Supporting Information

Brønsted acid Mediated Alkenylation and Copper-Catalyzed Aerobic Oxidative Ring Expansion/ Intramolecular Electrophilic Substitution of Indoles with Propargyl Alcohols: A Novel One Pot Approach to Cyclopenta[c]quinolines

G. Gangadhararao, Anasuyamma Uruvakilli and K. C. Kumara Swamy*

School of Chemistry, University of Hyderabad, Hyderabad -500046, Telangana, India. Fax: (+91)-40-23012460 e-mail: <u>kckssc@uohyd.ac.in</u>, <u>kckssc@yahoo.com</u>

Contents

Pages

General Methods	S2
Synthesis and characterization of substrates and products	S2-S24
References	S25
Optimization Table S1	S26-S27
Mechanism for the formation of indenylindole 5aa (Scheme S1)	S28
Fluorescence spectra for compounds 4ad, 4cb and 4cc (Figure S1)	S29
X-ray crystal structures of compounds 3ac, 4ac and 5ab (Figure S2-S4)	S30-S31
¹ H and ¹³ C NMR spectra of new compounds (Figures S5-S78)	S32-S68

General Methods: All reactions were carried out in air, unless otherwise specified. All Chemicals were procured from Aldrich or local manufacturers and used as purchased without further purification, unless noted. MeNO₂ was distilled according to standard procedure.¹ 1,2-substituted indoles were prepared using known literature methods.² ¹H and ¹³C NMR spectra were recorded using 5 mm tubes on a Bruker 400 MHz NMR spectrometer [field strengths: 400, 100 MHz respectively] in CDCl₃ solution (unless specified otherwise) with shifts referenced to SiMe₄ (¹H, ¹³C: $\delta = 0$). All *J* values are in Hz. Melting points were determined using a SUPERFIT hot stage apparatus and were uncorrected. IR spectra were recorded on a JASCO FT/IR 5300 spectrophotometer. Elemental analyses were carried out on a Perkin-Elmer 240C CHN or Thermo Finnigan EA1112 CHNS analyzer. LC-MS data were obtained using electrospray ionization (positive mode) on a C-18 column. Mass spectra were recorded using HRMS (ESI-TOF analyzer) equipment. X-ray data were collected at 293 K on a Bruker AXS-SMART or on an OXFORD diffractometer using Mo-K_α radiation ($\lambda = 0.71073$ Å). Structures were solved and refined using standard methods.³

Synthesis of tertiary propargyl alcohols [2a-e]

Tertiary propargyl alcohols **2a-e** were prepared by Sonogashira cross coupling reaction of aryl halides with terminal acetylinic propargyl alcohols under palladium catalysis.⁴ Among these, **2d-e** are new.

In a round bottomed flask (50 mL) equipped with 1-chloro-4-iodobenzene (2.0 g, 8.39 mmol), $PdCl_2$ (0.05 g, 0.25 mmol), PPh_3 (0.13 g, 0.5 mmol) and CuI (0.10 g, 0.5 mmol) and acetonitrile (20 mL), was added 2-phenylbut-3-yn-2-ol (1.47 g, 10.1 mmol) and Et₃N (1.76 mL, 12.6 mmol). Then the reaction mixture was stirred at room temperature for 6 h and progress of the reaction monitored by TLC. Upon completion of the reaction, the crude mixture was filtered, the solid residue was washed with EtOAc, and washings added to the filtrate and the whole

solution was concentrated under reduced pressure. Purification *via* column chromatography (ethyl acetate: hexane 1:4) yielded the desired product as orange solid.

4-(4-chlorophenyl)-2-phenylbut-3-yn-2-ol (2d). Yield 2.4 g (93%); mp 60–62 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.4 Hz, 2H), 7.42-7.35 (m, 4H), 7.32-7.30 (m, 3H), 2.55 (qrt, 1H), 1.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.5, 134.6, 133.0, 128.7, 128.5, 127.9, 125.0, 121.1, 93.5, 83.8, 70.4, 33.3; IR (KBr) 3375, 3058, 2981, 2230, 1589, 1398, 1085, 827, 762, 707 cm⁻¹; LC-MS: m/z 257 [M+1]⁺; Anal. Calcd. for C₁₆H₁₃ClO: C, 74.85; H, 5.10. Found: C, 74.68; H, 5.18.

4-(4-nitrophenyl)-2-phenylbut-3-yn-2-ol (2e). Procedure was similar to that for compound **2d** using 1-bromo-4-nitrobenzene (2.0 g, 9.9 mmol) and 2-phenylbut-3-yn-2-ol (1.74 g, 11.9 mmol). Orange solid. Yield 2.5 g (93%); mp 68–70 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.4 Hz, 2H), 7.70 (d, *J* = 7.6 Hz, 2H), 7.62 (d, *J* = 8.8 Hz, 2H), 7.44-7.40 (m, 2H), 7.35 (dd \rightarrow t, *J* = 7.2 Hz,1H), 2.65 (qrt, 1H), 1.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 144.9, 132.6, 129.5, 128.6, 128.1, 124.9, 123.6, 97.8, 83.0, 70.4, 33.0; IR (KBr) 3567, 3096, 2992, 1595, 1348, 1096, 866, 773 cm⁻¹; LC-MS: *m/z* 268 [M+1]⁺; Anal. Calcd. for C₁₆H₁₃NO₃: C, 71.90; H, 4.90; N, 5.24. Found: C, 71.68; H, 4.97; N, 5.32.

Synthesis of 3-dienylindoles 3aa-3ea

Typical procedure for the synthesis of 3-dienylindole 3aa: An oven dried 25 mL roundbottomed flask was charged with *N*-methyl,2-phenyl indole **1a** (0.3 g, 1.45 mmol), propargyl alcohol **2a** (0.35 g, 1.59 mmol), and PTSA (*p*-toluenesulfonic acid) (0.41 g, 2.17 mmol). To this

was added nitromethane (4 mL) all at once and the mixture was stirred rt (25 $^{\circ}$ C) for 30 min. After completion of the reaction (TLC), the solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate (20 mL), neutralized with aq. NaOH and then washed with water (2x10 mL) followed by brine solution (10 mL). The organic part was dried over anh. Na₂SO₄ and the solvent removed under reduced pressure. Purification by column chromatography (ethyl acetate: hexane 2:98) afforded the desired product **3aa** as orange solid. Compounds **3ab-3ea** were prepared by using the same procedure.

(*Z*)-3-(1,3-diphenylbuta-1,3-dienyl)-1-methyl-2-phenyl-1*H*-indole (3aa). Yield 0.493 g (83%); mp 180–182 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, *J* = 8.0 Hz, *J* = 1.0 Hz, 2H), 7.38-7.27 (m, 11H), 7.13-7.00 (m, 6H), 6.83 (s, 1H), 5.20 and 4.98 (2 s, 2H), 3.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 143.1, 141.0, 138.7, 137.8, 136.9, 131.8, 130.3, 130.0, 128.2, 128.1, 127.7, 127.4, 127.3, 126.8, 126.4, 121.7, 120.5, 119.7, 115.8, 112.9, 109.4, 31.2; IR (KBr) 3047, 3014, 2937, 2915, 1600, 1567, 1485, 1458, 1436, 1370, 1326, 1227, 1151, 1014, 740 cm⁻¹; HRMS (ESI): Calcd. for C₃₁H₂₅N (M⁺ + H): *m/z* 412.2066. Found: 412.2066.

(Z)-1-methyl-2-phenyl-3-(3-phenyl-1-*p*-tolylbuta-1,3-dienyl)-1*H*-indole (3ab). This compound was prepared by following a route similar to that for 3aa using 1a (0.35 g, 1.68 mmol) and 2b (0.44 g, 1.85 mmol). Orange solid. Yield 0.58 g (81%); mp 160–162 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.0 Hz, 2H), 7.39-7.28 (m, 8H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.14-6.98 (m, 6H), 6.81 (s, 1H), 5.17 and 4.94 (2 s, 2H), 3.68 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100

MHz, CDCl₃) δ 145.7, 141.0, 140.2, 138.6, 137.8, 137.2, 136.6, 131.8, 130.3, 129.2, 129.0, 128.3, 128.1, 127.6, 127.3, 127.1, 126.7, 126.4, 121.7, 120.5, 119.7, 115.5, 112.9, 109.3, 31.2, 21.2; IR (KBr) 3041, 2926, 1600, 1567, 1468, 1364, 1332, 1184, 1145, 1014, 904, 811, 740 cm⁻¹; HRMS (ESI): Calcd. for C₃₂H₂₇N (M⁺ + H): *m/z* 426.2222. Found: 426.2220.

(*Z*)-3-(1-(4-methoxyphenyl)-3-phenylbuta-1,3-dienyl)-1-methyl-2-phenyl-1*H*-indole (3ac). This compound was prepared by following a procedure similar to that for 3aa using 1a (0.3 g, 1.45 mmol) and 2c (0.4 g, 1.59 mmol). White solid. Yield 0.478 g (75%); mp 158–160 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.2 Hz, 2H), 7.32-7.22 (m, 8H), 7.05-7.00 (m, 4H), 6.90 (d, *J* = 7.2 Hz, 2H), 6.81 (d, *J* = 8.8 Hz, 2H), 6.64 (s, 1H), 5.07 and 4.83 (2 s, 2H), 3.81 (s, 3H), 3.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 145.7, 141.1, 138.5, 137.8, 136.2, 135.6, 131.8, 130.3, 128.4, 128.3, 128.1, 127.6, 127.3, 126.7, 126.4, 121.7, 120.5, 119.7, 115.3, 113.6, 113.0, 109.3, 55.3, 31.2; IR (KBr) 3052, 2992, 2942, 2833, 1600, 1507, 1468, 1359, 1255, 1184, 1047, 1014, 904, 833 cm⁻¹; HRMS (ESI): Calcd. for C₃₂H₂₇NO (M⁺ + H): *m/z* 442.2172. Found: 442.2169; X-ray structure has been determined for this compound.

(Z)-3-(1-(4-chlorophenyl)-3-phenylbuta-1,3-dienyl)-1-methyl-2-phenyl-1*H*-indole (3ad). Procedure was similar to that for compound 3aa using 1a (0.28 g, 1.36 mmol) and 2d (0.38 g,

1.49 mmol). Orange solid. Yield 0.525 g (87%); mp 164–166 °C; ¹H NMR (400 MHz, C₆D₆) δ 7.56 (d, J = 8.0 Hz, 1H), 7.34 (t, J = 8.0 Hz, 1H), 7.31-7.29 (m, 4H), 7.24 (t, J = 7.6 Hz, 1H), 7.18-7.10 (m, 8H), 7.07-7.06 (m, 3H), 6.83 (s, 1H), 5.29 and 5.20 (2 s, 2H), 3.17 (s, 3H); ¹³C NMR (100 MHz, C₆D₆) δ 141.1, 136.9, 136.3, 133.8, 133.3, 131.2, 128.4, 127.2, 125.7, 125.5, 123.9, 123.6, 123.5, 123.4, 123.3, 123.0, 122.9, 122.8, 122.2, 121.8, 117.4, 115.7, 115.6, 111.2, 108.0, 104.9, 25.7; IR (KBr) 3052, 2942, 1611, 1490, 1364, 1310, 1227, 1156, 1090, 1014, 904, 838 cm⁻¹; HRMS (ESI):Calcd. for C₃₁H₂₄ClN (M⁺ + H and M⁺ + H + 2): *m/z* 446.1676 and 448.1676. Found: 446.1669 and 448.1653.

(*Z*)-1-methyl-3-(1-(4-nitrophenyl)-3-phenylbuta-1,3-dienyl)-2-phenyl-1*H*-indole (3ae). This compound was prepared by following a procedure similar to that for 3aa using 1a (0.25 g, 1.21 mmol) and 2e (0.35 g, 1.33 mmol). Orange solid. Yield 0.472 g (86%); mp 166–168 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 7.2 Hz, 2H), 7.56 (d, *J* = 7.2 Hz, 2H), 7.36 (d, *J* = 7.6 Hz, 1H), 7.28-7.26 (m, 7H), 7.11-7.02 (m, 6H), 6.93 (s, 1H), 5.29 and 5.11 (2 s, 2H), 3.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 146.7, 145.2, 140.3, 139.1, 137.7, 135.2, 133.4, 131.3, 130.1, 128.3, 128.0, 127.8, 127.5, 127.4, 127.1, 126.4, 123.5, 122.1, 120.1, 117.5, 111.8, 109.6, 31.2; IR (KBr) 3052, 1584, 1512, 1474, 1348, 1107, 910, 855, 751 cm⁻¹; HRMS (ESI): Calcd. for C₃₁H₂₄N₂O₂ (M⁺ + Na): *m/z* 479.1736. Found: 479.1739.

(*Z*)-3-(1,3-diphenylbuta-1,3-dienyl)-1-methyl-2-*p*-tolyl-1*H*-indole (3ba). This compound was prepared by following a procedure similar to that for 3aa using 1b (0.24 g, 1.07 mmol) and 2a (0.26 g, 1.17 mmol). Pale yellow solid. Yield 0.372 g (82%); mp 152–154 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 6.8 Hz, 2H), 7.36-7.24 (m, 6H), 7.18 (d, *J* = 7.6 Hz, 2H), 7.13-7.07 (m, 6H), 6.97 (d, *J* = 7.6 Hz, 2H), 6.78 (s, 1H), 5.18 and 4.94 (2 s, 2H), 3.65 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.6, 143.2, 140.9, 138.8, 137.7, 137.5, 137.0, 130.2, 130.0, 128.9, 128.3, 128.2, 127.3₂, 127.2₈, 126.7, 126.4, 121.6, 120.4, 119.6, 115.5, 112.6, 109.3, 31.1, 21.3; IR (KBr) 3047, 3014, 2910, 1600, 1496, 1468, 1370, 1332, 1019, 899, 822 cm⁻¹; HRMS (ESI): Calcd. for C₃₂H₂₇N (M⁺ + H): *m/z* 426.2222. Found: 426.2221.

(*Z*)-3-(1,3-diphenylbuta-1,3-dienyl)-2-(4-fluorophenyl)-1-methyl-1*H*-indole (3ca). Procedure was similar to that for compound 3aa using 1c (0.22 g, 0.98 mmol) and 2a (0.24 g, 1.07 mmol). Pale yellow solid. Yield 0.332 g (79%); mp 180–182 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.49 (m, 2H), 7.34-7.20 (m, 8H), 7.09-7.04 (m, 4H), 6.99-6.92 (m, 4H), 6.79 (d, *J* = 1.0 Hz, 1H), 5.18 and 4.92 (2 s, 2H), 3.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.5 (d, *J* = 246.0 Hz), 145.5, 143.0, 140.6, 137.7 (d, *J* = 16.0 Hz), 136.8, 132.0 (d, *J* = 9.0 Hz), 130.1, 128.3, 128.1, 127.8, 127.5, 127.4, 127.2, 126.9, 126.2, 121.9, 120.5, 119.8, 115.7, 115.2 (d, *J* = 21.0 Hz), 113.1, 109.4, 31.1; IR (KBr) 3052, 1605, 1551, 1468, 1337, 1227, 1162, 904, 849 cm⁻¹; HRMS (ESI): Calcd. for C₃₁H₂₄FN (M⁺ + H): *m/z* 430.1972. Found: 430.1970.

(Z)-1,2-dimethyl-3-(1-(4-nitrophenyl)-3-phenylbuta-1,3-dienyl)-1*H*-indole (3de). This compound was prepared by following a procedure similar to that for **3aa** using **1d** (0.19 g, 1.31 mmol) and **2e** (0.39 g, 1.44 mmol). Brown liquid. Yield 0.341 g (66%); ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.4 Hz, 2H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.15 (s, 1H), 7.10-7.03 (m, 4H), 6.95-6.85 (m, 5H), 5.40 (s, 2H), 3.43 (s, 3H), 2.05 (s, 3H). *Note*: For this compound as well as **3ad**, the NMR spectra in CDCl₃. indicated isomerism (possibly). While in the case of **3ad**, we could get a better spectrum in C₆D₆ (vide infra), for **3de**, the spectrum still exhibited additional peaks due to (possibly) diene isomerization. However this feature did not affect the isolation of the final product **4de**; ¹³C NMR (100 MHz, CDCl₃) δ 149.5, 147.0, 146.9, 140.0, 136.9, 135.5, 132.7, 129.0, 128.0, 127.2, 126.8, 126.6, 126.3, 123.6, 120.8, 119.9, 119.4, 119.3, 110.8, 108.4, 29.3, 11.4; IR (neat) 3058, 2926, 2855, 1600, 1507, 1474, 1342, 1107, 904, 855 cm⁻¹; HRMS (ESI): Calcd. for C₂₆H₂₂N₂O₂ (M⁺ + H): *m/z* 395.1760. Found: 395.1758.

(*Z*)-3-(1,3-diphenylbuta-1,3-dienyl)-2-phenyl-1*H*-indole (3ea). This compound was prepared by following a procedure similar to that for 3aa using 1e (0.2 g, 1.04 mmol) and 2a (0.25 g, 1.14 mmol). This compound is known,⁵ but we could not find the spectroscopic data in the literature. Yellow liquid. Yield 0.374 g (91%); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (br 1H), 7.56 (d, *J* = 6.8 Hz, 2H), 7.51 (d, *J* = 7.2 Hz, 2H), 7.34-7.23 (m, 8H), 7.18 (t, *J* = 7.6 Hz, 1H), 7.06-6.94 (m, 7H), 5.10 and 5.05 (2 s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.0, 142.3, 140.7, 136.5, 135.9, 135.3, 132.4, 130.4, 129.3, 128.5, 128.4, 127.5, 127.4, 127.2, 127.1, 127.0, 126.6, 126.4, 122.3, 120.4, 120.0, 117.1, 112.6, 110.6; IR (neat) 3419, 3052, 3025, 1595, 1496, 1441, 1266, 1074, 1025, 904, 740 cm⁻¹; HRMS (ESI): Calcd. for C₃₀H₂₃N (M⁺ + H): *m/z* 398.1909. Found: 398.1905.

Synthesis of cyclopenta[c]quinolines (4) and 3-indenylindoles (5)

Typical procedure for the synthesis of 4aa and 5aa: To an oven dried round-bottomed flask (10 mL), diene **3aa** (0.248 g, 0.60 mmol), $Cu(OTf)_2$ (0.043 g, 0.12 mmol), PTSA (0.23 g, 1.2 mmol) and nitromethane (4 mL) were added. The mixture was stirred at 80 °C for 3-5 h in open air. After completion of the reaction (TLC), the solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate (20 mL), neutralized with aq. NaOH solution and then washed with water (2x10 mL) followed by brine solution (10 mL). The organic part was dried over anh. Na₂SO₄ and the solvent removed under reduced pressure. Purification by column chromatography (ethyl acetate: hexane 1:9) afforded the desired products **4aa** and **5aa**. Compound 3-indenyl indole (**5aa**) eluted first.

5-methyl-1,3,4-triphenyl-5*H***-cyclopenta[***c***]quinoline (4aa). Red solid. Yield 0.158 g (64%); mp 218–220 °C; ¹H NMR (400 MHz, CDCl₃) \delta 8.41 (d,** *J* **= 8.0 Hz, 1H), 7.74 (d,** *J* **= 7.2 Hz, 2H), 7.66 (d,** *J* **= 8.4 Hz, 1H), 7.47 (t,** *J* **= 7.6 Hz, 2H), 7.40-7.33 (m, 2H), 7.25-7.21 (m, 4H), 7.14-7.12 (m, 3H), 6.88 (br, 5H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta 148.5, 140.4, 139.2, 133.7, 133.6, 133.1, 130.4, 129.7, 129.6, 129.2, 128.5, 127.9, 127.3, 126.9, 125.9, 124.7, 124.4, 124.2, 124.1, 124.0, 123.6, 119.8, 119.7, 116.6, 38.5; IR (KBr) 3052, 3013, 2920, 2822, 1599, 1578, 1534, 1462, 1364, 1320, 1238, 1112, 843 cm⁻¹; HRMS (ESI): Calcd. for C₃₁H₂₃N (M⁺ + H):** *m/z* **410.1909. Found: 410.1908.**

1-methyl-3-(1-methyl-1-phenyl-1*H***-inden-3-yl)-2-phenyl-1***H***-indole (5aa). White solid. Yield 0.055 g (22%); mp 164–166 °C; ¹H NMR (400 MHz, CDCl₃) \delta 7.78 (d,** *J* **= 8.0 Hz, 1H), 7.55-7.52 (m, 3H), 7.46-7.43 (m, 4H), 7.32-7.27 (m, 7H), 7.23-7.21 (m, 3H), 6.39 (s, 1H), 3.84 (s, 3H), 1.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta 154.0, 145.4, 143.6, 143.4, 138.9, 137.5, 135.2, 132.0, 130.8, 129.4, 128.6, 128.3, 128.2, 128.0, 127.6, 126.4, 126.3, 126.2, 125.4, 122.5, 122.2, 121.7, 120.5, 119.9, 109.7, 109.1, 55.9, 31.2, 22.9; IR (KBr) 3058, 2964, 2921, 1600, 1496, 1463, 1364, 1321, 1266, 1156, 1079, 1019, 751 cm⁻¹; HRMS (ESI): Calcd. for C₃₁H₂₅N (M⁺ + H):** *m/z* **412.2066. Found: 412.2066.**

Compounds 4ab and 5ab: These compounds were prepared by following a procedure similar to that for **4aa** and **5aa** using **3ab** (0.392 g, 0.92 mmol).

5-methyl-3,4-diphenyl-1*-p***-tolyl-5***H***-cyclopenta**[*c*]**quinoline** (**4ab**). Red solid. Yield 0.238 g (61%); mp 224–226 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 8.0 Hz, 1H), 7.67-7.63 (m, 3H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.26-7.21 (m, 4H), 7.15-7.11 (m, 3H), 6.90-6.88 (m, 5H), 3.73 (s, 3H), 2.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.4, 139.2, 137.4, 135.5, 133.8, 133.6, 133.3, 130.4, 129.7, 129.4, 129.3, 129.2, 127.9, 127.2, 126.9, 124.6, 124.3, 124.1, 123.9, 123.6, 119.8, 119.5, 116.5, 38.4, 21.4; IR (KBr) 3046, 3014, 2915, 1605,

1578, 1512, 1463, 1364, 1326, 1238, 1107, 827 cm⁻¹; HRMS (ESI): Calcd. for $C_{32}H_{25}N$ (M⁺ + H): m/z 424.2066. Found: 424.2064.

3-(1,6-dimethyl-1-phenyl-1*H***-inden-3-yl)-1-methyl-2-phenyl-1***H***-indole (5ab).** White solid. Yield 0.10 g (26%); mp 192–194 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.0 Hz, 1H), 7.49-7.46 (m, 3H), 7.41-7.34 (m, 4H), 7.27-7.20 (m, 6H), 7.05-6.95 (m, 3H), 6.23 (s, 1H), 3.79 (s, 3H), 2.34 (s, 3H), 1.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 144.5, 143.7, 141.1, 138.9, 137.5, 135.1, 132.0, 130.9, 128.3, 128.2, 128.0, 127.6, 127.1, 126.3, 123.4, 122.1, 121.4, 120.6, 119.9, 109.6, 109.3, 55.7, 31.2, 23.0, 21.6; IR (KBr) 3047, 2964, 2915, 1616, 1463, 1436, 1364, 1321, 1233, 1156, 1079, 1019, 816 cm⁻¹; HRMS (ESI): Calcd. for C₃₂H₂₇N (M⁺ + H): *m/z* 426.2222. Found: 426.2223. X-ray structure has been determined for this compound.

Compounds 4ac and 5ac: These compounds were prepared by following a procedure similar to that for **4aa** and **5aa** using **3ac** (0.25 g, 0.57 mmol).

1-(4-methoxyphenyl)-5-methyl-3,4-diphenyl-5*H***-cyclopenta[***c***]quinoline (4ac). Red solid. Yield 0.132 g (53%); mp 176–178 °C; ¹H NMR (400 MHz, CDCl₃) \delta 8.39 (d,** *J* **= 7.2 Hz, 1H), 7.66-7.63 (m, 3H), 7.37 (t,** *J* **= 7.2 Hz, 1H), 7.25-7.20 (m, 4H), 7.14-7.10 (m, 2H), 7.08 (s, 1H), 7.03 (d,** *J* **= 8.4 Hz, 2H), 6.89-6.87 (m, 5H), 3.92 (s, 3H), 3.72 (s, 3H); ¹³C NMR (100 MHz,** CDCl₃) δ 158.1, 148.4, 139.2, 133.8, 133.7, 133.3, 132.8, 130.6, 130.4, 129.7, 129.2, 127.9, 127.5, 127.2, 126.9, 126.5, 124.5, 124.1₁, 124.0₅, 123.9, 123.3, 119.7, 119.4, 116.5, 114.0, 55.4, 38.4; IR (KBr) 3063, 3013, 2926, 2822, 1610, 1578, 1506, 1440, 1369, 1282, 1243, 1156, 1024, 832 cm⁻¹; HRMS (ESI): Calcd. for C₃₂H₂₅NO (M⁺ + H): *m/z* 440.2015. Found: 440.2015. X-ray structure was determined for this compound.

3-(6-methoxy-1-methyl-1-phenyl-1*H***-inden-3-yl)-1-methyl-2-phenyl-1***H***-indole** (5ac). White solid. Yield 0.075 g (30%); mp 176–178 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.0 Hz, 1H), 7.47-7.43 (m, 3H), 7.38-7.31 (m, 4H), 7.22-7.17 (m, 6H), 6.98 (d, *J* = 8.4 Hz, 1H), 6.77 (d, *J* = 2.0 Hz, 1H), 6.64 (dd, *J* = 8.4 Hz, 2.4 Hz, 1H), 6.16 (s, 1H), 3.78 (s, 3H), 3.75 (s, 3H), 1.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 155.8, 143.6, 143.4, 138.8, 137.5, 136.6, 134.7, 132.0, 130.8, 128.3, 128.2, 128.0, 127.6, 126.3, 126.2, 122.1, 120.5, 119.9, 111.3, 109.7, 109.4, 109.3, 55.8, 55.5, 31.3, 23.1; IR (KBr) 3058, 2964, 2921, 2827, 1600, 1463, 1436, 1364, 1288, 1238, 1178, 1079, 1019, 827 cm⁻¹; HRMS (ESI): Calcd. for C₃₂H₂₇NO (M⁺ + H): *m/z* 442.2172. Found: 442.2170.

Compounds 4ad and 5ad: These compounds were prepared by following a procedure similar to that for **4aa** and **5aa** using **3ad** (0.62 g, 1.39 mmol).

1-(4-chlorophenyl)-5-methyl-3,4-diphenyl-5*H***-cyclopenta[***c***]quinoline (4ad). Red solid. Yield 0.387 g (63%);mp 206–208 °C; ¹H NMR (400 MHz, CDCl₃) \delta 8.42 (d,** *J* **= 8.0 Hz, 1H), 7.73-7.68 (m, 3H), 7.48 (d,** *J* **= 8.4 Hz, 2H), 7.43 (t,** *J* **= 7.2 Hz, 1H), 7.32-7.23 (m, 4H), 7.18-7.13 (m, 3H), 6.95-6.91 (m, 5H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta 148.7, 139.0, 138.9, 133.7, 133.4, 132.7, 131.5, 130.8, 130.3, 129.6, 129.3, 128.6, 127.9, 127.5, 126.9, 124.8, 124.2, 124.1, 124.0, 122.1, 119.9, 119.8, 116.7, 38.4; IR (KBr) 3047, 1611, 1584, 1512, 1463, 1397, 1370, 1244, 1090, 1003, 827 cm⁻¹; HRMS (ESI): Calcd. for C₃₁H₂₂ClN (M⁺ + H and M⁺ + H + 2):** *m/z* **444.1520 and 446.1520. Found: 444.1517 and 446.1484.**

3-(6-chloro-1-methyl-1-phenyl-1*H***-inden-3-yl)-1-methyl-2-phenyl-1***H***-indole** (5ad). White solid. Yield 0.173 g (28%); mp 188–190 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.0 Hz, 1H), 7.52-7.42 (m, 3H), 7.40-7.33 (m, 5H), 7.27-7.20 (m, 7H), 7.16 (d, *J* = 1.6 Hz, 1H), 7.06 (dd, *J* = 8.0 Hz, 2.0 Hz, 1H), 6.96 (d, *J* = 8.0 Hz, 1H), 6.31 (s, 1H), 3.79 (s, 3H), 1.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.8, 145.6, 142.5, 142.1, 139.0, 137.5, 134.7, 131.9, 131.3, 130.8, 128.6, 128.5, 128.4, 128.2, 128.0, 127.4, 126.6₂, 126.5₇, 126.2, 123.1, 122.6, 122.3, 120.2, 120.1, 109.8, 108.6, 56.0, 31.3, 22.8; IR (KBr) 3058, 3030, 2964, 2926, 2855, 1600, 1496, 1463, 1375, 1255, 1096, 1008, 833 cm⁻¹; HRMS (ESI): Calcd. for C₃₁H₂₄ClN (M⁺ + H and M⁺ + H + 2): *m/z* 446.1676 and 448.1676. Found: 446.1682 and 448.1665.

5-methyl-1-(4-nitrophenyl)-3,4-diphenyl-5*H***-cyclopenta[***c***]quinoline (4ae). This compound was prepared by following a procedure similar to that for 4aa** and **5aa** using **3ae** (0.372 g, 0.81 mmol). The corresponding 3-indenyl indole could not be isolated. Brown solid. Yield 0.274 g (74%); mp 206–208 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, *J* = 8.0 Hz, 1H), 8.27 (d, *J* = 8.8 Hz, 2H), 7.88 (d, *J* = 8.8 Hz, 2H), 7.75 (d, *J* = 8.8 Hz, 1H), 7.49-7.46 (m, 1H), 7.32 (t, *J* = 7.6 Hz, 1H), 7.25-7.21 (m, 3H), 7.17-7.12 (m, 3H), 6.94-6.85 (m, 5H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.3, 147.6, 145.4, 138.6, 133.8, 133.0, 132.0, 130.3, 129.5, 129.3, 128.3, 128.0, 127.0, 125.6, 124.5, 124.4, 124.0₃, 123.9₅, 123.8, 121.5, 120.9, 120.8, 117.1, 38.7; IR (KBr) 3052, 2915, 1595, 1573, 1512, 1332, 1238, 1112, 855 cm⁻¹; HRMS (ESI): Calcd. for C₃₁H₂₂N₂O₂ (M⁺ + H): *m/z* 455.1760. Found: 455.1759.

5-methyl-1,3-diphenyl-4*-p***-tolyl-5***H***-cyclopenta**[*c*]**quinoline** (**4ba**). This compound was prepared by following a procedure similar to that for **4aa** and **5aa** using **3ba** (0.35 g, 0.81 mmol). The corresponding 3-indenyl indole could not be isolated. Red solid. Yield 0.191 g (56%); mp 160–162 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, *J* = 8.0 Hz, 1H), 7.76 (d, *J* = 7.6 Hz, 2H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.41-7.34 (m, 2H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.13-7.09 (m, 3H), 6.93-6.88 (m, 7H), 3.79 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.9, 140.5, 139.3, 139.2, 133.8, 132.9, 130.7, 130.3, 129.8, 129.6, 128.4₉, 128.4₈, 127.4, 126.8, 125.9, 124.6, 124.5, 124.2, 123.9, 123.7, 123.5, 120.1, 119.6, 116.6, 38.4, 21.3; IR (KBr) 3058,

2959, 2921, 2849, 1600, 1490, 1463, 1321, 1260, 1112, 1019, 822 cm⁻¹; HRMS (ESI): Calcd. for $C_{32}H_{25}N (M^+ + H): m/z$ 424.2066. Found: 424.2066.

Compounds 4ca and 5ca: These compounds were prepared by following a procedure similar to that for **4aa** and **5aa** using **3ca** (0.273 g, 0.64 mmol).

4-(4-fluorophenyl)-5-methyl-1,3-diphenyl-5*H***-cyclopenta[***c***]quinoline (4ca). Red solid. Yield 0.159 g (59%); mp 254–256 °C; ¹H NMR (400 MHz, CDCl₃) \delta 8.44 (d,** *J* **= 8.0 Hz, 1H), 7.76 (d,** *J* **= 7.2 Hz, 2H), 7.65 (d,** *J* **= 8.8 Hz, 1H), 7.52-7.49 (m, 2H), 7.42-7.36 (m, 2H), 7.26 (t,** *J* **= 7.6 Hz, 1H), 7.20-7.16 (m, 3H), 7.01-6.95 (m, 3H), 6.87 (d,** *J* **= 7.2 Hz, 2H), 6.84-6.80 (m, 2H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta 163.2 (d,** *J* **= 248.0 Hz), 147.3, 140.3, 139.1, 133.7, 133.2, 132.3 (d,** *J* **= 8.0 Hz), 129.8, 129.5, 128.5, 127.1, 127.0, 126.0, 124.7, 124.4, 124.3, 124.2, 124.1, 123.7, 120.3, 119.6, 116.6, 115.0 (d,** *J* **= 22.0 Hz), 38.3; IR (KBr) 3052, 2921, 2849, 1710, 1595, 1578, 1501, 1463, 1222, 844 cm⁻¹; HRMS (ESI): Calcd. for C₃₁H₂₂FN (M⁺ + H):** *m/z* **428.1815. Found: 428.1814.**

2-(4-fluorophenyl)-1-methyl-3-(1-methyl-1-phenyl-1*H***-inden-3-yl)-1***H***-indole (5ca).** White solid. Yield 0.086 g (32%); mp 168–170 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 1H), 7.47 (d, *J* = 8.4 Hz, 1H), 7.43-7.34 (m, 3H), 7.27-7.23 (m, 7H), 7.21-7.13 (m, 3H), 7.09-7.05 (m, 2H), 6.28 (s, 1H), 3.77 (s, 3H), 1.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.6 (d, *J* = 247.0 Hz), 153.9, 145.5, 143.4 (d, *J* = 32.0 Hz), 137.6 (d, *J* = 31.0 Hz), 135.0, 132.5 (d, *J* = 8.0

Hz), 128.3, 128.0, 127.5, 126.4, 126.2, 125.5, 122.7, 122.3, 121.7, 120.5, 120.1, 115.3 (d, J = 21.0 Hz), 109.7, 109.4, 56.0, 31.2, 23.0; IR (KBr) 3047, 2959, 1600, 1545, 1501, 1468, 1326, 1216, 1156, 1019, 844 cm⁻¹; HRMS (ESI): Calcd. for C₃₁H₂₄FN (M⁺ + H): m/z 430.1972. Found: 430.1971.

4,5-dimethyl-1-(4-nitrophenyl)-3-phenyl-5*H***-cyclopenta[***c***]quinoline (4de). This compound was prepared by following a procedure similar to that for 4aa** and **5aa** using **3de** (0.163 g, 0.41 mmol). The corresponding 3-indenyl indole could not be isolated. Red solid. Yield 0.114 g (70%); mp 154–156 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 8.0 Hz, 1H), 8.25 (d, *J* = 8.0 Hz, 2H), 7.82 (d, *J* = 8.4 Hz, 2H), 7.70 (d, *J* = 8.4 Hz, 1H), 7.48-7.40 (m, 5H), 7.33 (t, *J* = 7.0 Hz, 1H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.08 (s, 1H), 4.04 (s, 3H), 2.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 147.5, 145.3, 140.1, 133.8, 131.8, 130.3, 129.3, 128.0, 127.4, 126.0, 125.4, 124.1, 123.9, 123.6, 120.9, 120.8, 120.5, 116.3, 35.7, 19.6; IR (KBr) 3052, 2921, 2844, 1578, 1540, 1507, 1370, 1332, 1244, 1107, 855 cm⁻¹; HRMS (ESI): Calcd. for C₂₆H₂₀N₂O₂ (M⁺ + H): *m/z* 393.1604. Found: 393.1606.

3-(1-methyl-1-phenyl-1*H***-inden-3-yl)-2-phenyl-1***H***-indole (5ea). This compound was prepared by following a procedure similar to that for 4aa** and **5aa** using **3ea** (0.34 g, 0.86 mmol). The corresponding cyclopenta[*c*]quinoline could not be isolated. Pale yellow solid. Yield 0.241 g

(71%); mp 168–170 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.35 (br,s, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.58 (d, *J* = 7.6 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.33-7.23 (m, 8H), 7.20-7.16 (m, 2H), 7.11 (t, *J* = 7.6 Hz, 1H), 7.03 (d, *J* = 7.6 Hz, 1H), 6.57 (s, 1H), 1.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 145.6, 143.3, 136.1, 135.2, 135.1, 132.8, 129.4, 128.7, 128.5, 127.8, 126.5, 126.3, 125.6, 122.7₉, 122.7₅, 121.9, 120.4, 120.3, 111.0, 108.5, 56.3, 23.0; IR (KBr) 3414, 3052, 2964, 2921, 2860, 1595, 1490, 1441, 1321, 1222, 1025, 838, 740 cm⁻¹; HRMS (ESI): Calcd. for C₃₀H₂₃N (M⁺ + H): *m/z* 398.1909. Found: 398.1910.

One pot synthesis of cyclopenta[c]quinolines [4aa-4ga]

An oven dried 25 mL round-bottomed flask was charged with *N*-methyl-2-phenyl indole **1a** (0.1 g, 0.48 mmol), propargyl alcohol **2a** (0.12 g, 0.53 mmol), PTSA (*p*-toluenesulfonic acid) (0.23 g, 1.21 mmol) and nitromethane (4 mL). The mixture was stirred at rt for 30 min. and then $Cu(OTf)_2$ (0.035 g, 0.097 mmol) was added to the contents. The contents were stirred at 80 °C for 3-5 h in open air. After completion of the reaction (TLC), the solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate (20 mL), neutralized with aq. NaOH solution and then washed with water (2x10 mL) followed by brine solution (10 mL). The organic part was dried over anh. Na₂SO₄ and the solvent removed under reduced pressure. Purification by column chromatography (ethyl acetate: hexane 1:9) afforded the desired product **4aa** (0.13 g, 65%). Similarly, compounds **4ab-4ga** were prepared by using the same procedure.

Compound 4ab: Precursors **1a** (0.2 g, 0.97 mmol) and **2b** (0.25 g, 1.06 mmol) were used. Yield: 0.24 g (58%). Analytical data are given above.

Compound 4ac: Precursors **1a** (0.22 g, 1.06 mmol) and **2c** (0.29 g, 1.17 mmol) were used. Yield: 0.24 g (52%). Analytical data are given above.

Compound 4ad: Precursors **1a** (0.14 g, 0.69 mmol) and **2d** (0.19 g, 0.76 mmol) were used. Yield: 0.2 g (67%). Analytical data are given above.

Compound 4ae: Precursors **1a** (0.2 g, 0.97 mmol) and **2e** (0.28 g, 1.06 mmol) were used. Yield: 0.34 g (78%). Analytical data are given above.

1-butyl-5-methyl-3,4-diphenyl-5*H***-cyclopenta[***c***]quinoline (4af). Precursors 1a** (0.2 g, 0.97 mmol) and **2f** (0.22 g, 1.06 mmol) were used. Red solid. Yield 0.23 g (61%); mp 128–130 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, *J* = 6.0 Hz, 1H), 7.65 (d, *J* = 6.8 Hz, 1H), 7.50 (t, *J* = 6.0 Hz, 1H), 7.40 (t, *J* = 6.0 Hz, 1H), 7.20-7.17 (m, 3H), 7.11-7.08 (m, 2H), 7.01 (s, 1H), 6.87-6.81 (m, 5H), 3.67 (s, 3H), 3.19 (t, *J* = 6.2 Hz, 2H), 1.92-1.87 (m, 2H), 1.62-1.56 (m, 2H), 1.04 (t, *J* = 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.5, 139.6, 133.9, 133.7, 132.7, 130.4, 129.7, 129.0, 127.8, 126.8, 126.5, 125.4, 124.7, 124.3 124.1, 123.8, 123.6, 119.2₁, 119.1₆, 116.3, 38.2, 32.2, 30.2, 23.3, 14.3; IR (neat) 3052, 2953, 2921, 2860, 1732, 1605, 1584, 1551, 1463, 1370, 1326, 1112, 745 cm⁻¹; HRMS (ESI): Calcd. for C₂₉H₂₇N (M⁺ + H): *m/z* 390.2222. Found: 390.2221.

Compound 4ba: Precursors **1b** (0.18 g, 0.83 mmol) and **2a** (0.2 g, 0.91 mmol) were used. Yield: 0.21 g (60%). Analytical data are given above.

5-methyl-3-phenyl-1,4-di*p***-tolyl-5***H***-cyclopenta[***c***]quinoline (4bb). Precursors 1b (0.225 g, 1.02 mmol) and 2b (0.264 g, 1.12 mmol) were used. Red solid. Yield 0.237 g (53%); mp 228–230 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d,** *J* **= 8.0 Hz, 1H), 7.66-7.62 (m, 3H), 7.36 (t,** *J* **= 8.0 Hz, 1H), 7.29-7.20 (m, 3H), 7.09-7.07 (m, 3H), 6.91-6.83 (m, 7H), 3.76 (s, 3H), 2.46 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 139.4, 139.2, 137.5, 135.4, 133.8, 133.0, 130.8, 130.3, 129.8, 129.4, 129.2, 128.5, 127.3, 126.8, 124.6, 124.5, 124.2, 123.9, 123.7, 123.5, 120.1, 119.4, 116.5, 38.4, 21.4, 21.3; IR (KBr) 3047, 3014, 2910, 1605, 1578, 1540, 1501, 1397,**

1326, 1244, 1178, 1112, 1008, 827 cm⁻¹; HRMS (ESI): Calcd. for $C_{33}H_{27}N$ (M⁺ + H): m/z 438.2222. Found: 438.2222.

1-(4-chlorophenyl)-5-methyl-3-phenyl-4*-p***-tolyl-5***H***-cyclopenta**[*c*]**quinoline** (4bd). Precursors **1b** (0.25 g, 1.13 mmol) and **2d** (0.32 g, 1.24 mmol) were used. Red solid. Yield 0.329 g (64%); mp 216–218 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, *J* = 8.0 Hz, 1H), 7.70-7.66 (m, 3H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.41 (t, *J* = 8.0 Hz, 1H), 7.26 (t, *J* = 7.2 Hz, 1H), 7.10-7.07 (m, 3H), 6.94-6.84 (m, 7H), 3.80 (s, 3H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.1, 139.3, 139.2, 139.0, 133.8, 132.4, 131.5, 130.8, 130.5, 130.3, 129.7, 128.6, 128.5, 127.5, 126.8, 124.8, 124.3, 124.1, 123.8, 122.0, 120.2, 119.8, 116.7, 38.5, 21.3; IR (KBr) 3041, 3025, 2921, 2855, 1611, 1573, 1540, 1507, 1392, 1370, 1249, 1085, 1014, 833 cm⁻¹; HRMS (ESI): Calcd. for C₃₂H₂₄ClN (M⁺ + H and M⁺ + H + 2): *m/z* 458.1676 and 460.1676. Found: 458.1675 and 460.1644.

5-methyl-1-(4-nitrophenyl)-3-phenyl-4*-p***-tolyl-5***H***-cyclopenta**[*c*]**quinoline** (**4be**). Precursors **1b** (0.15 g, 0.68 mmol) and **2e** (0.20 g, 0.75 mmol) were used. Red solid. Yield 0.232 g (72%); mp 230–232 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, *J* = 8.4 Hz, 1H), 8.28 (d, *J* = 8.8 Hz, 2H), 7.88 (d, *J* = 8.4 Hz, 2H), 7.73 (d, *J* = 8.8 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.30 (t, *J* = 7.2 Hz, 1H), 7.11 (s, 1H), 7.06 (d, *J* = 7.6 Hz, 2H), 6.95-6.87 (m, 5H), 6.82 (d, *J* = 7.2 Hz, 2H), 3.83

(s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.7, 147.7, 145.4, 139.6, 138.7, 133.9, 131.8, 130.2, 129.6, 129.3, 128.6, 128.3, 126.9, 125.5, 124.3, 124.0₄, 123.9₆, 121.4, 121.1, 120.8, 117.1, 38.7, 21.3; IR (KBr) 3074, 2970, 2921, 1589, 1573, 1540, 1244, 1189, 1107, 1014, 849 cm⁻¹; HRMS (ESI): Calcd. for C₃₂H₂₄N₂O₂ (M⁺ + H): *m/z* 469.1917. Found: 469.1917.

Compound 4ca: Precursors **1c** (0.18 g, 0.8 mmol) and **2a** (0.2 g, 0.88 mmol) were used. Yield: 0.23 g (66%). Analytical data are given above.

4-(**4**-fluorophenyl)-5-methyl-3-phenyl-1-*p*-tolyl-5*H*-cyclopenta[*c*]quinoline (4cb). Precursors **1c** (0.228 g, 1.01 mmol) and **2b** (0.263 g, 1.11 mmol) were used. Red solid. Yield 0.251 g (56%); mp 258–260 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 8.4 Hz, 1H), 7.66-7.62 (m, 3H), 7.38 (t, *J* = 7.2 Hz, 1H), 7.30 (d, *J* = 7.6 Hz, 2H), 7.27-7.17 (m, 3H), 7.12 (s, 1H), 6.98-6.93 (m, 3H), 6.85 (d, *J* = 6.8 Hz, 2H), 6.83-6.78 (m, 2H), 3.73 (s, 3H), 2.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.2 (d, *J* = 248.0 Hz), 147.2, 139.1, 137.3, 135.6, 133.7, 133.4, 132.3 (d, *J* = 8.0 Hz), 129.8, 129.7, 129.4, 129.3, 127.1, 127.0, 124.7, 124.5, 124.3_0, 124.2_6, 124.0, 123.8, 120.3, 119.4, 116.5, 115.0 (d, *J* = 22.0 Hz), 38.4, 21.4; IR (KBr) 3063, 3019, 2942, 2921, 1611, 1578, 1507, 1370, 1216, 1003, 855 cm⁻¹; HRMS (ESI): Calcd. for C₃₂H₂₄FN (M⁺ + H): *m*/z 442.1972. Found: 442.1972.

4-(4-fluorophenyl)-1-(4-methoxyphenyl)-5-methyl-3-phenyl-5H-cyclopenta[c]quinoline

(4cc). Precursors 1c (0.2 g, 0.89 mmol) and 2c (0.25 g, 0.98 mmol) were used. Red solid. Yield 0.208 g (51%); mp 204–206 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.39 (dd, J = 8.4 Hz, J = 1.2 Hz, 1H), 7.65-7.63 (m, 3H), 7.38 (t, J = 7.2 Hz, 1H), 7.26-7.18 (m, 3H), 7.09-7.03 (m, 3H), 6.97-6.94 (m, 3H), 6.87-6.79 (m, 4H), 3.92 (s, 3H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.2 (d, J = 248.0 Hz), 158.1, 147.1, 139.1, 133.7, 133.3, 132.7, 132.3 (d, J = 9.0 Hz), 130.5, 129.8, 129.7 (d, J = 3.0 Hz), 127.0₀, 126.9₇, 124.6, 124.5, 124.3, 124.1, 124.0, 123.5, 120.2, 119.3, 116.5, 115.0 (d, J = 22.0 Hz), 114.0, 55.4, 38.4; IR (KBr) 3068, 3025, 2921, 2827, 1616, 1584, 1507, 1364, 1288, 1249, 1167, 1036, 844 cm⁻¹; HRMS (ESI): Calcd. for C₃₂H₂₄FNO (M⁺ + H): m/z 458.1921. Found: 458.1920.

1-(4-chlorophenyl)-4-(4-fluorophenyl)-5-methyl-3-phenyl-5*H***-cyclopenta[***c***]quinoline (4cd). Precursors 1c** (0.2 g, 0.89 mmol) and **2d** (0.25 g, 0.98 mmol) were used. Red solid. Yield 0.286 g (70%); mp 230–232 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 8.0 Hz, 1H), 7.68-7.66 (m, 3H), 7.46-7.42 (m, 3H), 7.29 (t, *J* = 8.0 Hz, 1H), 7.19-7.16 (m, 2H), 7.10 (s, 1H), 7.01-6.94 (m, 3H), 6.86-6.79 (m, 4H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.2 (d, *J* = 249.0 Hz), 147.5, 138.8 (d, *J* = 11.0 Hz), 133.7, 132.7, 132.3 (d, *J* = 8.0 Hz), 131.6, 130.7, 129.7, 129.4₁, 129.3₇, 128.7, 127.3, 127.0, 124.9, 124.4, 124.2, 124.0, 122.2, 120.3, 119.8, 116.7, 115.1 (d, *J* = 22.0 Hz), 38.4; IR (KBr) 3063, 3019, 2926, 1605, 1573, 1501, 1463, 1397, 1364, 1216, 1090, 1008, 827 cm⁻¹; HRMS (ESI): Calcd. for C₃₁H₂₁CIFN (M⁺ + H):*m/z* 462.1426. Found: 462.1425.

4-(4-fluorophenyl)-5-methyl-1-(4-nitrophenyl)-3-phenyl-5*H***-cyclopenta[***c***]quinoline (4ce). Precursors 1c** (0.25 g, 1.11 mmol) and **2e** (0.326 g, 1.22 mmol) were used. Red solid. Yield 0.393 g (75%); mp 210–212 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 8.4 Hz, 1H), 8.26 (d, *J* = 8.0 Hz, 2H), 7.87 (d, *J* = 8.0 Hz, 2H), 7.74 (d, *J* = 8.8 Hz, 1H), 7.47 (dd \rightarrow t, *J* = 7.2 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.20-7.12 (m, 3H), 7.01-6.94 (m, 3H), 6.85-6.80 (m, 4H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.3 (d, *J* = 249.0 Hz), 148.1, 147.5, 145.5, 138.5, 133.9, 132.3 (d, *J* = 8.0 Hz), 132.1, 129.7, 129.3, 129.1, 128.1, 127.1, 125.7, 124.7, 124.5, 124.0₆, 124.9₈, 123.8, 121.4, 121.2, 121.1, 117.1, 115.1 (d, *J* = 22.0 Hz), 38.7; IR (KBr) 3058, 2921, 1595, 1573, 1501, 1370, 1332, 1233, 1112, 1008, 860 cm⁻¹; HRMS (ESI): Calcd. for C₃₁H₂₁FN₂O₂ (M⁺ + H): *m/z* 473.1666. Found: 473.1664.

1-butyl-4-(4-fluorophenyl)-5-methyl-3-phenyl-5*H***-cyclopenta**[*c*]**quinoline** (**4cf**). Precursors **1c** (0.213 g, 0.95 mmol) and **2f** (0.21 g, 1.04 mmol) were used. Red solid. Yield 0.251 g (65%); mp 136–138 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.41 (dd, *J* = 8.0 Hz, *J* = 1.2 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.52-7.48 (m, 1H), 7.42-7.38 (m, 1H), 7.15-7.12 (m, 2H), 7.01 (s, 1H), 6.95-6.89 (m, 3H), 6.82-6.74 (m, 4H), 3.67 (s, 3H), 3.18 (t, *J* = 8.0 Hz, 2H), 1.91-1.85 (m, 2H), 1.61-1.55 (m, 2H), 1.03 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.2 (d, *J* = 248.0 Hz), 146.2, 139.6, 133.7, 132.9, 132.3 (d, *J* = 9.0 Hz), 130.0 (d, *J* = 4.0 Hz), 129.9, 126.9, 126.4, 125.4, 124.8, 124.4, 124.3, 124.1, 123.7, 119.8, 119.1, 116.3, 114.9 (d, J = 22.0 Hz), 38.2, 32.2, 30.1, 23.3, 14.3; IR (KBr) 3052, 2942, 2926, 2860, 1600, 1578, 1551, 1512, 1468, 1375, 1321, 1222, 1156, 1096, 844 cm⁻¹; HRMS (ESI): Calcd. for C₂₉H₂₆FN (M⁺ + H): m/z 408.2128. Found: 408.2127.

4,5-dimethyl-1,3-diphenyl-5*H***-cyclopenta[***c***]quinoline (4da). Precursors 1d (0.18 g, 1.24 mmol) and 2a (0.30 g, 1.36 mmol) were used. Brown solid. Yield 0.185 g (43%); mp 178–180 ^{\circ}C; ¹H NMR (400 MHz, CDCl₃) \delta 8.39 (d,** *J* **= 8.0 Hz, 1H), 7.77 (d,** *J* **= 7.2 Hz, 2H), 7.61-7.51 (m, 5H), 7.48-7.45 (m, 2H), 7.42-7.33 (m, 3H), 7.22 (t,** *J* **= 7.6 Hz, 1H), 7.18 (s, 1H), 3.91 (s, 3H), 2.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta 146.5, 140.7, 133.5, 132.8, 130.4, 129.6, 128.4, 127.8, 126.4, 125.9, 125.6, 124.4, 124.1, 123.6, 123.1, 119.8, 119.1, 115.8, 35.3, 19.5; IR (KBr) 3063, 3014, 2932, 2849, 1578, 1545, 1507, 1474, 1370, 1326, 1244, 1123, 1052, 915, 833 cm⁻¹; HRMS (ESI): Calcd. for C₂₆H₂₁N (M⁺ + H):** *m/z* **348.1753. Found: 348.1752.**

Compound 4de: Precursors **1d** (0.18 g, 1.24 mmol) and **2e** (0.36 g, 1.36 mmol) were used. Yield: 0.283 g (58%). Analytical data are given above.

5-benzyl-1,3,4-triphenyl-5*H***-cyclopenta[***c***]quinoline (4fa). Precursors 1f⁶ (0.25 g, 0.88 mmol) and 2a (0.22 g, 0.97 mmol) were used. Red solid. Yield 0.239 g (56%); mp 180–182 °C; ¹H NMR (400 MHz, CDCl₃) \delta 8.42 (dd,** *J* **= 7.6 Hz,** *J* **= 1.2 Hz, 1H), 7.77 (d,** *J* **= 8.0 Hz, 2H), 7.52-7.46 (m, 3H), 7.37 (t,** *J* **= 7.2 Hz, 1H), 7.32-7.26 (m, 3H), 7.21-7.11 (m, 6H), 7.03 (d,** *J* **= 6.8 Hz, 2H), 6.98 (t,** *J* **= 7.6 Hz, 2H), 6.91-6.88 (m, 5H), 5.45 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) \delta**

148.9, 140.5, 139.1, 137.3, 133.9, 133.2, 132.7, 130.1, 129.8, 129.7, 129.3, 128.9, 128.5, 127.8, 127.7, 127.4, 126.8, 126.0, 125.8, 124.7₀, 124.6₆, 124.4, 124.1, 123.9, 123.8, 120.3, 119.8, 118.0, 53.0; IR (KBr) 3054, 3011, 1606, 1579, 1541, 1471, 1396, 1374, 1282, 1244, 1169, 1028, 963 cm⁻¹; LC-MS: m/z 486 [M+1]⁺; Anal. Calcd. for C₃₇H₂₇N: C, 91.51; H, 5.60; N, 2.88. Found: C, 91.43; H, 5.64; N, 2.81.

5-(4-methoxybenzyl)-1,3,4-triphenyl-5*H***-cyclopenta[***c***]quinoline (4ga). Precursors 1g^7 (0.25 g, 0.80 mmol) and 2a (0.20 g, 0.88 mmol) were used. Red solid. Yield 0.201 g (49%); mp 202–204 °C; ¹H NMR (400 MHz, CDCl₃) \delta 8.41 (dd,** *J* **= 8.0 Hz,** *J* **= 1.6 Hz, 1H), 7.76 (d,** *J* **= 8.2 Hz, 2H), 7.51-7.47 (m, 3H), 7.36 (t,** *J* **= 7.6 Hz, 1H), 7.23-7.11 (m, 6H), 6.99 (t,** *J* **= 7.6 Hz, 2H), 6.93 (d,** *J* **= 8.4 Hz, 2H), 6.90-6.87 (m, 5H), 6.82 (d,** *J* **= 8.4 Hz, 2H), 5.39 (s, 2H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta 158.9, 148.9, 140.5, 139.2, 133.9, 133.2, 132.7, 130.1, 129.8, 129.7, 129.3, 129.2, 128.5, 127.7₄, 127.6₇, 127.0, 126.8, 126.0, 124.6₈, 124.6₆, 124.4, 124.1, 123.9, 123.8, 120.2, 119.8, 118.1, 114.3, 55.3, 52.5; IR (KBr) 3071, 3016, 1601, 1579, 1541, 1514, 1433, 1396, 1293, 1244, 1163, 1039, 758 cm⁻¹; LC-MS:** *m***/***z* **516 [M+1]⁺; Anal. Calcd. for C₃₈H₂₉NO: C, 88.51; H, 5.67; N, 2.72. Found: C, 88.36; H, 5.62; N, 2.79.**

References:

- Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. *Purification of Laboratory Chemicals*, Pergamon, Oxford, 1986.
- (2) (a) Yu, X.; Park, E.-J.; Kondratyuk, T. P.; Pezzuto, J. M.; Sun, D. Org. Biomol. Chem.2012, 10, 8835. (b) Yu, L.; Jiang, X.; Wang, L.; Li, Z.; Wu, D.; Zhou, X. Eur. J. Org. Chem.2010, 5560.
- (3) (a) Sheldrick, G. M. SADABS, Siemens Area Detector Absorption Correction, University of Göttingen, Germany, 1996. (b) Sheldrick, G. M., SHELX-97- A program for crystal structure solution and refinement, University of Göttingen, 1997. (c) Sheldrick, G. M. SHELXTL NT Crystal Structure Analysis Package, Bruker AXS, Analytical X-ray System, WI, USA, 1999, version 5.10.
- (4) (a) Shao, Y.; Zhu, K.; Qin, Z.; Li, E.; Li, Y.J. Org. Chem. 2013, 78, 5731. (b) Hussain, M. K.; Ansari, M. I. Kant, R.; Hajela, K. Org. Lett. 2014, 16, 560.
- (5) Sanz, R.; Gohain, M.; Miguel, D.; Martinez, A.; Rodriguez, F. Synlett 2009, 12, 1985.
- Yu, X.; Park, E.-J.; Kondratyuk, T. P.; Pezzuto, J. M.; Sun, D. Org. Biomol. Chem. 2012, 10, 8835.
- Higuchi, K.; Sato, Y.; Kojima, S.; Tsuchimochi, M.; Sugiura, K.; Hatori, M.; Kawasaki T. *Tetrahedron* 2010, *66*, 1236.

Table-S1. Optimization Studies for the Ring-expansion/ Intramolecular ElectrophilicSubstitution Reaction of 3-Dienylindole $3aa^a$

P	Ph catalyst Ph addtive N unc Me 3aa	(20 mol %) e, solvent ler air	Ph Ph Ph Ph Ph Me 4aa	+ , , , , , , , , , , , , , , , , , , ,	Me Ph Ph
Entry	catalyst	solvent	temp(°C) /time (h)	Yield(%) ^b	
				4aa	5aa
1	Cu(OTf) ₂	MeNO ₂	100/8	43	37
2^c	Cu(OTf) ₂	MeNO ₂	rt/12	n.d	24
3	Cu(OTf) ₂	MeNO ₂	80/5	55	33
4^d	Cu(OTf) ₂	MeNO ₂	80/5	56	34
5 ^{<i>e</i>}	Cu(OTf) ₂	MeNO ₂	80/5	42	40
6 ^{<i>f</i>}	-	MeNO ₂	80/15	n.d	n.d
7	Cu(OAc) ₂	MeNO ₂	80/15	trace	trace
8	Cu(Br) ₂	MeNO ₂	80/12	n.d	n.d
9	$Cu(SO_4)_2.5H_2O$	MeNO ₂	80/12	n.d	n.d
10	Pd(OAc) ₂	MeNO ₂	80/8	n.d	trace
11	Zn(OTf) ₂	MeNO ₂	80/5	25	40
12	AgOTf	MeNO ₂	80/4	31	45
13	TfOH	MeNO ₂	80/8	n.d	82
14	Cu(OTf) ₂	CH ₃ CN	80/5	trace	68
15	Cu(OTf) ₂	DCE	80/4	30	28
16	Cu(OTf) ₂	toluene	80/4	n.d	35
17	Cu(OTf) ₂	DMF	80/4	26	57
18^g	Cu(OTf) ₂	MeNO ₂	80/5	28	40

19^{h}	Cu(OTf) ₂	MeNO ₂	80/5	23	34
20^i	Cu(OTf) ₂	MeNO ₂	80/5	64	22
21 ^{<i>j</i>}	Cu(OTf) ₂	MeNO ₂	80/5	47	35
22^k	Cu(OTf) ₂	MeNO ₂	80/3	75	trace

^{*a*}Reaction conditions: **3aa** (0.3 mmol), catalyst (0.06 mmol), additive (2 equiv) and solvent (2.0 mL) at the specified temperature and time in air unless otherwise noted. ^{*b*}Isolated yields. ^{*c*}3-dienylindole was recovered in 52% yield. ^{*d*}under oxygen. ^{*e*}under nitrogen. ^{*f*}3-dienylindole was completely recovered. ^{*g*}AcOH, ^{*h*}pivOH, ^{*i*}PTSA and ^{*j*}TFA are used as additive. ^{*k*}Stoichiometric amount of catalyst was used. n.d = not detected.

Figure S1. The absorption (a) and fluorescence emission spectra (b) of compounds **4ad** (A), **4cb** (B) and **4cc** (C) with $c = 1.3 \times 10^{-5}$ mol/L in THF, upon excitation at 330 nm.

Figure S2. Molecular structure of compound **3ac** (CCDC No. 1025010). Hydrogen atoms (except =CH₂) are omitted for clarity. Selected bond parameters: N1-C9 1.390(3), C9-C8 1.372(3), C8-C16 1.481(2), C16-C17 1.484(3), C16-C24 1.334(3), C24-C25 1.473(3), C25-C26 1.322(3), C25-C27 1.484(3) (Å).

Figure S3. Molecular structure of compound 4ac (CCDC No. 1025011). Hydrogen atoms omitted for clarity. Selected bond parameters: N1-C10 1.364(2), C9-C10 1.370(2), C8-C9 1.449(2), C9-C17 1.437(2), C17-C20 1.472(2), C17-C18 1.364(2), C18-C19 1.428(2), C8-C19 1.383(2), C19-C26 1.468(2) (Å).

Figure S4. Molecular structure of compound **5ab** (CCDC No. 1025012). Hydrogen atoms omitted for clarity. Selected bond parameters: N1-C9 1.384(4), C9-C8 1.365(4), C8-C16 1.468(4), C16-C17 1.475(4), C16-C25 1.328(4), C25-C24 1.515(4), C24-C23 1.514(4), C24-C26 1.540(4), C24-C27 1.522(4) (Å).

Figure S5.¹H NMR spectrum of compound 2d

Figure S6.¹³C NMR spectrum of compound 2d

Figure S8.¹³C NMR spectrum of compound 2e

Figure S10.¹³C NMR spectrum of compound 3aa

Figure S11.¹H NMR spectrum of compound 3ab

Figure S12.¹³C NMR spectrum of compound 3ab

Figure S14.¹³C NMR spectrum of compound 3ac

Figure S15.¹H NMR (C₆D₆) spectrum of compound 3ad

Figure S16.¹³C NMR (C₆D₆) spectrum of compound 3ad

Figure S17.¹H NMR spectrum of compound 3ae

Figure S18.¹³C NMR spectrum of compound 3ae

Figure S20.¹³C NMR spectrum of compound 3ba

Figure S21.¹H NMR spectrum of compound 3ca

Figure S22.¹³C NMR spectrum of compound 3ca

Figure S23.¹H NMR spectrum of compound 3de. (For minor peaks see experimental section)

Figure S24.¹³C NMR spectrum of compound 3de

Figure S26.¹³C NMR spectrum of compound 3ea

Figure S28.¹³C NMR spectrum of compound 4aa

Figure S30.¹³C NMR spectrum of compound 5aa

Figure S32.¹³C NMR spectrum of compound 4ab

Figure S33.¹H NMR spectrum of compound 5ab

Figure S34.¹³C NMR spectrum of compound 5ab

Figure S36.¹³C NMR spectrum of compound 4ac

Figure S37.¹H NMR spectrum of compound 5ac

Figure S38.¹³C NMR spectrum of compound 5ac

Figure S40.¹³C NMR spectrum of compound 4ad

Figure S41.¹H NMR spectrum of compound **5ad**. (Additional peak is due to grease)

Figure S42.¹³C NMR spectrum of compound 5ad. (Additional peak is due to grease)

Figure S43.¹H NMR spectrum of compound 4ae

Figure S44.¹³C NMR spectrum of compound 4ae

1448.85 140.52 133.74 133.74 133.76 132.88 132.86 123.76 122.45 122.45 122.45 122.45 122.45 122.42 122.42 123.68 123.68 123.56 125.56 125.56 125.56 125.56 125.56 125.56 125.56 125.56 125.56 125.56 125.56 1 77.42 77.10 76.78 ---38.43 -21.28 Ph Мe 4ba 200 190 180 170 160 150 140 130 120 110 100 90 80 60 50 40 30 70 20 10 0 ppm

Figure S46.¹³C NMR spectrum of compound 4ba.

Figure S48.¹³C NMR spectrum of compound 4ca

Figure S50.¹³C NMR spectrum of compound 5ca

Figure S51.¹H NMR spectrum of compound 4de

Figure S52.¹³C NMR spectrum of compound 4de

Figure S53.¹H NMR spectrum of compound 5ea

Figure S54.¹³C NMR spectrum of compound 5ea

Figure S55.¹H NMR spectrum of compound **4af**. Additional peak is due to grease.

Figure S56.¹³C NMR spectrum of compound 4af. Additional peak is due to grease.

Figure S57.¹H NMR spectrum of compound 4bb

Figure S58.¹³C NMR spectrum of compound 4bb

Figure S59.¹H NMR spectrum of compound 4bd

Figure S60.¹³C NMR spectrum of compound 4bd.

Figure S61.¹H NMR spectrum of compound 4be

Figure S62.¹³C NMR spectrum of compound 4be

Figure S64.¹³C NMR spectrum of compound 4cb

Figure S65.¹H NMR spectrum of compound 4cc

Figure S66.¹³C NMR spectrum of compound 4cc

Figure S67.¹H NMR spectrum of compound 4cd

Figure S68.¹³C NMR spectrum of compound 4cd

Figure S70.¹³C NMR spectrum of compound 4ce

Figure S71. ¹H NMR spectrum of compound 4cf

Figure S72. ¹³C NMR spectrum of compound 4cf

Figure S73. ¹H NMR spectrum of compound 4da

Figure S74. ¹³C NMR spectrum of compound 4da

Figure S76. ¹³C NMR spectrum of compound 4fa

Figure S78. ¹³C NMR spectrum of compound 4ga