Supporting Information

Brønsted acid Mediated Alkenylation and Copper-Catalyzed Aerobic Oxidative Ring Expansion/ Intramolecular Electrophilic Substitution of Indoles with Propargyl Alcohols: A Novel One Pot Approach to Cyclopenta[c]quinolines

G. Gangadhararao, Anasuyamma Uruvakilli and K. C. Kumara Swamy*
School of Chemistry, University of Hyderabad, Hyderabad -500046, Telangana, India. Fax: (+91)-40-23012460
e-mail: kckssc@uohyd.ac.in, kckssc@yahoo.com

Contents Pages
General Methods S2
Synthesis and characterization of substrates and products S2-S24
References S25
Optimization Table S1 S26-S27
Mechanism for the formation of indenylindole 5aa (Scheme S1) S28
Fluorescence spectra for compounds 4ad, 4cb and 4cc (Figure S1) S29
X-ray crystal structures of compounds 3ac, 4ac and 5ab (Figure S2-S4) S30-S31
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of new compounds (Figures S5-S78) S32-S68

General Methods: All reactions were carried out in air, unless otherwise specified. All Chemicals were procured from Aldrich or local manufacturers and used as purchased without further purification, unless noted. MeNO_{2} was distilled according to standard procedure. ${ }^{1}$ 1,2substituted indoles were prepared using known literature methods. ${ }^{2}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using 5 mm tubes on a Bruker 400 MHz NMR spectrometer [field strengths: 400, 100 MHz respectively] in CDCl_{3} solution (unless specified otherwise) with shifts referenced to $\mathrm{SiMe}_{4}\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}: \delta=0\right)$. All J values are in Hz . Melting points were determined using a SUPERFIT hot stage apparatus and were uncorrected. IR spectra were recorded on a JASCO FT/IR 5300 spectrophotometer. Elemental analyses were carried out on a Perkin-Elmer 240C CHN or Thermo Finnigan EA1112 CHNS analyzer. LC-MS data were obtained using electrospray ionization (positive mode) on a C-18 column. Mass spectra were recorded using HRMS (ESI-TOF analyzer) equipment. X-ray data were collected at 293 K on a Bruker AXSSMART or on an OXFORD diffractometer using Mo-K K_{α} radiation ($\lambda=0.71073 \AA$). Structures were solved and refined using standard methods. ${ }^{3}$

Synthesis of tertiary propargyl alcohols [2a-e]

Tertiary propargyl alcohols 2a-e were prepared by Sonogashira cross coupling reaction of aryl halides with terminal acetylinic propargyl alcohols under palladium catalysis. ${ }^{4}$ Among these, 2d-e are new.

In a round bottomed flask (50 mL) equipped with 1-chloro-4-iodobenzene ($2.0 \mathrm{~g}, 8.39$ $\mathrm{mmol}), \mathrm{PdCl}_{2}(0.05 \mathrm{~g}, 0.25 \mathrm{mmol}), \mathrm{PPh}_{3}(0.13 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $\mathrm{CuI}(0.10 \mathrm{~g}, 0.5 \mathrm{mmol})$ and acetonitrile (20 mL), was added 2-phenylbut-3-yn-2-ol ($1.47 \mathrm{~g}, 10.1 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(1.76 \mathrm{~mL}$, $12.6 \mathrm{mmol})$. Then the reaction mixture was stirred at room temperature for 6 h and progress of the reaction monitored by TLC. Upon completion of the reaction, the crude mixture was filtered, the solid residue was washed with EtOAc, and washings added to the filtrate and the whole
solution was concentrated under reduced pressure. Purification via column chromatography (ethyl acetate: hexane 1:4) yielded the desired product as orange solid.

4-(4-chlorophenyl)-2-phenylbut-3-yn-2-ol (2d). Yield 2.4 g (93\%); mp $60-62{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 3 \mathrm{H}), 2.55$ (qrt, $1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.5,134.6,133.0,128.7,128.5,127.9$, 125.0, 121.1, 93.5, 83.8, 70.4, 33.3; IR (KBr) 3375, 3058, 2981, 2230, 1589, 1398, 1085, 827, $762,707 \mathrm{~cm}^{-1}$; LC-MS: $\mathrm{m} / z 257$ [M+1] ${ }^{+}$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClO}: \mathrm{C}, 74.85 ; \mathrm{H}, 5.10$. Found: C, 74.68; H, 5.18.

4-(4-nitrophenyl)-2-phenylbut-3-yn-2-ol (2e). Procedure was similar to that for compound 2d using 1-bromo-4-nitrobenzene ($2.0 \mathrm{~g}, 9.9 \mathrm{mmol}$) and 2-phenylbut-3-yn-2-ol ($1.74 \mathrm{~g}, 11.9 \mathrm{mmol}$). Orange solid. Yield $2.5 \mathrm{~g}(93 \%) ; \mathrm{mp} 68-70{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{dd} \rightarrow \mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{qrt}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.3,144.9,132.6$, 129.5, 128.6, 128.1, 124.9, 123.6, 97.8, 83.0, 70.4, 33.0; IR (KBr) 3567, 3096, 2992, 1595, 1348, 1096, 866, $773 \mathrm{~cm}^{-1}$; LC-MS: m/z $268[\mathrm{M}+1]^{+}$; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3}$: C, $71.90 ; \mathrm{H}, 4.90$; N, 5.24. Found: C, 71.68; H, 4.97; N, 5.32.

Synthesis of 3-dienylindoles 3aa-3ea

Typical procedure for the synthesis of 3-dienylindole 3aa: An oven dried 25 mL roundbottomed flask was charged with N-methyl,2-phenyl indole 1a ($0.3 \mathrm{~g}, 1.45 \mathrm{mmol}$), propargyl alcohol $\mathbf{2 a}(0.35 \mathrm{~g}, 1.59 \mathrm{mmol})$, and PTSA (p-toluenesulfonic acid) $(0.41 \mathrm{~g}, 2.17 \mathrm{mmol})$. To this
was added nitromethane (4 mL) all at once and the mixture was stirred $\mathrm{rt}\left(25^{\circ} \mathrm{C}\right)$ for 30 min . After completion of the reaction (TLC), the solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate (20 mL), neutralized with aq. NaOH and then washed with water ($2 \times 10 \mathrm{~mL}$) followed by brine solution $(10 \mathrm{~mL})$. The organic part was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. Purification by column chromatography (ethyl acetate: hexane 2:98) afforded the desired product 3aa as orange solid. Compounds 3ab-3ea were prepared by using the same procedure.

(Z)-3-(1,3-diphenylbuta-1,3-dienyl)-1-methyl-2-phenyl-1H-indole (3aa). Yield 0.493 g (83%); mp 180-182 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56$ (dd, $J=8.0 \mathrm{~Hz}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.38-7.27 (m, 11H), 7.13-7.00 (m, 6H), $6.83(\mathrm{~s}, 1 \mathrm{H}), 5.20$ and $4.98(2 \mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 145.7,143.1,141.0,138.7,137.8,136.9,131.8,130.3,130.0,128.2$, 128.1, 127.7, 127.4, 127.3, 126.8, 126.4, 121.7, 120.5, 119.7, 115.8, 112.9, 109.4, 31.2; IR (KBr) $3047,3014,2937,2915,1600,1567,1485,1458,1436,1370,1326,1227,1151,1014,740 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}\left(\mathrm{M}^{+}+\mathrm{H}\right)$: $m / z 412.2066$. Found: 412.2066.

(Z)-1-methyl-2-phenyl-3-(3-phenyl-1-p-tolylbuta-1,3-dienyl)-1H-indole
(3ab). This compound was prepared by following a route similar to that for $\mathbf{3 a} \mathbf{a}$ using $\mathbf{1 a}(0.35 \mathrm{~g}, 1.68$ $\mathrm{mmol})$ and $\mathbf{2 b}(0.44 \mathrm{~g}, 1.85 \mathrm{mmol})$. Orange solid. Yield $0.58 \mathrm{~g}(81 \%) ; \mathrm{mp} 160-162{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-$ $6.98(\mathrm{~m}, 6 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 5.17$ and $4.94(2 \mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.7,141.0,140.2,138.6,137.8,137.2,136.6,131.8,130.3,129.2,129.0$, $128.3,128.1,127.6,127.3,127.1,126.7,126.4,121.7,120.5,119.7,115.5,112.9,109.3,31.2$, 21.2; IR (KBr) 3041, 2926, 1600, 1567, 1468, 1364, 1332, 1184, 1145, 1014, 904, 811, $740 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}\left(\mathrm{M}^{+}+\mathrm{H}\right): m / z 426.2222$. Found: 426.2220 .

(Z)-3-(1-(4-methoxyphenyl)-3-phenylbuta-1,3-dienyl)-1-methyl-2-phenyl-1H-indole (3ac). This compound was prepared by following a procedure similar to that for 3aa using $\mathbf{1 a}(0.3 \mathrm{~g}$, $1.45 \mathrm{mmol})$ and 2c ($0.4 \mathrm{~g}, 1.59 \mathrm{mmol})$. White solid. Yield $0.478 \mathrm{~g}(75 \%) ; \mathrm{mp} 158-160{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 8 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 4 \mathrm{H}), 6.90$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 5.07$ and $4.83(2 \mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $3.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,145.7,141.1,138.5,137.8,136.2,135.6$, $131.8,130.3,128.4,128.3,128.1,127.6,127.3,126.7,126.4,121.7,120.5,119.7,115.3,113.6$, 113.0, 109.3, 55.3, 31.2; IR (KBr) 3052, 2992, 2942, 2833, 1600, 1507, 1468, 1359, 1255, 1184, 1047, 1014, 904, $833 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{NO}\left(\mathrm{M}^{+}+\mathrm{H}\right): m / z 442.2172$. Found: 442.2169; X-ray structure has been determined for this compound.

(Z)-3-(1-(4-chlorophenyl)-3-phenylbuta-1,3-dienyl)-1-methyl-2-phenyl-1H-indole
(3ad).
Procedure was similar to that for compound 3aa using 1a ($0.28 \mathrm{~g}, 1.36 \mathrm{mmol}$) and $\mathbf{2 d}(0.38 \mathrm{~g}$,
$1.49 \mathrm{mmol})$. Orange solid. Yield $0.525 \mathrm{~g}(87 \%)$; mp $164-166{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ $7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.18-7.10 (m, 8H), 7.07-7.06 (m, 3H), $6.83(\mathrm{~s}, 1 \mathrm{H}), 5.29$ and $5.20(2 \mathrm{~s}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 141.1,136.9,136.3,133.8,133.3,131.2,128.4,127.2,125.7,125.5$, $123.9,123.6,123.5,123.4,123.3,123.0,122.9,122.8,122.2,121.8,117.4,115.7,115.6,111.2$, 108.0, 104.9, 25.7; IR (KBr) 3052, 2942, 1611, 1490, 1364, 1310, 1227, 1156, 1090, 1014, 904, $838 \mathrm{~cm}^{-1}$; HRMS (ESI):Calcd. for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{ClN}\left(\mathrm{M}^{+}+\mathrm{H}\right.$ and $\left.\mathrm{M}^{+}+\mathrm{H}+2\right): m / z 446.1676$ and 448.1676. Found: 446.1669 and 448.1653.

(Z)-1-methyl-3-(1-(4-nitrophenyl)-3-phenylbuta-1,3-dienyl)-2-phenyl-1H-indole (3ae). This compound was prepared by following a procedure similar to that for 3aa using $\mathbf{1 a}(0.25 \mathrm{~g}, 1.21$ mmol) and 2e ($0.35 \mathrm{~g}, 1.33 \mathrm{mmol}$). Orange solid. Yield $0.472 \mathrm{~g}(86 \%) ; \mathrm{mp} 166-168{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 8.09$ (d, $\left.J=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.56(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36$ (d, $J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 7 \mathrm{H}), 7.11-7.02(\mathrm{~m}, 6 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 5.29$ and $5.11(2 \mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.8,146.7,145.2,140.3,139.1,137.7,135.2,133.4$, $131.3,130.1,128.3,128.0,127.8,127.5,127.4,127.1,126.4,123.5,122.1,120.1,117.5,111.8$, 109.6, 31.2; IR (KBr) 3052, 1584, 1512, 1474, 1348, 1107, 910, 855, $751 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$: $m / z 479.1736$. Found: 479.1739.

(Z)-3-(1,3-diphenylbuta-1,3-dienyl)-1-methyl-2-p-tolyl-1H-indole (3ba). This compound was prepared by following a procedure similar to that for 3aa using $\mathbf{1 b}(0.24 \mathrm{~g}, 1.07 \mathrm{mmol})$ and $\mathbf{2 a}$ ($0.26 \mathrm{~g}, 1.17 \mathrm{mmol}$). Pale yellow solid. Yield 0.372 g (82%); mp $152-154{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.07$ $(\mathrm{m}, 6 \mathrm{H}), 6.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 5.18$ and $4.94(2 \mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.6,143.2,140.9,138.8,137.7,137.5,137.0,130.2$, $130.0,128.9,128.3,128.2,127.3_{2}, 127.2_{8}, 126.7,126.4,121.6,120.4,119.6,115.5,112.6,109.3$, 31.1, 21.3; IR (KBr) 3047, 3014, 2910, 1600, 1496, 1468, 1370, 1332, 1019, 899, $822 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}\left(\mathrm{M}^{+}+\mathrm{H}\right): m / z 426.2222$. Found: 426.2221.

(Z)-3-(1,3-diphenylbuta-1,3-dienyl)-2-(4-fluorophenyl)-1-methyl-1H-indole (3ca). Procedure was similar to that for compound 3aa using $\mathbf{1 c}(0.22 \mathrm{~g}, 0.98 \mathrm{mmol})$ and $\mathbf{2 a}(0.24 \mathrm{~g}, 1.07 \mathrm{mmol})$. Pale yellow solid. Yield 0.332 g (79%); mp $180-182{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-$ $7.49(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 8 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 4 \mathrm{H}), 6.99-6.92(\mathrm{~m}, 4 \mathrm{H}), 6.79(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.18 and $4.92(2 \mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.5(\mathrm{~d}, J=246.0 \mathrm{~Hz}$), $145.5,143.0,140.6,137.7(\mathrm{~d}, J=16.0 \mathrm{~Hz}), 136.8,132.0(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 130.1,128.3,128.1$, $127.8,127.5,127.4,127.2,126.9,126.2,121.9,120.5,119.8,115.7,115.2(\mathrm{~d}, J=21.0 \mathrm{~Hz})$, 113.1, 109.4, 31.1; IR (KBr) 3052, 1605, 1551, 1468, 1337, 1227, 1162, 904, $849 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{FN}\left(\mathrm{M}^{+}+\mathrm{H}\right): m / z 430.1972$. Found: 430.1970.

(Z)-1,2-dimethyl-3-(1-(4-nitrophenyl)-3-phenylbuta-1,3-dienyl)-1H-indole (3de). This compound was prepared by following a procedure similar to that for 3aa using $\mathbf{1 d}(0.19 \mathrm{~g}, 1.31$ $\mathrm{mmol})$ and $2 \mathrm{e}(0.39 \mathrm{~g}, 1.44 \mathrm{mmol})$. Brown liquid. Yield $0.341 \mathrm{~g}(66 \%) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 4 \mathrm{H})$, 6.95-6.85 (m, 5H), $5.40(\mathrm{~s}, 2 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H})$. Note: For this compound as well as 3ad, the NMR spectra in CDCl_{3}. indicated isomerism (possibly). While in the case of 3ad, we could get a better spectrum in $\mathrm{C}_{6} \mathrm{D}_{6}$ (vide infra), for 3de, the spectrum still exhibited additional peaks due to (possibly) diene isomerization. However this feature did not affect the isolation of the final product 4de; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.5,147.0,146.9,140.0,136.9,135.5$, 132.7, 129.0, 128.0, 127.2, 126.8, 126.6, 126.3, 123.6, 120.8, 119.9, 119.4, 119.3, 110.8, 108.4, 29.3, 11.4; IR (neat) $3058,2926,2855,1600,1507,1474,1342,1107,904,855 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right): m / z 395.1760$. Found: 395.1758.

(Z)-3-(1,3-diphenylbuta-1,3-dienyl)-2-phenyl-1H-indole (3ea). This compound was prepared by following a procedure similar to that for 3aa using $\mathbf{1 e}(0.2 \mathrm{~g}, 1.04 \mathrm{mmol})$ and $\mathbf{2 a}(0.25 \mathrm{~g}, 1.14$ mmol). This compound is known, ${ }^{5}$ but we could not find the spectroscopic data in the literature. Yellow liquid. Yield $0.374 \mathrm{~g}(91 \%) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{br} 1 \mathrm{H}), 7.56(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 8 \mathrm{H}), 7.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.94(\mathrm{~m}, 7 \mathrm{H})$, 5.10 and $5.05(2 \mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.0,142.3,140.7,136.5,135.9,135.3$, $132.4,130.4,129.3,128.5,128.4,127.5,127.4,127.2,127.1,127.0,126.6,126.4,122.3,120.4$, 120.0, 117.1, 112.6, 110.6; IR (neat) 3419, 3052, 3025, 1595, 1496, 1441, 1266, 1074, 1025, 904, $740 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}\left(\mathrm{M}^{+}+\mathrm{H}\right): \mathrm{m} / \mathrm{z}$ 398.1909. Found: 398.1905.

Synthesis of cyclopenta[c]quinolines (4) and 3-indenylindoles (5)

Typical procedure for the synthesis of 4aa and 5aa: To an oven dried round-bottomed flask $(10 \mathrm{~mL})$, diene 3aa ($0.248 \mathrm{~g}, 0.60 \mathrm{mmol})$, $\mathrm{Cu}(\mathrm{OTf})_{2}(0.043 \mathrm{~g}, 0.12 \mathrm{mmol})$, PTSA ($0.23 \mathrm{~g}, 1.2$ mmol) and nitromethane (4 mL) were added. The mixture was stirred at $80^{\circ} \mathrm{C}$ for $3-5 \mathrm{~h}$ in open air. After completion of the reaction (TLC), the solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate (20 mL), neutralized with aq. NaOH solution and then washed with water ($2 \times 10 \mathrm{~mL}$) followed by brine solution $(10 \mathrm{~mL})$. The organic part was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. Purification by column chromatography (ethyl acetate: hexane 1:9) afforded the desired products 4aa and 5aa. Compound 3-indenyl indole (5aa) eluted first.

5-methyl-1,3,4-triphenyl-5H-cyclopenta[c]quinoline (4aa). Red solid. Yield $0.158 \mathrm{~g}(64 \%) ;$ $\mathrm{mp} 218-220{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 4 \mathrm{H})$, 7.14-7.12 (m, 3H), 6.88 (br, 5H), 3.74 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.5,140.4$, 139.2, 133.7, 133.6, 133.1, 130.4, 129.7, 129.6, 129.2, 128.5, 127.9, 127.3, 126.9, 125.9, 124.7, 124.4, 124.2, 124.1, 124.0, 123.6, 119.8, 119.7, 116.6, 38.5; IR (KBr) 3052, 3013, 2920, 2822, 1599, 1578, 1534, 1462, 1364, 1320, 1238, 1112, $843 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{~N}$ $\left(\mathrm{M}^{+}+\mathrm{H}\right): m / z 410.1909$. Found: 410.1908.

1-methyl-3-(1-methyl-1-phenyl-1H-inden-3-yl)-2-phenyl-1H-indole (5aa). White solid. Yield $0.055 \mathrm{~g}(22 \%) ; \mathrm{mp} 164-166{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-$ $7.52(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 7 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 3 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.0,145.4,143.6,143.4,138.9,137.5$, $135.2,132.0,130.8,129.4,128.6,128.3,128.2,128.0,127.6,126.4,126.3,126.2,125.4,122.5$, $122.2,121.7,120.5,119.9,109.7,109.1,55.9,31.2,22.9$; IR (KBr) 3058, 2964, 2921, 1600, 1496, 1463, 1364, 1321, 1266, 1156, 1079, 1019, $751 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}$ $\left(\mathrm{M}^{+}+\mathrm{H}\right): m / z 412.2066$. Found: 412.2066.

Compounds 4ab and 5ab: These compounds were prepared by following a procedure similar to that for $\mathbf{4} \mathbf{a} \mathbf{a}$ and $\mathbf{5 a} \mathbf{a}$ using $\mathbf{3 a b}(0.392 \mathrm{~g}, 0.92 \mathrm{mmol})$.

5-methyl-3,4-diphenyl-1-p-tolyl-5H-cyclopenta[c]quinoline (4ab). Red solid. Yield 0.238 g (61\%); mp 224-226 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.63$ (m, $3 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 3 \mathrm{H})$, 6.90-6.88 (m, 5H), 3.73 (s, 3H), $2.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.4,139.2$, $137.4,135.5,133.8,133.6,133.3,130.4,129.7,129.4,129.3,129.2,127.9,127.2,126.9,124.6$, 124.3, 124.1, 123.9, 123.6, 119.8, 119.5, 116.5, 38.4, 21.4; IR (KBr) 3046, 3014, 2915, 1605,

1578, 1512, 1463, 1364, 1326, 1238, 1107, $827 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{~N}\left(\mathrm{M}^{+}+\right.$ H): m / z 424.2066. Found: 424.2064.

3-(1,6-dimethyl-1-phenyl-1H-inden-3-yl)-1-methyl-2-phenyl-1H-indole (5ab). White solid. Yield $0.10 \mathrm{~g}(26 \%) ; \mathrm{mp} 192-194{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.49-7.46 (m, 3H), 7.41-7.34 (m, 4H), 7.27-7.20 (m, 6H), 7.05-6.95 (m, 3H), $6.23(\mathrm{~s}, 1 \mathrm{H}), 3.79$ (s, 3H), $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.3,144.5,143.7,141.1$, $138.9,137.5,135.1,132.0,130.9,128.3,128.2,128.0,127.6,127.1,126.3,123.4,122.1,121.4$, 120.6, 119.9, 109.6, 109.3, 55.7, 31.2, 23.0, 21.6; IR (KBr) 3047, 2964, 2915, 1616, 1463, 1436, 1364, 1321, 1233, 1156, 1079, 1019, $816 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}\left(\mathrm{M}^{+}+\mathrm{H}\right): m / z$ 426.2222. Found: 426.2223. X-ray structure has been determined for this compound.

Compounds 4ac and 5ac: These compounds were prepared by following a procedure similar to that for $\mathbf{4} \mathbf{a a}$ and $\mathbf{5 a} \mathbf{a}$ using $\mathbf{3 a c}(0.25 \mathrm{~g}, 0.57 \mathrm{mmol})$.

1-(4-methoxyphenyl)-5-methyl-3,4-diphenyl-5H-cyclopenta[c]quinoline (4ac). Red solid. Yield $0.132 \mathrm{~g}(53 \%) ; \mathrm{mp} 176-178{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.66-7.63 (m, 3H), 7.37 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H})$, $7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.89-6.87(\mathrm{~m}, 5 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz ,
CDCl_{3}) $\delta 158.1,148.4,139.2,133.8,133.7,133.3,132.8,130.6,130.4,129.7,129.2,127.9$, $127.5,127.2,126.9,126.5,124.5,124.1_{1}, 124.05,123.9,123.3,119.7,119.4,116.5,114.0,55.4$, 38.4; IR (KBr) 3063, 3013, 2926, 2822, 1610, 1578, 1506, 1440, 1369, 1282, 1243, 1156, 1024, $832 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{NO}\left(\mathrm{M}^{+}+\mathrm{H}\right): m / z 440.2015$. Found: 440.2015. X-ray structure was determined for this compound.

3-(6-methoxy-1-methyl-1-phenyl-1H-inden-3-yl)-1-methyl-2-phenyl-1H-indole (5ac). White solid. Yield $0.075 \mathrm{~g}(30 \%)$; mp $176-178{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 6 \mathrm{H}), 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.72$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.3,155.8,143.6,143.4,138.8,137.5,136.6,134.7$, $132.0,130.8,128.3,128.2,128.0,127.6,126.3,126.2,122.1,120.5,119.9,111.3,109.7,109.4$, 109.3, 55.8, 55.5, 31.3, 23.1; IR (KBr) 3058, 2964, 2921, 2827, 1600, 1463, 1436, 1364, 1288, 1238, 1178, 1079, 1019, $827 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{NO}\left(\mathrm{M}^{+}+\mathrm{H}\right): m / z 442.2172$. Found: 442.2170.

Compounds 4ad and 5ad: These compounds were prepared by following a procedure similar to that for $\mathbf{4 a a}$ and 5aa using $\mathbf{3 a d}(0.62 \mathrm{~g}, 1.39 \mathrm{mmol})$.

1-(4-chlorophenyl)-5-methyl-3,4-diphenyl-5H-cyclopenta[c]quinoline (4ad). Red solid. Yield $0.387 \mathrm{~g}(63 \%) ; \mathrm{mp} 206-208{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.73$7.68(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.13(\mathrm{~m}$, $3 \mathrm{H})$, 6.95-6.91 (m, 5H), $3.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 148.7, 139.0, 138.9, 133.7, $133.4,132.7,131.5,130.8,130.3,129.6,129.3,128.6,127.9,127.5,126.9,124.8,124.2,124.1$, 124.0, 122.1, 119.9, 119.8, 116.7, 38.4; IR (KBr) 3047, 1611, 1584, 1512, 1463, 1397, 1370, 1244, 1090, 1003, $827 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{ClN}\left(\mathrm{M}^{+}+\mathrm{H}\right.$ and $\left.\mathrm{M}^{+}+\mathrm{H}+2\right): m / z$ 444.1520 and 446.1520 . Found: 444.1517 and 446.1484.

3-(6-chloro-1-methyl-1-phenyl-1H-inden-3-yl)-1-methyl-2-phenyl-1H-indole (5ad). White solid. Yield $0.173 \mathrm{~g}(28 \%)$; mp $188-190{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 7 \mathrm{H}), 7.16(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}$, $J=8.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.8,145.6,142.5,142.1,139.0,137.5,134.7,131.9,131.3,130.8$, $128.6,128.5,128.4,128.2,128.0,127.4,126.6_{2}, 126.5_{7}, 126.2,123.1,122.6,122.3,120.2,120.1$, 109.8, 108.6, 56.0, 31.3, 22.8; IR (KBr) 3058, 3030, 2964, 2926, 2855, 1600, 1496, 1463, 1375, 1255, 1096, 1008, $833 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{ClN}\left(\mathrm{M}^{+}+\mathrm{H}\right.$ and $\left.\mathrm{M}^{+}+\mathrm{H}+2\right): \mathrm{m} / \mathrm{z}$ 446.1676 and 448.1676 . Found: 446.1682 and 448.1665.

5-methyl-1-(4-nitrophenyl)-3,4-diphenyl-5H-cyclopenta[c]quinoline (4ae). This compound was prepared by following a procedure similar to that for 4aa and 5aa using 3ae ($0.372 \mathrm{~g}, 0.81$ $\mathrm{mmol})$. The corresponding 3-indenyl indole could not be isolated. Brown solid. Yield 0.274 g (74%); mp 206-208 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.94-6.85(\mathrm{~m}, 5 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.3,147.6,145.4,138.6,133.8,133.0,132.0,130.3,129.5,129.3,128.3$, $128.0,127.0,125.6,124.5,124.4,124.0_{3}, 123.9_{5}, 123.8,121.5,120.9,120.8,117.1,38.7$; IR (KBr) 3052, 2915, 1595, 1573, 1512, 1332, 1238, 1112, $855 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right): m / z 455.1760$. Found: 455.1759.

5-methyl-1,3-diphenyl-4-p-tolyl-5H-cyclopenta[c]quinoline (4ba). This compound was prepared by following a procedure similar to that for 4aa and 5aa using 3ba ($0.35 \mathrm{~g}, 0.81 \mathrm{mmol}$). The corresponding 3-indenyl indole could not be isolated. Red solid. Yield $0.191 \mathrm{~g}(56 \%) ; \mathrm{mp}$ $160-162{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.13-7.09 (m, 3H), 6.93-6.88 (m, 7H), 3.79 (s, 3H), $2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $148.9,140.5,139.3,139.2,133.8,132.9,130.7,130.3,129.8,129.6,128.49,128.48,127.4,126.8$, $125.9,124.6,124.5,124.2,123.9,123.7,123.5,120.1,119.6,116.6,38.4,21.3$; IR (KBr) 3058,

2959, 2921, 2849, 1600, 1490, 1463, 1321, 1260, 1112, 1019, $822 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{~N}\left(\mathrm{M}^{+}+\mathrm{H}\right): m / z 424.2066$. Found: 424.2066.

Compounds 4ca and 5ca: These compounds were prepared by following a procedure similar to that for 4aa and 5aa using 3ca ($0.273 \mathrm{~g}, 0.64 \mathrm{mmol})$.

4-(4-fluorophenyl)-5-methyl-1,3-diphenyl-5H-cyclopenta[c]quinoline (4ca). Red solid. Yield $0.159 \mathrm{~g}(59 \%) ; \mathrm{mp} 254-256{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 2 \mathrm{H}), 3.73$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.2(\mathrm{~d}, J=248.0 \mathrm{~Hz}$), 147.3, 140.3, 139.1, 133.7, 133.2, 132.3 ($\mathrm{d}, J=8.0 \mathrm{~Hz}$), 129.8, 129.5, 128.5, 127.1, 127.0, 126.0, 124.7, 124.4, 124.3, 124.2, 124.1, 123.7, 120.3, 119.6, 116.6, 115.0 (d, $J=22.0 \mathrm{~Hz}$), 38.3; IR (KBr) 3052, 2921, 2849, 1710, 1595, 1578, 1501, 1463, 1222, $844 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{FN}\left(\mathrm{M}^{+}+\mathrm{H}\right)$: $m / z 428.1815$. Found: 428.1814 .

2-(4-fluorophenyl)-1-methyl-3-(1-methyl-1-phenyl-1H-inden-3-yl)-1H-indole (5ca). White solid. Yield $0.086 \mathrm{~g}(32 \%) ; \mathrm{mp} 168-170{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 7 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.09-$ $7.05(\mathrm{~m}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.6(\mathrm{~d}, J$ $=247.0 \mathrm{~Hz}), 153.9,145.5,143.4(\mathrm{~d}, J=32.0 \mathrm{~Hz}), 137.6(\mathrm{~d}, J=31.0 \mathrm{~Hz}), 135.0,132.5(\mathrm{~d}, J=8.0$
$\mathrm{Hz}), 128.3,128.0,127.5,126.4,126.2,125.5,122.7,122.3,121.7,120.5,120.1,115.3$ (d, $J=$ 21.0 Hz), 109.7, 109.4, 56.0, 31.2, 23.0; IR (KBr) 3047, 2959, 1600, 1545, 1501, 1468, 1326, 1216, 1156, 1019, $844 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{FN}\left(\mathrm{M}^{+}+\mathrm{H}\right): m / z 430.1972$. Found: 430.1971 .

4,5-dimethyl-1-(4-nitrophenyl)-3-phenyl-5H-cyclopenta[c]quinoline (4de). This compound was prepared by following a procedure similar to that for 4aa and 5aa using 3de ($0.163 \mathrm{~g}, 0.41$ $\mathrm{mmol})$. The corresponding 3 -indenyl indole could not be isolated. Red solid. Yield 0.114 g (70\%); mp 154-156 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 147.8,147.5,145.3,140.1,133.8,131.8,130.3,129.3,128.0,127.4,126.0,125.4$, 124.1, 123.9, 123.6, 120.9, 120.8, 120.5, 116.3, 35.7, 19.6; IR (KBr) 3052, 2921, 2844, 1578, 1540, 1507, 1370, 1332, 1244, 1107, $855 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right)$: $m / z 393.1604$. Found: 393.1606.

3-(1-methyl-1-phenyl-1H-inden-3-yl)-2-phenyl-1H-indole (5ea). This compound was prepared by following a procedure similar to that for 4aa and 5aa using 3ea ($0.34 \mathrm{~g}, 0.86 \mathrm{mmol}$). The corresponding cyclopenta[c]quinoline could not be isolated. Pale yellow solid. Yield 0.241 g
(71\%); mp 168-170 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.35(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 8 \mathrm{H})$, $7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.0,145.6,143.3,136.1,135.2,135.1,132.8,129.4,128.7$, $128.5,127.8,126.5,126.3,125.6,122.7_{9}, 122.7_{5}, 121.9,120.4,120.3,111.0,108.5,56.3,23.0$; IR (KBr) 3414, 3052, 2964, 2921, 2860, 1595, 1490, 1441, 1321, 1222, 1025, 838, $740 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}\left(\mathrm{M}^{+}+\mathrm{H}\right): \mathrm{m} / \mathrm{z}$ 398.1909. Found: 398.1910.

One pot synthesis of cyclopenta[c]quinolines [4aa-4ga]

An oven dried 25 mL round-bottomed flask was charged with N-methyl-2-phenyl indole 1a $(0.1 \mathrm{~g}, 0.48 \mathrm{mmol})$, propargyl alcohol $\mathbf{2 a}(0.12 \mathrm{~g}, 0.53 \mathrm{mmol})$, PTSA (p-toluenesulfonic acid) $(0.23 \mathrm{~g}, 1.21 \mathrm{mmol})$ and nitromethane $(4 \mathrm{~mL})$. The mixture was stirred at rt for 30 min . and then $\mathrm{Cu}(\mathrm{OTf})_{2}(0.035 \mathrm{~g}, 0.097 \mathrm{mmol})$ was added to the contents. The contents were stirred at $80{ }^{\circ} \mathrm{C}$ for 3-5 h in open air. After completion of the reaction (TLC), the solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate (20 mL), neutralized with aq. NaOH solution and then washed with water $(2 \times 10 \mathrm{~mL})$ followed by brine solution $(10 \mathrm{~mL})$. The organic part was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. Purification by column chromatography (ethyl acetate: hexane 1:9) afforded the desired product $\mathbf{4 a a}(0.13 \mathrm{~g}$, 65%). Similarly, compounds 4ab-4ga were prepared by using the same procedure.

Compound 4ab: Precursors $\mathbf{1 a}(0.2 \mathrm{~g}, 0.97 \mathrm{mmol})$ and $\mathbf{2 b}(0.25 \mathrm{~g}, 1.06 \mathrm{mmol})$ were used. Yield: 0.24 g (58\%). Analytical data are given above.

Compound 4ac: Precursors 1a $(0.22 \mathrm{~g}, 1.06 \mathrm{mmol})$ and $2 \mathrm{c}(0.29 \mathrm{~g}, 1.17 \mathrm{mmol})$ were used. Yield: $0.24 \mathrm{~g}(52 \%)$. Analytical data are given above.

Compound 4ad: Precursors $1 \mathbf{a}(0.14 \mathrm{~g}, 0.69 \mathrm{mmol})$ and $2 \mathrm{~d}(0.19 \mathrm{~g}, 0.76 \mathrm{mmol})$ were used. Yield: $0.2 \mathrm{~g}(67 \%)$. Analytical data are given above.

Compound 4ae: Precursors 1a $(0.2 \mathrm{~g}, 0.97 \mathrm{mmol})$ and $\mathbf{2 e}(0.28 \mathrm{~g}, 1.06 \mathrm{mmol})$ were used. Yield: $0.34 \mathrm{~g}(78 \%)$. Analytical data are given above.

1-butyl-5-methyl-3,4-diphenyl-5H-cyclopenta[c]quinoline (4af). Precursors 1a (0.2 g, 0.97 $\mathrm{mmol})$ and $2 \mathrm{f}(0.22 \mathrm{~g}, 1.06 \mathrm{mmol})$ were used. Red solid. Yield $0.23 \mathrm{~g}(61 \%) ; \mathrm{mp} 128-130{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.87-6.81(\mathrm{~m}$, $5 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.5$, 139.6, 133.9, 133.7, 132.7, 130.4, 129.7, 129.0, $127.8,126.8,126.5,125.4,124.7,124.3124 .1,123.8,123.6,119.2_{1}, 119.1_{6}, 116.3,38.2,32.2$, $30.2,23.3$, 14.3; IR (neat) 3052, 2953, 2921, 2860, 1732, 1605, 1584, 1551, 1463, 1370, 1326, 1112, $745 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{~N}\left(\mathrm{M}^{+}+\mathrm{H}\right): m / z$ 390.2222. Found: 390.2221.

Compound 4ba: Precursors $\mathbf{1 b}(0.18 \mathrm{~g}, 0.83 \mathrm{mmol})$ and $\mathbf{2 a}(0.2 \mathrm{~g}, 0.91 \mathrm{mmol})$ were used. Yield: $0.21 \mathrm{~g}(60 \%)$. Analytical data are given above.

5-methyl-3-phenyl-1,4-dip-tolyl-5H-cyclopenta[c]quinoline (4bb). Precursors 1b (0.225 g, $1.02 \mathrm{mmol})$ and $\mathbf{2 b}(0.264 \mathrm{~g}, 1.12 \mathrm{mmol})$ were used. Red solid. Yield $0.237 \mathrm{~g}(53 \%) ; \mathrm{mp} 228-$ $230{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.07(\mathrm{~m}, 3 \mathrm{H}), 6.91-6.83(\mathrm{~m}, 7 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H})$, $2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.7,139.4,139.2,137.5,135.4,133.8,133.0$, $130.8,130.3,129.8,129.4,129.2,128.5,127.3,126.8,124.6,124.5,124.2,123.9,123.7,123.5$, 120.1, 119.4, 116.5, 38.4, 21.4, 21.3; IR (KBr) 3047, 3014, 2910, 1605, 1578, 1540, 1501, 1397,

1326, 1244, 1178, 1112, 1008, $827 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{~N}\left(\mathrm{M}^{+}+\mathrm{H}\right): \mathrm{m} / \mathrm{z}$ 438.2222. Found: 438.2222.

1-(4-chlorophenyl)-5-methyl-3-phenyl-4-p-tolyl-5H-cyclopenta[c]quinoline (4bd). Precursors $\mathbf{1 b}(0.25 \mathrm{~g}, 1.13 \mathrm{mmol})$ and $\mathbf{2 d}(0.32 \mathrm{~g}, 1.24 \mathrm{mmol})$ were used. Red solid. Yield $0.329 \mathrm{~g}(64 \%)$; $\mathrm{mp} 216-218{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.43$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.07(\mathrm{~m}, 3 \mathrm{H}), 6.94-$ $6.84(\mathrm{~m}, 7 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.1,139.3,139.2$, $139.0,133.8,132.4,131.5,130.8,130.5,130.3,129.7,128.6,128.5,127.5,126.8,124.8,124.3$, 124.1, 123.8, 122.0, 120.2, 119.8, 116.7, 38.5, 21.3; IR (KBr) 3041, 3025, 2921, 2855, 1611, 1573, 1540, 1507, 1392, 1370, 1249, 1085, 1014, $833 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{ClN}$ $\left(\mathrm{M}^{+}+\mathrm{H}\right.$ and $\left.\mathrm{M}^{+}+\mathrm{H}+2\right): m / z 458.1676$ and 460.1676. Found: 458.1675 and 460.1644.

5-methyl-1-(4-nitrophenyl)-3-phenyl-4-p-tolyl-5H-cyclopenta[c]quinoline (4be). Precursors $\mathbf{1 b}(0.15 \mathrm{~g}, 0.68 \mathrm{mmol})$ and $\mathbf{2 e}(0.20 \mathrm{~g}, 0.75 \mathrm{mmol})$ were used. Red solid. Yield $0.232 \mathrm{~g}(72 \%)$; mp 230-232 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95-6.87(\mathrm{~m}, 5 \mathrm{H}), 6.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.83$
(s, 3H), $2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.7,147.7,145.4,139.6,138.7$, 133.9, $131.8,130.2,129.6,129.3,128.6,128.3,126.9,125.5,124.3,124.0_{4}, 123.9_{6}, 121.4,121.1,120.8$, 117.1, 38.7, 21.3; IR (KBr) 3074, 2970, 2921, 1589, 1573, 1540, 1244, 1189, 1107, 1014, 849 cm^{-1}; HRMS (ESI): Calcd. for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right): m / z$ 469.1917. Found: 469.1917.

Compound 4ca: Precursors 1c ($0.18 \mathrm{~g}, 0.8 \mathrm{mmol})$ and $\mathbf{2 a}(0.2 \mathrm{~g}, 0.88 \mathrm{mmol})$ were used. Yield: 0.23 g (66%). Analytical data are given above.

4-(4-fluorophenyl)-5-methyl-3-phenyl-1-p-tolyl-5H-cyclopenta[c]quinoline (4cb). Precursors $\mathbf{1 c}(0.228 \mathrm{~g}, 1.01 \mathrm{mmol})$ and $\mathbf{2 b}(0.263 \mathrm{~g}, 1.11 \mathrm{mmol})$ were used. Red solid. Yield 0.251 g (56%); mp 258-260 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.62(\mathrm{~m}$, $3 \mathrm{H}), 7.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 6.98-6.93$ $(\mathrm{m}, 3 \mathrm{H}), 6.85(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83-6.78(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.2(\mathrm{~d}, J=248.0 \mathrm{~Hz}), 147.2,139.1,137.3,135.6,133.7,133.4,132.3(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz})$, 129.8, 129.7, 129.4, 129.3, 127.1, 127.0, 124.7, 124.5, 124.3 ${ }_{0}, 124.2_{6}, 124.0,123.8$, 120.3, 119.4, 116.5, $115.0(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 38.4,21.4$; $\mathrm{IR}(\mathrm{KBr}) 3063,3019,2942,2921,1611$, 1578, 1507, 1370, 1216, 1003, $855 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{FN}\left(\mathrm{M}^{+}+\mathrm{H}\right): m / z$ 442.1972. Found: 442.1972.

4-(4-fluorophenyl)-1-(4-methoxyphenyl)-5-methyl-3-phenyl-5H-cyclopenta[c]quinoline

 (4cc). Precursors $\mathbf{1 c}(0.2 \mathrm{~g}, 0.89 \mathrm{mmol})$ and $\mathbf{2 c}(0.25 \mathrm{~g}, 0.98 \mathrm{mmol})$ were used. Red solid. Yield $0.208 \mathrm{~g}(51 \%) ; \mathrm{mp} 204-206{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{dd}, J=8.4 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.97-6.94$ $(\mathrm{m}, 3 \mathrm{H}), 6.87-6.79(\mathrm{~m}, 4 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.2(\mathrm{~d}, J$ $=248.0 \mathrm{~Hz}), 158.1,147.1,139.1,133.7,133.3,132.7,132.3(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 130.5,129.8,129.7$ $(\mathrm{d}, J=3.0 \mathrm{~Hz}), 127.0_{0}, 126.9_{7}, 124.6,124.5,124.3,124.1,124.0,123.5,120.2,119.3,116.5$, $115.0(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 114.0,55.4,38.4$; IR (KBr) 3068, 3025, 2921, 2827, 1616, 1584, 1507, 1364, 1288, 1249, 1167, 1036, $844 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{FNO}\left(\mathrm{M}^{+}+\mathrm{H}\right): m / z$ 458.1921. Found: 458.1920.

1-(4-chlorophenyl)-4-(4-fluorophenyl)-5-methyl-3-phenyl-5H-cyclopenta[c]quinoline (4cd). Precursors $\mathbf{1 c}(0.2 \mathrm{~g}, 0.89 \mathrm{mmol})$ and $\mathbf{2 d}(0.25 \mathrm{~g}, 0.98 \mathrm{mmol})$ were used. Red solid. Yield 0.286 g (70%); mp 230-232 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.68-7.66 (m, 3 H), 7.46-7.42 (m, 3H), 7.29 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.01-6.94(\mathrm{~m}$, $3 \mathrm{H}), 6.86-6.79(\mathrm{~m}, 4 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.2(\mathrm{~d}, J=249.0 \mathrm{~Hz}$), $147.5,138.8(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 133.7,132.7,132.3(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 131.6,130.7,129.7,129.4_{1}$, $129.3_{7}, 128.7,127.3,127.0,124.9,124.4,124.2,124.0,122.2,120.3,119.8,116.7,115.1(\mathrm{~d}, J=$ 22.0 Hz), 38.4; IR (KBr) 3063, 3019, 2926, 1605, 1573, 1501, 1463, 1397, 1364, 1216, 1090, 1008, $827 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{CIFN}\left(\mathrm{M}^{+}+\mathrm{H}\right): m / z 462.1426$. Found: 462.1425.

4-(4-fluorophenyl)-5-methyl-1-(4-nitrophenyl)-3-phenyl-5H-cyclopenta[c]quinoline (4ce). Precursors $\mathbf{1 c}(0.25 \mathrm{~g}, 1.11 \mathrm{mmol})$ and $2 \mathbf{e}(0.326 \mathrm{~g}, 1.22 \mathrm{mmol})$ were used. Red solid. Yield $0.393 \mathrm{~g}(75 \%) ; \mathrm{mp} 210-212{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd} \rightarrow \mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.01-6.94(\mathrm{~m}, 3 \mathrm{H}), 6.85-6.80(\mathrm{~m}, 4 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.3(\mathrm{~d}, J=249.0 \mathrm{~Hz}), 148.1,147.5,145.5,138.5,133.9,132.3$ $(\mathrm{d}, ~ J=8.0 \mathrm{~Hz}), 132.1,129.7,129.3,129.1,128.1,127.1,125.7,124.7,124.5,124.0_{6}, 124.9_{8}$, $123.8,121.4,121.2,121.1,117.1,115.1(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 38.7$; $\mathrm{IR}(\mathrm{KBr}) 3058,2921,1595$, 1573, 1501, 1370, 1332, 1233, 1112, 1008, $860 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{FN}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right.$ $+\mathrm{H}): m / z$ 473.1666. Found: 473.1664.

1-butyl-4-(4-fluorophenyl)-5-methyl-3-phenyl-5H-cyclopenta[c]quinoline (4cf). Precursors $\mathbf{1 c}(0.213 \mathrm{~g}, 0.95 \mathrm{mmol})$ and $\mathbf{2 f}(0.21 \mathrm{~g}, 1.04 \mathrm{mmol})$ were used. Red solid. Yield $0.251 \mathrm{~g}(65 \%)$; $\mathrm{mp} 136-138{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41(\mathrm{dd}, J=8.0 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.64(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.95-6.89$ $(\mathrm{m}, 3 \mathrm{H}), 6.82-6.74(\mathrm{~m}, 4 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.55$ $(\mathrm{m}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.2(\mathrm{~d}, J=248.0 \mathrm{~Hz}), 146.2$, $139.6,133.7,132.9,132.3(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 130.0(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 129.9,126.9,126.4,125.4$,
$124.8,124.4,124.3,124.1,123.7,119.8,119.1,116.3,114.9(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 38.2,32.2,30.1$, 23.3, 14.3; IR (KBr) 3052, 2942, 2926, 2860, 1600, 1578, 1551, 1512, 1468, 1375, 1321, 1222, 1156, 1096, $844 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{FN}\left(\mathrm{M}^{+}+\mathrm{H}\right): m / z$ 408.2128. Found: 408.2127.

4,5-dimethyl-1,3-diphenyl-5H-cyclopenta[c]quinoline (4da). Precursors 1d (0.18 g, 1.24 $\mathrm{mmol})$ and 2a ($0.30 \mathrm{~g}, 1.36 \mathrm{mmol}$) were used. Brown solid. Yield $0.185 \mathrm{~g}(43 \%) ; \mathrm{mp} 178-180$ ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.51$ $(\mathrm{m}, 5 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}$, $3 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.5,140.7,133.5,132.8,130.4,129.6$, $128.4,127.8,126.4,125.9,125.6,124.4,124.1,123.6,123.1,119.8,119.1,115.8,35.3,19.5$; IR (KBr) 3063, 3014, 2932, 2849, 1578, 1545, 1507, 1474, 1370, 1326, 1244, 1123, 1052, 915, 833 cm^{-1}; HRMS (ESI): Calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}\left(\mathrm{M}^{+}+\mathrm{H}\right)$: m / z 348.1753. Found: 348.1752.

Compound 4de: Precursors $1 \mathbf{d}(0.18 \mathrm{~g}, 1.24 \mathrm{mmol})$ and $2 \mathrm{e}(0.36 \mathrm{~g}, 1.36 \mathrm{mmol})$ were used. Yield: $0.283 \mathrm{~g}(58 \%)$. Analytical data are given above.

5-benzyl-1,3,4-triphenyl-5H-cyclopenta[c]quinoline (4fa). Precursors $\mathbf{1 f}^{\mathbf{6}}$ ($0.25 \mathrm{~g}, 0.88 \mathrm{mmol}$) and $2 \mathrm{a}(0.22 \mathrm{~g}, 0.97 \mathrm{mmol})$ were used. Red solid. Yield $0.239 \mathrm{~g}(56 \%) ; \mathrm{mp} 180-182{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42(\mathrm{dd}, J=7.6 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-$ $7.46(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 6 \mathrm{H}), 7.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.91-6.88(\mathrm{~m}, 5 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$148.9,140.5,139.1,137.3,133.9,133.2,132.7,130.1,129.8,129.7,129.3,128.9,128.5,127.8$, 127.7, 127.4, 126.8, 126.0, 125.8, 124.7 ${ }_{0}$, 124.66, 124.4, 124.1, 123.9, 123.8, 120.3, 119.8, 118.0, 53.0; IR (KBr) 3054, 3011, 1606, 1579, 1541, 1471, 1396, 1374, 1282, 1244, 1169, 1028, 963 cm^{-1}; LC-MS: $m / z 486[\mathrm{M}+1]^{+}$; Anal. Calcd. for $\mathrm{C}_{37} \mathrm{H}_{27} \mathrm{~N}: \mathrm{C}, 91.51 ; \mathrm{H}, 5.60 ; \mathrm{N}, 2.88$. Found: C, 91.43; H, 5.64; N, 2.81.

5-(4-methoxybenzyl)-1,3,4-triphenyl-5H-cyclopenta[c]quinoline (4ga). Precursors $\mathbf{1 g}^{7}$ (0.25 g, 0.80 mmol$)$ and 2a ($0.20 \mathrm{~g}, 0.88 \mathrm{mmol})$ were used. Red solid. Yield $0.201 \mathrm{~g}(49 \%) ; \mathrm{mp} 202-$ $204{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41$ (dd, $J=8.0 \mathrm{~Hz}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.11(\mathrm{~m}, 6 \mathrm{H}), 6.99(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.93$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.90-6.87(\mathrm{~m}, 5 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 158.9,148.9,140.5,139.2,133.9,133.2,132.7,130.1,129.8,129.7$, $129.3,129.2,128.5,127.7_{4}, 127.6_{7}, 127.0,126.8,126.0,124.6_{8}, 124.6_{6}, 124.4,124.1,123.9$, $123.8,120.2,119.8,118.1,114.3,55.3,52.5$; IR (KBr) 3071, 3016, 1601, 1579, 1541, 1514, 1433, 1396, 1293, 1244, 1163, 1039, $758 \mathrm{~cm}^{-1}$; LC-MS: m/z $516[\mathrm{M}+1]^{+}$; Anal. Calcd. for $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{NO}: \mathrm{C}, 88.51$; H, 5.67; N, 2.72. Found: C, 88.36; H, 5.62; N, 2.79.

References:

(1) Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. Purification of Laboratory Chemicals, Pergamon, Oxford, 1986.
(2) (a) Yu, X.; Park, E.-J.; Kondratyuk, T. P.; Pezzuto, J. M.; Sun, D. Org. Biomol. Chem.2012, 10, 8835. (b) Yu, L.; Jiang, X.; Wang, L.; Li, Z.; Wu, D.; Zhou, X. Eur. J. Org. Chem.2010, 5560.
(3) (a) Sheldrick, G. M. SADABS, Siemens Area Detector Absorption Correction, University of Göttingen, Germany, 1996. (b) Sheldrick, G. M., SHELX-97- A program for crystal structure solution and refinement, University of Göttingen, 1997. (c) Sheldrick, G. M. SHELXTL NT Crystal Structure Analysis Package, Bruker AXS, Analytical X-ray System, WI, USA, 1999, version 5.10.
(4) (a) Shao, Y.; Zhu, K.; Qin, Z.; Li, E.; Li, Y.J. Org. Chem.2013, 78, 5731. (b) Hussain, M. K.; Ansari, M. I. Kant, R.; Hajela, K. Org. Lett. 2014, 16, 560.
(5) Sanz, R.; Gohain, M.; Miguel, D.; Martinez, A.; Rodriguez, F. Synlett 2009, 12, 1985.
(6) Yu, X.; Park, E.-J.; Kondratyuk, T. P.; Pezzuto, J. M.; Sun, D. Org. Biomol. Chem. 2012, 10, 8835.
(7) Higuchi, K.; Sato, Y.; Kojima, S.; Tsuchimochi, M.; Sugiura, K.; Hatori, M.; Kawasaki T. Tetrahedron 2010, 66, 1236.

Table-S1. Optimization Studies for the Ring-expansion/ Intramolecular Electrophilic Substitution Reaction of 3-Dienylindole 3aa ${ }^{a}$

Entry	catalyst	solvent	$\begin{aligned} & \operatorname{temp}\left({ }^{\circ} \mathrm{C}\right) \\ & \text { /time (h) } \end{aligned}$	$\text { Yield(\%) }{ }^{b}$	
				4 aa	5 aa
1	$\mathrm{Cu}(\mathrm{OTf})_{2}$	MeNO_{2}	100/8	43	37
2^{c}	$\mathrm{Cu}(\mathrm{OTf})_{2}$	MeNO_{2}	$\mathrm{rt} / 12$	n.d	24
3	$\mathrm{Cu}(\mathrm{OTf})_{2}$	MeNO_{2}	80/5	55	33
4^{d}	$\mathrm{Cu}(\mathrm{OTf})_{2}$	MeNO_{2}	80/5	56	34
5^{e}	$\mathrm{Cu}(\mathrm{OTf})_{2}$	MeNO_{2}	80/5	42	40
6^{f}	-	MeNO_{2}	80/15	n.d	n.d
7	$\mathrm{Cu}(\mathrm{OAc})_{2}$	MeNO_{2}	80/15	trace	trace
8	$\mathrm{Cu}(\mathrm{Br})_{2}$	MeNO_{2}	80/12	n.d	n.d
9	$\mathrm{Cu}\left(\mathrm{SO}_{4}\right)_{2} .5 \mathrm{H}_{2} \mathrm{O}$	MeNO_{2}	80/12	n.d	n.d
10	$\mathrm{Pd}(\mathrm{OAc})_{2}$	MeNO_{2}	80/8	n.d	trace
11	$\mathrm{Zn}(\mathrm{OTf})_{2}$	MeNO_{2}	80/5	25	40
12	AgOTf	MeNO_{2}	80/4	31	45
13	TfOH	MeNO_{2}	80/8	n.d	82
14	$\mathrm{Cu}(\mathrm{OTf})_{2}$	$\mathrm{CH}_{3} \mathrm{CN}$	80/5	trace	68
15	$\mathrm{Cu}(\mathrm{OTf})_{2}$	DCE	80/4	30	28
16	$\mathrm{Cu}(\mathrm{OTf})_{2}$	toluene	80/4	n.d	35
17	$\mathrm{Cu}(\mathrm{OTf})_{2}$	DMF	80/4	26	57
18^{g}	$\mathrm{Cu}(\mathrm{OTf})_{2}$	MeNO_{2}	80/5	28	40

19^{h}	$\mathrm{Cu}(\mathrm{OTf})_{2}$	MeNO_{2}	$80 / 5$	23	34
20^{i}	$\mathrm{Cu}(\mathrm{OTf})_{2}$	MeNO_{2}	$80 / 5$	64	22
21^{j}	$\mathrm{Cu}(\mathrm{OTf})_{2}$	MeNO_{2}	$80 / 5$	47	35
22^{k}	$\mathrm{Cu}(\mathrm{OTf})_{2}$	MeNO_{2}	$80 / 3$	75	trace

${ }^{a}$ Reaction conditions: 3aa (0.3 mmol), catalyst (0.06 mmol), additive (2 equiv) and solvent $(2.0 \mathrm{~mL})$ at the specified temperature and time in air unless otherwise noted. ${ }^{b}$ Isolated yields. ${ }^{c} 3$-dienylindole was recovered in 52% yield. ${ }^{d}$ under oxygen. ${ }^{e}$ under nitrogen. ${ }^{f} 3$-dienylindole was completely recovered. ${ }^{g} \mathrm{AcOH}$, ${ }^{h}$ pivOH, ${ }^{i}$ PTSA and ${ }^{j}$ TFA are used as additive. ${ }^{k}$ Stoichiometric amount of catalyst was used. n.d = not detected.

Scheme S1. Plausible Mechanism for the Formation of Indenyl Indoles 5aa

Figure S1. The absorption (a) and fluorescence emission spectra (b) of compounds 4ad (A), 4cb (B) and 4cc (C) with $c=1.3 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$ in THF, upon excitation at 330 nm .

Figure S2. Molecular structure of compound 3ac (CCDC No. 1025010). Hydrogen atoms (except $=\mathrm{CH}_{2}$) are omitted for clarity. Selected bond parameters: N1-C9 1.390(3), C9-C8 1.372(3), C8-C16 1.481(2), C16-C17 1.484(3), C16-C24 1.334(3), C24-C25 1.473(3), C25-C26 1.322(3), C25-C27 1.484(3) (A).

Figure S3. Molecular structure of compound 4ac (CCDC No. 1025011). Hydrogen atoms omitted for clarity. Selected bond parameters: N1-C10 1.364(2), C9-C10 1.370(2), C8-C9 1.449(2), C9-C17 1.437(2), C17-C20 1.472(2), C17-C18 1.364(2), C18-C19 1.428(2), C8-C19 1.383(2), C19-C26 1.468(2) (A).

Figure S4. Molecular structure of compound 5ab (CCDC No. 1025012). Hydrogen atoms omitted for clarity. Selected bond parameters: N1-C9 1.384(4), C9-C8 1.365(4), C8-C16 1.468(4), C16-C17 1.475(4), C16-C25 1.328(4), C25-C24 1.515(4), C24-C23 1.514(4), C24-C26 1.540(4), C24-C27 1.522(4) (A).

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

Figure S5. ${ }^{1}$ H NMR spectrum of compound 2d

Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 d}$

Figure S7. ${ }^{1}$ H NMR spectrum of compound 2 e

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 2e

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 3aa

Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 3aa

Figure S11. ${ }^{1}$ H NMR spectrum of compound 3ab

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 3ab

Figure S13. ${ }^{1}$ H NMR spectrum of compound 3ac

Figure S14. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 3ac

Figure S15. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ spectrum of compound 3ad

Figure S16. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ spectrum of compound 3ad

Figure S17. ${ }^{1}$ H NMR spectrum of compound 3ae

Figure S18. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 3ae

Figure S19. ${ }^{1}$ H NMR spectrum of compound 3ba

Figure S20. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 3ba

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 3ca

Figure S22. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 3ca

Figure S23. ${ }^{1}$ H NMR spectrum of compound 3de. (For minor peaks see experimental section)

Figure S24. ${ }^{13}$ C NMR spectrum of compound 3de

Figure S25. ${ }^{1}$ H NMR spectrum of compound 3ea

Figure S26. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 3ea

Figure S27. ${ }^{1}$ H NMR spectrum of compound $\mathbf{4 a a}$

Figure S28. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 4aa

Figure S29. ${ }^{1}$ H NMR spectrum of compound 5aa

Figure S30. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 5aa

Figure S31. ${ }^{1}$ H NMR spectrum of compound 4ab

Figure S32. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 4ab

Figure S33. ${ }^{1}$ H NMR spectrum of compound 5ab

Figure S34. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 5ab

Figure S35. ${ }^{1}$ H NMR spectrum of compound 4ac

Figure S36. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 4ac

Figure S37. ${ }^{1}$ H NMR spectrum of compound 5ac

Figure S38. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 5ac

Figure S39. ${ }^{1}$ H NMR spectrum of compound 4ad

Figure S40. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 a d}$

Figure S41. ${ }^{1}$ H NMR spectrum of compound 5ad. (Additional peak is due to grease)

Figure S42. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 5ad. (Additional peak is due to grease)

Figure S43. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 4ae

Figure $\mathbf{S 4 4 .}{ }^{13} \mathrm{C}$ NMR spectrum of compound 4ae

Figure $\mathbf{S 4 5} .{ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 b a}$.

Figure $\mathbf{S 4 6} .{ }^{13} \mathrm{C}$ NMR spectrum of compound 4ba.

Figure S47. ${ }^{1}$ H NMR spectrum of compound $\mathbf{4 c a}$

Figure S48. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 c a}$

Figure S49. ${ }^{1}$ H NMR spectrum of compound $\mathbf{5 c a}$

Figure S50. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 5ca

Figure S51. ${ }^{1}$ H NMR spectrum of compound 4de

Figure S52. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 4de

Figure S53. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 5ea

Figure S54. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 5ea

Figure S55. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 4af. Additional peak is due to grease.

Figure S56. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 4af. Additional peak is due to grease.

Figure S57. ${ }^{1}$ H NMR spectrum of compound $\mathbf{4 b b}$

Figure S58. ${ }^{13}$ C NMR spectrum of compound $\mathbf{4 b b}$

Figure S59. ${ }^{1}$ H NMR spectrum of compound 4bd

Figure S60. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 b d}$.

Figure S61. ${ }^{1}$ H NMR spectrum of compound 4be

Figure S62. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 4be

Figure S63. ${ }^{1}$ H NMR spectrum of compound $\mathbf{4 c b}$

Figure S64. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 c b}$

Figure S65. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 4cc

Figure S66. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 4cc

Figure S67. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 c d}$

Figure S68. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 c d}$

Figure S69. ${ }^{1}$ H NMR spectrum of compound 4ce

Figure S70. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 4ce

Figure S71. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 4cf

Figure S72. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 c f}$

Figure S73. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 4da

Figure S74. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 4da

Figure S75. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4 f a}$

Figure S76. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{4 f a}$

Figure S77. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 4ga

Figure S78. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 4ga

