SUPPORTING INFORMATION FOR:

Heavy Elements Metallacycles: Insights into the Nature of Host-Guest Interactions involving Di-Halide Mercuramacrocycle Complexes

Miguel Ponce-Vargas and Alvaro Muñoz-Castro

Figure S1. Electrostatic potential map for the studied host-guest systems.

Figure S2. Electrostatic potential map for -CF₃, -CH₃ and -H hosts.

Figure S3. Representative quadrupole tensor denoting its angular dependence for $-CF_3$, $-CH_3$ and -H hosts.

Table S1. Selected calculated distances (Å) and angles (degrees) for the hypothetical 1-Cl,1-Br and 1-I guest-centered mercuramacrocycle complexes.

Table S2. Selected calculated distances (Å) and angles (degrees) for the hypothetical 1-Cl,1-Br and 1-I guest-apical mercuramacrocycle complexes.

 Table S3. Energy Decomposition Analysis under the PBE/TZP level for the studied systems (kcal/mol).

Table S4. Selected calculated distances (Å) and angles (degrees) for the hypothetical 1-2Ar, 1-2Kr and 1-2Xe mercuramacrocycle complexes.

 Table S5. Energy Decomposition Analysis of the hypothetical noble-gas complexes (kcal/mol).

Figure S1. Electrostatic potential map for the studied host-guest systems.

Figure S2. Electrostatic potential map for -CF₃, -CH₃ and -H hosts, respectively.

Figure S3. Representative quadrupole tensor denoting its angular dependence for $-CF_3$, -CH₃ and -H hosts, respectively.

	$[(HgC(CF_3)_2)_5X]^2, X = Cl, Br, I$			
	1-Cl	1-Br	1 -I	
Hg-Hg	3.531	3.569	3.654	
Hg-C	2.189	2.201	2.229	
< Hg-C-Hg	107.6	108.3	110.1	
< C-Hg-C	180.5	180.4	180.1	
Hg····X	3.001	3.038	3.108	

Table S1. Selected calculated distances (Å) and angles (degrees) for the hypothetical 1-Cl,1-Br and 1-I guest-centered mercuramacrocycle complexes.

Table S2. Selected calculated distances (Å) and angles (degrees) for the hypothetical 1-Cl,1-Br and 1-I guest-apical mercuramacrocycle complexes.

	$[(HgC(CF_3)_2)_5X]^{-}, X = Cl, Br, I$			
	1-Cl	1-Br	1-I	
Hg-Hg	3.495	3.490	3.507	
Hg-C	2.180	2.177	2.181	
<hg-c-hg< td=""><td>106.6</td><td>106.5</td><td>107.0</td></hg-c-hg<>	106.6	106.5	107.0	
< C-Hg-C	182.5	183.5	184.3	
Hg…X	3.084	3.226	3.435	
X…center	0.819	1.126	1.702	

$[(HgC(CF_3)_2)_5X_2]^{2-}, X = Cl, Br, I$						
EDA	1-2Cl		1 -2Br		1 -2I	
ΔE_{orb}	-84.65	33.42%	-85.06	31.27%	-82.52	28.93%
ΔE_{elec}	-161.02	63.56%	-177.92	65.40%	-189.72	66.52%
ΔE_{disp}	-7.65	3.02%	-9.06	3.33%	-12.98	4.55%
ΔE_{Pauli}	72.29		103.78		133.75	
ΔE_{int}	-181.03		-168.26		-151.47	

Table S3. Energy Decomposition Analysis under the PBE/TZP level for the studied systems (kcal/mol).

	$[(HgC(CF_3)_2)_5Ng_2], Ng = Ar, Kr, Xe$			
	1-2Ar	1-2Kr	1-2Xe	
Hg-Hg	3.546	3.543	3.547	
Hg-C	2.168	2.169	2.169	
<hg-c-hg< td=""><td>109.7</td><td>109.6</td><td>109.7</td></hg-c-hg<>	109.7	109.6	109.7	
< C-Hg-C	181.7	181.6	181.7	
Hg⋯Ng	3.764	3.841	4.031	
Ng…center	2.252	2.390	2.674	
Ng…Ng	4.504	4.779	5.347	

Table S4. Selected calculated distances (Å) and angles (degrees) for the hypothetical 1-2Ar, 1-2Kr and 1-2Xe mercuramacrocycle complexes.

Table S5: Energy Decomposition Analysis of the hypothetical noble-gas complexes (kcal/mol).

$[(HgC(CF_3)_2)_5Ng_2], Ng = Ar, Kr, Xe$						
	1-2Ar		1-2Kr		1-2Xe	
ΔE_{orb}	-4.68	22.55%	-5.28	19.24%	-7.20	20.61%
ΔE_{elec}	-4.29	20.67%	-6.87	25.04%	-9.35	26.76%
ΔE_{disp}	-11.78	56.77%	-15.29	55.72%	-18.39	52.63%
ΔE_{Pauli}	9.21		15.89		23.37	
ΔE_{int}	-11.54		-11.55		-11.57	