Supporting Information

Novel Morphology-Controlled Hierarchical Core@Shell Structural Organo-Layered Double Hydroxides Magnetic Nanovehicles for Drug Release

Xue Bi, Ting Fan, and Hui Zhang*

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, China

* Tel.: +8610-6442 5872; Fax: +8610-6442 5385; E-mail: huizhang67@gst21.com

Figure S1. FT-Raman spectra of SA-LDH, salicylic acid (SA), and aspirin (Asp).

Figure S2. Three-dimension model of SA obtained by Chemdraw Ultra 8.0.

Figure S3. SEM (a) and TEM (b) images of Fe_3O_4 nanoparticles.

Figure S4. SEM image of pure SA-LDH.

Figure S5. EDX mapping analysis of Fe₃O₄@SA-LDH-3.85.

Figure S6. pH of Fe₃O₄ aqueous suspension as a function concentration of the total H⁺ ions added to the system (H_t).

Figure S7. Gran functions (*G*) for the Fe_3O_4 sample.

Determination of surface OH site density (D_s) of Fe₃O₄ sample.

0.08 g Fe₃O₄ sample is dispersed in 50 mL of NaNO₃ aqueous solution (0.1 M) under vigorous stirring in N₂ flow for 2 h. 0.1 mL of HCl aqueous solution (0.1 M) is added into above Fe₃O₄ suspension at set intervals (5 min) until the pH value reaches 3.0. Then, the obtained acidic Fe₃O₄ suspension is inversely titrated using 0.1 mL of NaOH aqueous solution (0.1 M) at set intervals (5 min) until the pH value reaches 10.5. The pH values and the volumes of HCl and NaOH aqueous solutions are recorded.

The total acid concentrations (H_t) and Gran (G) function are calculated as following equations:^{1,2}

$$H_{t} = (V_{at} \times C_{a} - V_{b} \times C_{b}) / (V_{0} + V_{at} + V_{b})$$

$$G \text{ (acidic side)} = (V_{0} + V_{at} + V_{b}) \times 10^{-\text{pH}}$$

$$G \text{ (alkaline side)} = ((V_{0} + V_{at} + V_{b}) \times 10^{-(13.8-\text{pH})})$$

Upon the *G* functions, the total surface site concentration (H_s) is calculated as following equation:

$$H_{\rm s} = [(V_{\rm e2\ Fe3O4} - V_{\rm e1\ Fe3O4}) \times C_{\rm b} - (V_{\rm e2\ blank} - V_{\rm e1\ blank}) \times C_{\rm b}] / V_0$$

The $D_{\rm s}$ is calculated as following equation:

$$D_{\rm s} = (H_{\rm s} \times N_{\rm A}) / (S \times C_{\rm s} \times 10^{18})$$

In above equations, V_0 , V_{at} , V_b are the initial volume (50 mL) of Fe₃O₄ aqueous suspension, the volume of HCl and NaOH aqueous solutions added to the suspension, respectively. C_a and C_b are the concentrations of HCl and NaOH added to the suspension, respectively. V_{e1} and V_{e2} are the volume of NaOH solution at equivalent point 1 and 2. N_A is the Avogadro constant (6.02 × 10²³). S is the specific surface area of Fe₃O₄ sample (2.2 m²·g⁻¹). C_s is the concentration of Fe₃O₄ suspension (1.6 g·L⁻¹).

Figure S8. SEM images of $Fe_3O_4@LA$ -ZnAl-LDH (A, inset refers to TEM image) and $Fe_3O_4@SA$ -MgAl-LDH (B, inset refers to a topical magnification) nanovehicles.

Synthesis experiment of L-lactic acid (LA) intercalated ZnAl-LDH and SA intercalated MgAl-LDH on the surface of Fe₃O₄ cores.

A uniform suspension were obtained by ultrasonically dispersing Fe₃O₄ (0.348 g) nanoparticles in 100 mL of methanol for 15 min, and then transferred into a 500 mL four-necked flask keeping vigorous stirring at room temperature. An alkaline solution containing NaOH (2.4 g) in 80 mL of methanol as was added dropwise into above Fe₃O₄ suspension under vigorous stirring in N₂ atmosphere to modulate the pH to ~8.5 and kept for 5 min for stabilization. Then, a mixed salts solution with Zn(NO₃)₂·6H₂O (1.34 g), Al(NO₃)₃·9H₂O (0.56 g) and LA (0.34 g) in 60 mL of methanol ([Zn²⁺]/[Al³⁺]=3, [LA]/[Al³⁺]=2.5) and the alkaline solution were simultaneously added dropwise into above Fe₃O₄ suspension under vigorous stirring in N₂ flow with constant pH ~8.5 for 1.5 h. The resultant was aged at 60 °C for 24 h, separated by a magnet of 0.15 T, washed with deionized water until pH 7.0 and dried in vacuum at 60 °C for 24 h giving the product Fe₃O₄@LA-ZnAl-LDH.

The synthesis procedure of SA intercalated MgAl-LDH on Fe₃O₄ surface (denoted as Fe₃O₄@SA-MgAl-LDH) is similar to that of Fe₃O₄@SA-LDH-3.85 except the mixed salts solution containing Mg(NO₃)₂·6H₂O (11.534 g), Al(NO₃)₃·9H₂O (5.6 g) and Asp (6.8 g) with molar ratio of [Asp]/[Mg²⁺]/[Al³⁺]=2.5/3/1) and the coprecipitation pH kept at 10.0.

Figure S9. TG-DTA curves of pure SA (A) and SA-LDH (B).

Figure S10. FT-IR spectra of $Fe_3O_4@SA-LDH-3.85$ before and after *in vitro* drug release test.

Figure S11. *In vitro* release profiles of SA-LDH (black dot) and $Fe_3O_4@SA-LDH$ -r (1.93: green square; 3.85: red triangle; 7.71: blue diamond) in pH 4.60 PBS.

	, ,	<i>d</i> ₁₁₀ /nm	<i>a</i> /nm ^{<i>a</i>}	GH	Zn/Al ratio		Zn/Fe ratio		e	S	SA loading
Samples	<i>d</i> ₀₀₃ /nm			/nm ^b	bulk ^c	Surf. ^d	bulk ^c	Surf. ^d	л	/nm²/e ^f	/wt% ^g
SA-LDH	1.47	0.1521	0.3042	0.988	3.24	2.89	_	_	0.24	0.340	19.2 (19.3)
Fe ₃ O ₄ @SA-LDH-1.93	1.36	0.1540	0.3080	0.885	3.07	3.14	0.25	9.72	0.25	0.334	2.7 (2.5)
Fe ₃ O ₄ @SA-LDH-3.85	1.38	0.1536	0.3072	0.899	3.10	2.58	0.43	23.9	0.24	0.335	3.3 (3.1)
Fe ₃ O ₄ @SA-LDH-7.71	1.40	0.1534	0.3068	0.918	3.38	2.51	0.85	27.5	0.23	0.357	5.5 (5.2)
Sal-Mg ₂ Al-LDH ^h	1.63	0.1515	0.303	1.150 1.9	97(Mg/Al	l) —	_	_	0.37	0.236	29.8

Table S1. XRD structural parameters and chemical compositions of the $Fe_3O_4@SA-LDH$ -r magnetic nanovehicles and related samples.

^{*a*} Based on hexagonal crystal system, $a = 2d_{110}$.

^b Gallery height (GH) = d_{003} – 0.48 nm (the thickness of LDH layer is 0.48 nm).

^c The Zn/Al and Zn/Fe molar ratios in bulk phase are obtained from ICP analysis.

^d The Zn/Al and Zn/Fe molar ratios in surface are obtained from XPS analysis.

 $e^{a} x = Al/(Zn+Al)$, refers to the LDH layer charge density.

^{*f*} S: available surface area per unit charge of the LDH layer, $S_{\text{unit-charge}} = (a^2 \cdot \sin 60^\circ)/x$.³

^g Drug loadings are based on CHN data while those in blanket upon the UV measurement of the dissolved samples.

^{*h*} Data taken from the reference 36 in the manuscript.

Samples		7n 2n2 /aV	$12m^2/aW$	Fe 2p3 /eV		C 1s /e	V	O 1s /eV		
		Zli 2p3/ev	Al 2p3 /ev		0–C=0	С–ОН	С–С/С–Н	H ₂ O/–OH	Zn–O–Al	O ²⁻
	Fe ₃ O ₄ @SA-LDH-1.93	1022.2	74.7	709.9	288.5	285.6	284.7	533.3	532.2	531.4
	Fe ₃ O ₄ @SA-LDH-3.85	1022.0	74.2	710.3	289.0	285.5	284.6	532.9	532.0	530.9
	Fe ₃ O ₄ @SA-LDH-7.71	1022.8	74.1	708.9	287.3	286.5	284.1	533.4	_	531.6
	SA-LDH	1021.9	74.4	_	289.0	285.5	284.6	532.8	531.9	531.0
	Fe ₃ O ₄	_	_	710.4	_	_	_	532.1	_	529.7

Table S2. XPS results of the Fe₃O₄@SA-LDH-r magnetic nanovehicles and related samples.

Samplas	[M ²⁺][OH ⁻] ²	[A1 ³⁺][OIT] ³ ^b	all	Refs ^c	
Samples	$(M=Zn, Mg, or Ni)^{b}$	[AI][OH]	рн		
Fe ₃ O ₄ @SA-LDH-1.93	3.75×10^{-16}	3.95×10 ⁻²³	constant at 8.5	This work	
Fe ₃ O ₄ @SA-LDH-3.85	7.50×10^{-16}	7.91×10^{-23}	constant at 8.5	This work	
Fe ₃ O ₄ @SA-LDH-7.71	1.50×10^{-15}	1.19×10^{-22}	constant at 8.5	This work	
SA-LDH	2.50×10^{-15}	2.75×10^{-22}	constant at 8.5	This work	
5-ASA-LDH/MgFe ₂ O ₄	5.70×10^{-11}	1.29×10^{-14}	adjusted to 8.4	[20]	
IBU-Zn ₂ Al-LDH	2.76×10 ⁻⁷	1.31×10^{-10}	adjusted to 10.0	[9]	
5-ASA-LDHcp2	9.38×10^{-12}	5.86×10^{-16}	adjusted to 8.4	[38]	
Lactate-ZnAl-LDH(ZAL313)	1.87×10^{-12}	5.40×10^{-17}	constant at 10	[48]	
Zn ₃ AlCO ₃	2.50×10^{-14}	8.33×10^{-20}	constant at 9.0	[49]	
IBU-MgAl-LDH/MgFe ₂ O ₄	5.00×10^{-8}	1.25×10^{-11}	adjusted to 10.0	[22]	
DIC-MgAl-LDH/MgFe ₂ O ₄	5.00×10^{-8}	1.25×10^{-11}	adjusted to 12.8	[23]	
Fe ₃ O ₄ @MgAl-LDH	4.50×10^{-13}	1.50×10^{-17}	constant at 10	[26]	
Fe ₃ O ₄ @CuMgAl-1	5.86×10 ⁻¹³	2.34×10^{-17}	constant at 10	[28]	
Fe ₃ O ₄ @CuMgAl-2	3.75×10 ⁻¹³	1.50×10^{-17}	constant at 10	[28]	
Fe ₃ O ₄ @CuNiAl-LDH	$1.70 \times 10^{-14} - 1.70 \times 10^{-13}$	$2.37 \times 10^{-19} - 2.37 \times 10^{-18}$	constant at 9.5–10.0	[27]	

Table S3. The ion products and coprecipitation pH values in the synthesis process of varied LDH systems. ^{*a*}

^{*a*} The K_{sp} of Zn(OH)₂, Mg(OH)₂, Ni(OH)₂, and Al(OH)₃ are 3.0×10^{-17} , 5.6×10^{-12} , 2×10^{-15} , and 1.33×10^{-33} , respectively.

^b The constant [OH⁻] values in the double-drop coprecipitation method are obtained upon the pH value, while the initial [OH⁻] values in the single-drop coprecipitation method are obtained upon the concentration of alkali.

^c The sequence number of the references is same as those in the manuscript.

Hydroxides	$[Zn^{2+}][OH^{-}]^2$ or	$K_{ m sp}$	S	v_0	<i>C</i> *	$D / m^2 s^{-1}$	σ	Α	J	J'^{b}
	$[Mg^{2+}][OH^{-}]^2$			$/m^3 mol^{-1}$	$/mol m^{-3}$		$/J m^{-2}$	$/m^{3} s^{-1}$	$/m^{3} s^{-1}$	$/m^{3}s^{-1}$
Zn(OH) ₂	7.50×10 ⁻¹⁶	3×10 ⁻¹⁷	24	5.41×10 ⁻²⁹	2.021×10 ⁻³	8.8×10 ⁻¹⁰	1.054	1.217×10 ⁸	2.914×10 ⁹	4.056×10 ¹⁴
Mg(OH) ₂	7.50×10 ⁻¹⁶	5.6×10 ⁻¹²	_	4.11×10 ⁻²⁹	0.1651	2×10 ⁻⁹	1.193	2.627×10 ¹⁰	_	4.683×10 ¹¹

Table S4. Kinetic parameters about the homogeneous nucleation process of $Zn(OH)_2$ and $Mg(OH)_2$.^{*a*}

^a Concentration of Zn²⁺ or Mg²⁺ ions is same as the [Zn²⁺] in the synthesis process of Fe₃O₄@SA-LDH-3.85.

^b The $[Mg^{2+}][OH^{-}]^2$ or $[Zn^{2+}][OH^{-}]^2$ values are designed as 10^{-10} to make sure that the Mg^{2+} ions can be precipitated into $Mg(OH)_2$.

REFERENCES AND NOTES

- Yang, X. F.; Sun, Z. X.; Wang, D. S.; Forsling, W. Surface Acid-Base Properties and Hydration/Dehydration Mechanisms of Aluminum (Hydr)Oxides. J. Colloid Interface Sci. 2007, 308, 395–404.
- (2) Zhang, W. M.; Yang, Z. D.; Liu, J.; Sun, Z. X. Determination of Acid-Base Equilibrium Constants on Aqueous Mesoporous Silica Surfaces. *Acta Phys. -Chim. Sin.* **2010**, *26*, 2109–2114.
- (3) Xu, Z. P.; Zeng, H. C. Abrupt Structural Transformation in Hydrotalcite-Like Compounds Mg_{1-x}Al_x(OH)₂(NO₃)_x·nH₂O as a Continuous Function of Nitrate Anions. J. Phys. Chem. B 2001, 105, 1743–1749.