## Supporting Information:

# High-Efficiency Plasmon-Enhanced Graphene-Supported Semiconductor/Metal Core-Satellite Heteronanocrystal Photocatalysts for Visible-Light Dye Photodegradation and $\mathbf{H}_{2}$ Production from Water 

Jie Zhang, Ping Wang, Jian Sun, and Yongdong Jin*

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China. E-mail: ydjin@ciac.ac.cn


Figure S1. C1s XPS spectra of GO (left) and G (right). For G, the intensities of all C1s peaks of the carbon binding to oxygen, especially the peak of C-O (epoxy and alkoxy), decreased dramatically relative to that of GO, indicating that most of the oxygen-containing functional groups on $G$ were removed after the reduction. Inset: Photograph of GO (left) and G (right) solution in DMF.


| Element | Weight \% | Atomic \% | k-Factor |
| :--- | :--- | :--- | :---: |
| ------------------ | ---- ---- | -34.71 | 1.021 |
| $\mathrm{~S}(\mathrm{~K})$ | 11.34 | 6.03 | 2.441 |
| $\mathrm{Se}(\mathrm{K})$ | 4.85 | 40.74 | 7.185 |
| $\mathrm{Cd}(\mathrm{K})$ | 46.65 | 18.52 | 5.653 |
| $\mathrm{Au}(\mathrm{L})$ | 37.16 |  |  |

Figure S2. EDS spectra (top) and the calculated atomic ratio (AT) (bottom) of the CdSe/CdS/Au HNCs.


Figure S3. Electric field distributions of the as-prepared $\mathrm{CdSe} / \mathrm{CdS}-\mathrm{Au}$ HNCs calculated using the FDTD method.


Figure S4. The absorption (left) and PL spectra (right) of the QDs and QD-AuNPs mixture.


Figure S5. The absorption spectrum (a) and TEM image (b) of the control AuNPs used.


Figure S6. The photocurrent responses of the QD, QD/Au HNC, QD and Au mixed nanoparticles under visible light using $\mathrm{NaNO}_{3}(0.1 \mathrm{M})$ as electrolyte solution.



Figure S7. The TEM ( $\mathrm{a}, \mathrm{b}, \mathrm{c}$ ) and corresponding dark field scattering images ( $\mathrm{d}, \mathrm{e}, \mathrm{f}$ ) of QD, QD/Au1, QD/Au2, respectively; (g) The $\mathrm{H}_{2}$ production rate of QD, QD/Au1, $\mathrm{QD} / \mathrm{Au} 2$, respectively.


Figure S8. The $\mathrm{H}_{2}$ production rate of the as-prepared QD-G complexes before and after the washing treatment.


Figure S9. Cycling runs in the photodegradation of methylene blue (A) and photocatalytic $\mathrm{H}_{2}$ production from water (B) in the presence of QD/Au-G sample under visible light.

The role of sacrificial electron donor ( $\mathrm{Na}_{2} \mathrm{~S}$ and $\mathrm{Na}_{2} \mathbf{S O}_{3}$ ):
Under visible light irradiation, hydrogen was evolved from an aqueous solution containing $\mathrm{Na}_{2} \mathrm{~S}$ and $\mathrm{Na}_{2} \mathrm{SO}_{3}$, because of the strong reduction capacity of $\mathrm{S}^{2-}$ ions, the
photogenerated holes irreversibly oxidize the $\mathrm{S}^{2-}$ ions instead of water. Different reactions occurred for the whole procedure can be represented as follows:

$$
\begin{align*}
& \mathrm{CdSe} / \mathrm{CdS}+h v \rightarrow \mathrm{~h}^{+}+\mathrm{e}^{-}  \tag{1}\\
& 2 \mathrm{e}^{-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}  \tag{2}\\
& \mathrm{SO}_{3}^{2-}+2 \mathrm{OH}^{-}+2 \mathrm{~h}+\rightarrow \mathrm{SO}_{4}^{2-}+2 \mathrm{H}^{+}  \tag{3}\\
& 2 \mathrm{~S}^{2-}+2 \mathrm{~h}+\rightarrow \mathrm{S}_{2}^{2-}  \tag{4}\\
& \mathrm{S}_{2}^{2-}+\mathrm{SO}_{3}^{2-} \rightarrow \mathrm{S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{S}^{2-} \tag{5}
\end{align*}
$$

