Supporting Information

Synthesis of Multibranched Australine Derivatives from Reducing Castanospermine Analogues through the Amadori Rearrangement of *gem*-Diamine Intermediates: Selective inhibitors of β -Glucosidase

Elena M. Sánchez Fernández,[†] Eleuterio Álvarez,[‡] Carmen Ortiz Mellet,^{†,*} and José M. García Fernández^{‡,*}

[†]Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, c/ Profesor García González nº 1, E-41012 Sevilla, Spain

[‡]Instituto de Investigaciones Químicas, CSIC – Universidad de Sevilla, c/ Américo Vespucio n° 49, Isla de la Cartuja, E-41092 Sevilla, Spain

mellet@us.es, jogarcia@iiq.csic.es

List of Contents

1. General Procedure for the Glycosidase Inhibition Assay	S2	
2. Lineweaver-Burk and Double Reciprocal Analysis Plots	S3-S4	
3. Copies of ¹ H and ¹³ C NMR Spectra of 8a, 12a-c, 13a-c, 16-19	S5-S15	
4. NOESY Spectra of 12b and 13b	S16-S17	
5. X-Ray Data for 19.	S18-S20	

1. General Procedure for the Glycosidase Inhibition Assay

Inhibitory potencies were determined by spectrophotometrically measuring the residual hydrolytic activities of the glycosidases against the respective o- (for β -glucosidase/ β galactosidase from bovine liver and β -galactosidase from E. coli) or p-nitrophenyl α - or β -D-glycopyranoside, in the presence of the corresponding 3-epi-australine derivative. Each assay was performed in phosphate buffer at the optimal pH for each enzyme. The $K_{\rm m}$ values for the different glycosidases used in the tests and the corresponding working pHs are listed herein: α -glucosidase (yeast), $K_m = 0.35$ mM (pH 6.8); isomaltase (yeast) $K_{\rm m}$ = 1.0 mM (pH 6.8), β -glucosidase (almonds), $K_{\rm m}$ = 3.5 mM (pH 7.3); β glucosidase/ β -galactosidase (bovine liver), $K_m = 2.0 \text{ mM}$ (pH 7.3); β - galactosidase (E. *coli*), $K_m = 0.12 \text{ mM}$ (pH 7.3); α -galactosidase (coffee beans), $K_m = 2.0 \text{ mM}$ (pH 6.8); trehalase (pig kidney), $K_m = 4.0 \text{ mM}$ (pH 6.2); amyloglucosidase (Aspergillus niger), $K_{\rm m}$ = 3.0 mM (pH 5.5); β -mannosidase (Helix pomatia), $K_{\rm m}$ = 0.6 mM (pH 5.5); α mannosidase (jack bean), $K_m = 2.0 \text{ mM}$ (pH 5.5); naringinase (*Penicillium decumbens*, β -glucosidase/ β -rhamnosidase activity). The reactions were initiated by addition of enzyme to a solution of the substrate in the absence or presence of various concentrations of inhibitor. After the mixture was incubated for 10-30 min at 37 °C or 55 °C the reaction was quenched by addition of 1 M Na₂CO₃. The absorbance of the resulting mixture was determined at 405 nm or 505 nm. Each experiment was performed in duplicate using [I] = 2, 0.4, 0.08, 0.04 y 0.02 μ M and [S] nearly K_m value. In those cases were K_i values lower that 10 μ M were obtained by this procedure (12b) and 12c against bovine liver β -glucosidase), refined K_i values and the enzyme inhibition mode were determined from the slope of Lineweaver-Burk plots and double reciprocal analysis (Figures S1-S2).

Figure S1. Lineweaver-Burk Plot for K_i determination (9.6 μ M) of **12b** against bovine liver β -glucosidase.

Figure S2. Lineweaver-Burk Plot for K_i determination (2.9 μ M) of **12c** against bovine liver β -glucosidase.

3. Copies of ¹H and ¹³C NMR Spectra of 8a, 12a-c, 13a-c, 16-19

Figure S3. ¹H NMR spectrum (500 MHz, CD₃OD) of 8a, n = 7.

Figure S4. ¹H and ¹³C NMR spectra (500 MHz and 125.7 MHz, respectively, CD₃OD) of **12a.**

of **12b.**

of **13a.**

of **13c.**

Figure S10. ¹H and ¹³C NMR spectra (300 MHz and 75.5 MHz, respectively, $CDCl_3$) of **16.**

Figure S11. ¹H and ¹³C NMR spectra (300 MHz and 75.5 MHz, respectively, CDCl₃) of **17.**

Figure S12. ¹H and ¹³C NMR spectra (300 MHz and 75.5 MHz, respectively, D_2O) of 18.

Figure S13. ¹H and ¹³C NMR spectra (500 MHz and 125.7 MHz, respectively, CD₃OD) of **19.**

4. NOESY Spectra of 12b and 13b.

Figure S14. NOESY spectrum of 12b (500 MHz).

Figure S15. NOESY spectrum of 13b (500 MHz).

5. X-Ray Data for 19.

Figure S16. Molecular structure of **19** showing the atom labeling scheme. Thermal ellipsoids are draw at the 50% probability level; all hydrogen atoms from carbon atoms are omitted for clarity.

Figure S17. Packing diagram of compound **19** showing the hydrogen-bond interactions as dotted lines.

Table S1. Crystal Data and Structure Refinement for 19.

Empirical formula	$C_{15}H_{28}N_2O_5$		
Formula weight	316.39		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2 ₁		
Unit cell dimensions	a = 8.836(2) Å	α= 90°.	
	b = 6.0632(19) Å	β= 100.167(7)°.	
	c = 16.037(5) Å	$\gamma = 90^{\circ}$.	
Volume	845.7(4) Å ³		
Z	2		
Density (calculated)	1.242 Mg/m ³		
Absorption coefficient	0.093 mm ⁻¹		
F(000)	344		
Crystal size	0.48 x 0.08 x 0.06 mm ³		
Theta range for data collection	1.29 to 26.33°.		
Index ranges	-10<=h<=10, -7<=k<=6, -20<=l<=19		
Reflections collected	13814		
Independent reflections	1861 [R(int) = 0.0669]		
Completeness to theta = 26.33°	98.2 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9945 and 0.9926		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	1861 / 0 / 203		
Goodness-of-fit on F ²	1.096		
Final R indices [I>2sigma(I)]	R1 = 0.0513, wR2 = 0.1319		
R indices (all data)	R1 = 0.0689, wR2 = 0.1718		
Largest diff. peak and hole	0.458 and -0.305 e.Å ⁻³		

in°).					
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(5)-H(5)O(4)#1	0.84	2.51	2.975(6)	116.0	

2.19

2.46

1.91

2.10

2.975(6)

2.882(6)

2.722(5)

2.951(6)

154.9

111.8

163.1

171.2

Table S2. Intermolecular Hydrogen Bonds for **19** in the Crystal (distance in Å; angles in °).

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y-1/2,-z #2 -x+1,y+1/2,-z #3 x,y-1,z

0.84

0.84

0.84

0.86

O(4)-H(4)...O(5)#2

O(3)-H(3)...O(5)#2

N(2)-H(2N)...O(1)#3

O(3)-H(3)...O(4)