Supporting Information

Fe-based MOFs for Photocatalytic CO₂ Reduction: Role of Coordination Unsaturated Sites and Dual Excitation Pathways

Dengke Wang, Renkun Huang, Wenjun Liu, Dengrong Sun, Zhaohui Li*

Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China

Corresponding E-mail: zhaohuili1969@yahoo.com

Figure S1 TG of the as-prepared MIL-101(Fe).

Figure S2 N_2 adsorption/desorption of the as-prepared MIL-101(Fe).

Figure S3 The ¹³C NMR spectra for the product obtained from the reaction with ¹²CO₂

Figure S4 The ¹³C NMR spectra for the product obtained from the reaction with ¹³CO₂

Figure S5 The amount of HCOO produced as a function of the irradiation time over MIL-101(Fe) (at 8 h, the solid was removed from the reaction system)

Figure S6 The recycling use of MIL-101(Fe) for photocatalytic CO₂ reduction

Figure S7 XRD of MIL-101(Fe) (fresh and after the photocatalytic reaction)

Figure S8 IR of MIL-101(Fe) (fresh and after the photocatalytic reaction)

Figure S9 TG of MIL-101(Fe) (fresh and after the photocatalytic reaction)

Figure S10 N₂ adsorption/desorption isotherm of MIL-101(Fe) (fresh and after the photocatalytic reaction)

Figure S11 Mott–Schottky plots for MIL-101(Fe). The ac amplitude is 20 mV and the frequency is in the range 0.5-1.5 KHz.

Figure S12 XRD of MIL-53(Fe) (fresh and after the photocatalytic reaction)

Figure S13 TG of MIL-53(Fe) (fresh and after the photocatalytic reaction)

Figure S14 XRD of MIL-88B (Fe) (fresh and after the photocatalytic reaction)

Figure S15 TG of MIL-88B(Fe) (fresh and after the photocatalytic reaction)

Figure S16 UV-vis spectra of MIL-53(Fe) and NH₂-MIL-53(Fe)

Figure S17 UV-vis spectra of MIL-88B(Fe) and NH₂-MIL-88B(Fe)

Figure S18 The amount of HCOO produced as a function of the irradiation time over MIL-53(Fe).

Figure S19 The amount of HCOO produced as a function of the irradiation time over MIL-88B(Fe).

Figure S20 Mott–Schottky plots for MIL-53(Fe). The ac amplitude is 20 mV and the frequency is in the range 0.5–1.5 KHz.

Figure S21 Mott–Schottky plots for MIL-88B(Fe). The ac amplitude is 20 mV and the frequency is in the range 0.5–1.5 KHz.

Figure S22 CO_2 adsorption isotherms (1 atm, 273K) of (a) MIL-101(Fe); (b) MIL-53(Fe); (c) MIL-88(Fe).

Figure S23 In situ FT-IR analyses of CO₂ adsorption process over pretreated MIL-53(Fe).

Figure S24 In situ FT-IR analyses of CO₂ adsorption process over pretreated MIL-88B(Fe).

Figure S25 XRD pattern of NH_2 -MIL-53(Fe).

Figure S26 XRD pattern of NH_2 -MIL-88B(Fe).

 $\textbf{Figure S27} \ FT\text{-}IR \ spectrum \ of \ NH_2\text{-}MIL\text{-}101(Fe).$

Figure S28 FT-IR spectrum of NH_2 -MIL-53 (Fe).

Figure S29 FT-IR spectrum of NH₂-MIL-88B(Fe).

Figure S30 N_2 adsorption/desorption isotherm of NH_2 -MIL-101(Fe).

Figure S31 TG of NH_2 -MIL-101(Fe).

Figure S32 TG of NH₂-MIL-53(Fe).

Figure \$33 TG of NH_2 -MIL-88B(Fe).

Figure S34 CO₂ adsorption isotherms (1 atm, 273K) of (a) NH₂-MIL-101(Fe); (b) NH₂-MIL-53(Fe); (c) NH₂-MIL-88(Fe).

Table S1 QE for photocatalytic CO_2 reduction over NH_2 -MIL-101(Fe) and MIL-101(Fe) at different wavelength

Sample	wavelength/nm	QE (×10 ⁻⁴)
NH ₂ -MIL-101(Fe)	450	1.3
	500	0.7
	550	0.6
MIL-101(Fe)	450	0.8
	500	0.3
	550	0.2