Li, T.; Santella, M.; Bovet, N.; Zhao, G.; Hu, W.; van der Zant, H. S. J.; Vanin, M.; Solomon, G. S.; Laursen, B. W.; Nørgaard, K.; Nielsen, M. B. Adv. Mater. 2013, 25, 405-40; Schou, S. S.; Parker, C. R.; Lincke, K.; Jennum, K.; Vibenholt, J.; Kadziola, A.; Nielsen, M. B. Synlett 2013, 24, 231-235), but we have found that when the number of equivalents of thione 51a was increased from 3.3 to 4 equivalents, the yield of $\mathbf{1 5 a}$ increased to 72% compared to the previously reported 63%

Compound 15b. Method A : To a mixture of $\mathbf{3 8}(84 \mathrm{mg}, 0.12 \mathrm{mmol}), \mathbf{5 2 b}(168 \mathrm{mg}, 0.37$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(12.4 \mathrm{mg}, 0.011 \mathrm{mmol})$, and $\mathrm{CuI}(2.0 \mathrm{mg}, 0.011 \mathrm{mmol})$ was added a degassed solution of $\mathrm{NH}(i-\mathrm{Pr})_{2}(25 \mathrm{~mL})$ and the suspension was vigorously stirred at rt . The color of the suspension and solution started orange yellow and turned into a thicker orange red suspension over a day. TLC indicated the presence of mono-adduct so the solution was stirred for a further day. The solution was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{ca} .50 \mathrm{~mL})$ and passed through a plug of silica. The solvent was removed and the residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, gradient $1-5 \% \mathrm{EtOAc}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; from the second pale yellow band starting material 52b ($75 \mathrm{mg}, 0.17 \mathrm{mmol}$) was recovered, the third band which was orange gave what was suspected to be a mono adduct ($5 \mathrm{mg}, 5 \%$), the fourth and major dark orange band gave the desired compound $\mathbf{1 5 b}(87 \mathrm{mg}, 54 \%)$ as a dark red solid.

Method B: To a mixture of $\mathbf{5 5}(70 \mathrm{mg}, 0.077 \mathrm{mmol})$ and $\mathbf{5 1 b}(95 \mathrm{mg}, 0.358 \mathrm{mmol})$ was added $\mathrm{P}(\mathrm{OEt})_{3}(2.5 \mathrm{~mL})$ and the mixture was degassed with Ar for 10 min and kept under an Ar atmosphere. The red suspension was heated to $100^{\circ} \mathrm{C}$ for 150 min under stirring, during which a dark red precipitate formed. The suspension was allowed to cool to rt and diluted with MeOH (ca. 20 mL) and filtered through a sintered funnel. The dark red solid was washed with $\mathrm{MeOH}(2 \times 15 \mathrm{~mL})$ and petroleum spirit ($3 \times 15 \mathrm{~mL}$) which removed the pungent smelling $\mathrm{P}(\mathrm{OEt})_{3}$. NMR of the rather insoluble crude red solid indicated there was still an aldehyde present ($\delta_{\mathrm{H}} 10.03$; $\delta_{\mathrm{C}} 191.79$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) along with the desired product. So to the crude mixture (85 mg) and an additional portion of thione ($50 \mathrm{mg}, 0.19 \mathrm{mmol}$) was added $\mathrm{P}(\mathrm{OEt})_{3}(4 \mathrm{~mL})$ and the mixture was degassed. The suspension was then heated to 110 ${ }^{\circ} \mathrm{C}$ for 4 h and worked up as before. The rather insoluble precipitate was then passed through a short flash column $\left(\mathrm{SiO}_{2}\right.$, first $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then EtOAc 1-5\% gradient elution); there was a minor yellow band which was followed by a major orange-red band which gave $\mathbf{1 5 b}$ as a dark
red solid ($68 \mathrm{mg}, 66 \%$). The spectral data of this sparingly soluble compound have been reported previously. ${ }^{8 f}$

Compound 15e. To a mixture of $\mathbf{3 8}(50 \mathrm{mg}, 0.072 \mathrm{mmol}$), $\mathbf{5 2 e}(69 \mathrm{mg}, 0.168 \mathrm{mmol})$, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(5 \mathrm{mg}, 0.0072 \mathrm{mmol})$ and $\mathrm{CuI}(1.4 \mathrm{mg}, 0.0072 \mathrm{mmol})$ was added a degassed solution of THF $(7 \mathrm{~mL})$ and $\mathrm{NEt}_{3}(0.2 \mathrm{~mL})$. The reaction mixture was stirred for 1 d , then sonicated at $40^{\circ} \mathrm{C}$ for 7 h during which time the red colored mixture darkened. The solvent was removed and the residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, initially in petroleum spirit / $\mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 3$). The first pale yellow band was unreacted starting material 52e (29 mg), followed by a minor yellow-orange band, which was discarded, then a major orange band which contained 15e ($49 \mathrm{mg}, 54 \%$) as a dark red solid. Mp 112-116 ${ }^{\circ} \mathrm{C}$. Anal. Calcd $\left(\mathrm{C}_{58} \mathrm{H}_{54} \mathrm{O}_{8} \mathrm{~S}_{12}\right): \mathrm{C}, 55.12 ; \mathrm{H}, 4.31$. Found: C, $54.71 ; \mathrm{H}, 3.92$. IR(ATR, $\left.\mathrm{cm}^{-1}\right): v=2967 \mathrm{~m}$, 2921w, 2878w, 2200w (C \equiv C), 1735s ($\mathrm{CO}_{2} \operatorname{Pr}$), 1582s, 1567 s , $1539 \mathrm{~m}, 1507 \mathrm{~m}, 1470 \mathrm{w}, 1430 \mathrm{w}$, $1408 \mathrm{w}, 1389 \mathrm{w}, 1311 \mathrm{~m}, 1238 \mathrm{vs} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H})$, $7.53(\mathrm{~s}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.00(\mathrm{~s}, 2 \mathrm{H}), 6.52(\mathrm{~s}, 2 \mathrm{H}), 4.20(2 \mathrm{xt}, J=6.7 \mathrm{~Hz}, 8 \mathrm{H})$, $2.45,2.45(2 \mathrm{x} \mathrm{s}, 6 \mathrm{H}) 1.78-1.65(\mathrm{~m}, 8 \mathrm{H}), 0.98,0.97(2 \mathrm{xt}, J=7.4 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 159.94,159.76,137.02,135.06,134.80,134.15,132.19,131.59,130.13$, 128.92, 128.12, 127.00, 124.86, 121.84, 119.92, 114.00, 112.68, 97.28, 88.35, 68.77, 68.68, 22.18, 22.16, 19.26, 19.14, 10.48. MS (MALDI) $m / z: 1262$ [M] ${ }^{+}$.

${ }^{13} \mathrm{C}$-NMR of $\mathbf{3}$ in CDCl_{3} (up C \& CH_{2}. down $\mathrm{CH} \& \mathrm{CH}_{3}$)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{5}$ in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of $\mathbf{5}$ in CDCl_{3} (up C \& CH_{2}. down $\mathrm{CH} \& \mathrm{CH}_{3}$)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of 7 in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of 7 in CDCl_{3} (up C \& CH_{2}. down $\mathrm{CH} \& \mathrm{CH}_{3}$)

${ }^{1} \mathrm{H}$-NMR of $\mathbf{1 1}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

${ }^{13} \mathrm{C}$-NMR of $\mathbf{1 1}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left(\right.$ up $\mathrm{C} \& \mathrm{CH}_{2}$. down $\left.\mathrm{CH} \& \mathrm{CH}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR of $\mathbf{1 3 b}$ in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of $\mathbf{1 3 b}$ in CDCl_{3}

[^1]

${ }^{1} \mathrm{H}$-NMR of $\mathbf{1 4 a}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{1 4 a}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left(\right.$ up $\mathrm{C} \& \mathrm{CH}_{2}$. down $\mathrm{CH} \& \mathrm{CH}_{3}$)

[^2]${ }^{1} \mathrm{H}$-NMR of $\mathbf{1 4 b}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$
${ }^{13}$ C-NMR of 14b in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

210200
190180
$170 \quad 160$
140
-
-
${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{1 4} \mathrm{c}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

							$\underset{\sim}{\Phi}$							$\begin{aligned} & T \\ & \underset{\sim}{c} \\ & \dot{\sigma} \end{aligned}$	$\begin{aligned} & 1 \\ & \hline \end{aligned}$			$\begin{aligned} & \text { Ti } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$				
T	1	1	1	1	1	1	1	I	1	,	1	I	I	I		1		,	1	,	1	
. 0.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	$\begin{gathered} 4.5 \\ \mathrm{f1} \text { (DDm) } \end{gathered}$	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5	-1.

${ }^{13} \mathrm{C}-$ NMR of $\mathbf{1 4 c}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

${ }^{1} \mathrm{H}$-NMR of 15e in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

${ }^{13} \mathrm{C}$-NMR of 15e in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (up C \& CH_{2}. down $\mathrm{CH} \& \mathrm{CH}_{3}$)

${ }^{1} \mathrm{H}$-NMR of $\mathbf{1 6}$ in CDCl_{3}

${ }^{13}$ C-NMR of $\mathbf{1 6}$ in $\mathrm{CDCl}_{3}\left(\right.$ up $\mathrm{C} \& \mathrm{CH}_{2}$. down $\mathrm{CH} \& \mathrm{CH}_{3}$)

${ }^{1} \mathrm{H}$-NMR of $\mathbf{1 8}$ in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of $\mathbf{1 8}$ in CDCl_{3}

${ }^{1} \mathrm{H}$-NMR of $\mathbf{1 9}$ in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of $\mathbf{1 9}$ in CDCl_{3}

${ }^{1} \mathrm{H}$-NMR of $\mathbf{I I}$ in CDCl_{3}

> 咢资
$\underset{\sim}{\sim}$
ชู้

111

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of II in $\mathrm{CDCl}_{3}\left(\right.$ up C \& CH_{2}. down $\mathrm{CH} \& \mathrm{CH}_{3}$)

${ }^{1} \mathrm{H}$-NMR of 21 in CDCl_{3}

${ }^{1} \mathrm{H}$-NMR of $\mathbf{2 2}$ in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of $\mathbf{2 2}$ in CDCl_{3}

Ү

${ }^{1} \mathrm{H}$-NMR of $\mathbf{2 6}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

${ }^{13} \mathrm{C}$-NMR of 26 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left(\right.$ up C \& CH_{2}. down $\mathrm{CH} \& \mathrm{CH}_{3}$)

${ }^{1} \mathrm{H}$-NMR of 27 in CDCl_{3}

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of 27 in CDCl_{3}

${ }^{1} \mathrm{H}$-NMR of $\mathbf{2 8}$ in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of 28 in CDCl_{3}

${ }^{1} \mathrm{H}$-NMR of 29 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ of $\mathbf{2 9}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

${ }^{1} \mathrm{H}$-NMR of $\mathbf{3 1}$ in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of $\mathbf{3 1}$ in CDCl_{3} (up C \& CH_{2}. down $\mathrm{CH} \& \mathrm{CH}_{3}$)

[^3]${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{3 2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

${ }^{13} \mathrm{C}$－NMR of $\mathbf{3 2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

लู		「が边	$\stackrel{\infty}{\text { ¢ }}$	
－0．	¢			
V		141		

${ }^{1} \mathrm{H}$-NMR of $\mathbf{3 3}$ in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of $\mathbf{3 3}$ in CDCl_{3} (up C \& CH_{2}. down $\mathrm{CH} \& \mathrm{CH}_{3}$)

[^4]${ }^{1} \mathrm{H}$-NMR of $\mathbf{3 4}$ in CDCl_{3}

${ }^{1} \mathrm{H}$-NMR of $\mathbf{3 5}$ in CDCl_{3}

${ }^{1} \mathrm{H}$-NMR of $\mathbf{3 6}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

${ }^{13} \mathrm{C}$-NMR of $\mathbf{3 6}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

[^5]
${ }^{1} \mathrm{H}$-NMR of $\mathbf{4 1}$ in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{4 3}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

iim

\qquad

${ }^{13} \mathrm{C}$-NMR of $\mathbf{4 3}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

[^6]${ }^{1} \mathrm{H}$-NMR of $\mathbf{4 4}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

${ }^{13} \mathrm{C}$-NMR of $\mathbf{4 4}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

210	200	190	180	170	160	150	140	130	120	110		90	80	70	60	50	40	30	20	10	0	-10
											f1 (ppm)											

${ }^{1} \mathrm{H}$-NMR of $\mathbf{4 5}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

${ }^{13} \mathrm{C}$-NMR of $\mathbf{4 5}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left(\right.$ up $\mathrm{C} \& \mathrm{CH}_{2}$. down $\left.\mathrm{CH} \& \mathrm{CH}_{3}\right)$

${ }^{1} \mathrm{H}$-NMR of $\mathbf{4 6}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

							$\underset{\substack{\text { TO }}}{\substack{\text { n }}}$												$\begin{aligned} & \text { ¢ } \\ & \stackrel{8}{\circ} \\ & \hline \end{aligned}$		
10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\frac{1}{(\mathrm{5} .0} \mathrm{m}$	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

${ }^{13} \mathrm{C}$-NMR of $\mathbf{4 6}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

${ }^{1} \mathrm{H}$-NMR of $\mathbf{4 8}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

$\underbrace{\text { 5n }}$
Jar ,

${ }^{13} \mathrm{C}$-NMR of $\mathbf{4 8}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left(\right.$ up $\mathrm{C} \& \mathrm{CH}_{2}$. down $\mathrm{CH} \& \mathrm{CH}_{3}$)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{5 2 b}$ in CDCl_{3}

 \mid

${ }^{13} \mathrm{C}$-NMR of $\mathbf{5 2 b}$ in CDCl_{3}

$\begin{array}{llllll}140 & 130 & 120 & 110 & 100 \\ \mathrm{f1}(\mathrm{ppm})\end{array} 90$
${ }^{1} \mathrm{H}$－NMR of 52d in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

$\underbrace{\circ}$

$\|$

\qquad

${ }^{13}$ C－NMR of 52d in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$
$\stackrel{+}{9}$ $\underbrace{\text {～oñon }}$
ジす

$\begin{array}{llllll}210 & 200 & 190 & 180 & 170 & 160\end{array}$
－ $140 \quad 13$
$120 \quad 110 \underset{\mathrm{f} 1(\mathrm{ppm})}{100} 90$
80
60

${ }^{1} \mathrm{H}-\mathrm{NMR}$ of VII in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR of VII in CDCl_{3}

$210 \quad 200 \quad 190 \quad 180$

${ }^{13} \mathrm{C}$－NMR of VIII in CDCl_{3}

$\stackrel{\infty}{\stackrel{\infty}{\sim}}$
華
恝気密
$\mathrm{Me}_{3} \mathrm{Si}$ VIII

1						1			1	1	－1	1						1		1		，
210	200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0	－10

${ }^{1} \mathrm{H}$-NMR of 54 in CDCl_{3}

[^0]: ${ }^{\text {a) }}$ Conditions: Approximately 1 mM solutions of the compounds, except for compound 3, the solution of which was very dilute. Glassy-carbon working electrode, silver reference electrode and platinum counter electrode, scan rate $100 \mathrm{mV} / \mathrm{s}$. ${ }^{\text {b) }} E_{\mathrm{pa}}=+0.61$ and $E_{\mathrm{pc}}=+0.53$ V ; seems reversible, even after eight cycles. ${ }^{\text {c) }}$ Value in () is the corresponding E_{pc}. ${ }^{\text {d) }}$ Scan rate $1 \mathrm{~V} / \mathrm{s} .{ }^{\mathrm{i}}=$ Irreversible electron transfer so only E_{pc} (reduction) or E_{pa} (oxidation) listed. sh $=$ shoulder.

[^1]:

[^2]:

[^3]: $\begin{array}{lllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^4]:

[^5]:

[^6]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f1}(\mathrm{ppm})\end{array} 90$

