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SI-I. Absorption and fluorescence of PBI-1 monomers and J-aggregates 

 PBI-1 dyes aggregate when dissolved in methylcycolhexane (MCH) and remain in monomeric 

form when dissolved in dichloromethane (DCM). Figure SI-1 shows the bathochromic shift of 

the absorption by 1950 cm
-1

 upon aggregation. The width of the J-aggregates absorption 

spectrum is smaller than that of the monomer absorption due to motional narrowing. Indicated in 

the figure are also the widths of the monomer (max at 570 nm) and J-aggregate (max at 660 nm) 

fluorescence bands.  

 

 
Figure SI-1 | Absorption and fluorescence of PBI-1 monomers and aggregates in 

solution. 

 Estimations of the monomer absorption and fluorescence band widths were made using a 

Gaussian fit. The monomer absorption contains an extra vibronic peak at 520 nm, however 

we only took into account the 0-0 band in the estimation of the width. The monomer emission 

can be seen together with the aggregate emission since not all PBI-1 dyes were aggregated 

at the given conditions. 

 

 

SI-II. Single Aggregate Analysis 

 This section provides further detail on the analysis applied to the spectra of all aggregates. The 

main objective of this analysis was to use statistical methods to find aggregates of interest 

(showing spectral fluctuations) in order to create an unbiased platform for selecting aggregates 

for further analysis. 
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Singular Value Decomposition (SVD) 

 For the analysis of single aggregate spectra we applied a statistical method called singular 

value decomposition. In general, SVD is a method used when studying large data sets where m 

variables are observed n times creating a matrix of m x n elements. SVD is an extremely 

powerful method applied in a diverse number of fields. Detailed description of the general 

method can be found in literature.
1
 Here, we aim to describe how we used it with the 

fluorescence spectral data set. 

 

 We apply SVD to a single aggregate spectral data (intensity at m=163 wavelengths (number of 

pixels per spectrum) measured over n=500 frames) to see if the data can be represented as linear 

combinations of only a few key spectral features, whose intensities vary independently over 

time. Using SVD, these key spectral features are given in the form of spectral basis vectors 

(eigenvectors), which are orthogonal to one another and create a new coordinate system. The 

principle behind SVD is that the new coordinate system is chosen in such a way that the first 

spectral basis vector represents the most important spectral feature of the data set. The second 

spectral basis vector accounts as much as possible for the spectral features that cannot be 

described by the first spectral basis vector, and so on. 

 

 Mathematically, each spectral feature is represented by an eigenvector of length m. Each 

eigenvector has a singular value that describes how important this spectral feature is for the 

whole data set. The first eigenvector has the highest singular value, representing the most 

relevant spectral feature. The second eigenvector accounts for additional fluctuations that cannot 

be described by the first eigenvector. Thus, the second singular value is smaller than the first. By 

this logic, each additional eigenvector will have a lower singular value. By analyzing the relative 

magnitudes of the singular values, we can determine how many different key spectral features 

are present in a single aggregate spectral data set. 

 

 Figure SI-2a shows all experimental spectra of aggregate #78. Figure SI-2b shows the singular 

values of the spectral basis vectors (eigenvectors). We see that the first two spectral basis vectors 

have singular values that are nearly 2 orders of magnitude larger than the rest. This indicates that 

they alone account for the majority of the spectral features in the entire data set. This becomes 

easier to understand from Figure SI-2c where the first two spectral basis vectors are plotted. 

From the figure we see that a linear combination of the first two spectral basis vectors is enough 

to describe all the spectra in Figure SI-2a quite well.  

 Analyzing the relative magnitudes of the singular values allows us to obtain the so-called ‘noise 

floor’ (red dashed line in Figure SI-2b). From the noise floor we can quantify the signal-to-noise 

ratio (SNR) of the singular values. When analyzing each individual aggregate spectral data, any 

singular value having an SNR of 2 or lower were considered irrelevant. Out of the 217 

aggregates, 15 were found to have more than one significant spectral feature and these are 

plotted in Figure 2a of the paper. 
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Figure SI-2 | Spectral analysis procedure applied to aggregate #78 

 (a) shows the original data for aggregate #78 where all spectra are plotted from all 

frames. (b) shows the singular values for each spectral basis vector. The noise floor is 

indicated with a red dotted line and the SNR for the 3 first singular values are also shown 

where the 3
rd

singular value is considered irrelevant (crossed out in red). (c) shows the first 

two spectral basis vectors. (d) plots the projection of the whole data set to the plane defined 

by the two spectral basis vectors plotted in (c). Using the Hierarchical Clustering method we 

are able to separate each frame into two clusters indicated with the different colors. Plotting 

the spectra of all frames belonging to each cluster in their respective color we see in (e) that 

spectra belonging to each cluster are similar. The mean spectrum of each cluster is plotted 

in yellow. 
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Hierarchical Clustering 

 After analyzing all aggregates we found that those exhibiting spectral fluctuations had 

predominantly two spectral basis vectors describing most of the fluctuations. This means that 

every spectrum in each frame can be described by linear combination the first two spectral basis 

vectors. 

 Plotting the linear coefficients belonging to the first two spectral basis vectors as points in a 

plane(one point for each spectra, Fig. SI-2(d)), we could apply a technique called Hierarchical 

Clustering.
2
The method calculates the Euclidean distance between all data points and separates 

them into a user-defined number of clusters. Since the number of relevant singular values 

indicates how many different key spectral features exist in the data set, it makes sense to try to 

divide the data points into the equal amount of clusters. After applying the Hierarchical 

Clustering method to the 500 data points (frames) we see there are two distinct clusters (colored 

in blue and red). All frames of each cluster therefore exhibit similar spectral features. This 

allowed us to not only see the different spectral features and which frames they were in, but also 

correlate any other fluorescence behavior (blinking, localization of emission) to these spectral 

features. In Figure SI-2e we plot the spectra belonging to each cluster with the same color 

coordination (cluster 1 – blue, cluster 2 – red). We also plot the mean spectrum of each cluster in 

yellow. 

 

 

Double-band Fitting 

 To further analyze all spectra we look at the mean spectra of each cluster (plotted with yellow 

lines in Figure SI-2e). For simplicity we will refer to the mean spectra of cluster 1 and 2 as the 

‘blue’ and ‘red’ spectra respectively. It appears as if the red spectrum is a combination of the 

blue spectrum and an additional peak. To separate these we first analyzed the blue spectrum 

using a mixed Gaussian-Lorentzian fit (Eqs. SI-1and SI-2), 

 

𝐺(𝜆) =
𝐼𝑝

{1 + [4𝑀𝜉2]/Γ2}𝑒𝑥𝑝{(1 − 𝑀)[4𝑙𝑛2 𝜉2]/Γ2}
 

(SI-1) 

  

𝜉 =
(𝜆 − 𝜆𝑝)

(1 + 𝛼𝐺𝐿(𝜆 − 𝜆𝑝)) /Γ
 

             (SI-2) 

 

where λp - peak wavelength, Ip - intensity at the band peak, M - degree of mixing between the 

Gaussian and Lorentzian shape (0 = pure Gaussian, 1 = pure Lorentzian), Γ - a common width 

for both shapes, and αGL is the asymmetry constant (-2 ≤ αGL ≤ 2).
3
 The use of a mixed Gaussian-

Lorentzian profile is a first approximation when applied to an asymmetric line shape subject to 
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homogeneous broadening effects. Equations SI-1 and SI-2 use a common width for both profiles 

and which has been denoted with Γ not to be confused with other places where a width is 

discussed in the text. 

 We applied the fit to all the spectra belonging to cluster 1 and found that, besides intensity 

fluctuations, the spectral shapes were rather stable with parameters for the peak wavelength at λp 

= 665 nm, common width Γ = 25 nm and asymmetry constant αGL = 0.8. 

 When fitting the spectra in cluster 2, 10 parameters were used for two peaks where 5 were fixed 

for the blue spectrum according to the values obtained above. This allowed us to subtract the 

blue spectrum from red spectrum to plot them independently (now referring to them as the blue 

and red emission bands).  

 Figure SI-3 shows an example of the band-separation in two frames where (a) the blue band is 

present and (b) where both bands are present. The original spectrum in each frame is plotted in 

black, and the blue and red bands are plotted in blue and red respectively.  

 

 
Figure SI-3 | Example of band separation through double peak fitting 

 Comparison of two frames where the red band is absent (a - frame 1) and where it is 

present (b – frame 200) for aggregate #78.  

 

 Figure SI-4 shows an example of the peak separation of aggregate #139 applied in all 

frames.(a) shows the full spectra and (b-c) show the separated blue and red bands after applying 

the band-separation procedure. 
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Figure SI-4 | Example of spectral band-separation 

 Fluorescence band separation of aggregate #139 in time. (a) shows the experimental data 

without any fitting applied to it. After using Eq. SI-1 and 2 we can separate every spectrum 

into two parts where the blue band is shown in (b) and the red band in (c). The z-scale is the 

same in all figures (a-c). (d-f) shows the integrated spectra over all acquisition frames where 

the intensity scale is the same for all plots. 

 

 Separating the bands and integrating the intensity of each allowed us to see the intensity 

contribution of each band to the total fluorescence. In the following section, the peak separation 

procedure is applied to all frames of the 15 selected aggregates. 

 

SI-III. Statistics Analysis of Multiple Aggregates  

 In this section we aim to show that the fluctuationsseen in aggregate #78 are not unique to that 

aggregate, but similar fluctuations are seen in other aggregates too. 

 In order to find aggregates exhibiting potentially interesting behavior, we used the procedure 

outlined in section SI-II (comparison of the singular values) which yielded 15 out of 217 

aggregates having an additional red-shifted band in at least one acquisition frame (plotted in 

paper, Figure 2a).  

 The double-band fitting procedure was applied to all spectra which could not be exclusively 

fitted with the blue spectrum only. The intensity contribution of each band was measured as a 

fraction of the total intensity. Figure SI-5shows a histogram of the intensity contribution of the 
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red band to the total fluorescence from roughly 4300 analyzed frames out of 6900 (15 aggregates 

having either 500 or 200 acquisition frames).  

 We can conclude that when the red band was present, it was responsible for appoximately one 

half of the fluorescence. 

 

 
Figure SI-5 | Contribution of the Red band to the total fluorescence intensity. 

 Relative contribution of the red band to the total fluorescence in each acquired frame for 

the 15 selected aggregates from the SVD procedure (see SI-II). 

 

SI-IV. Analyzed Aggregate 'Movies' 

 Below is a description of 5 selected aggregate ‘movies‘ showing the behavior of their 

fluorescence in intensity, spectral and spatial domains. Table SI-1 summarizes how well the 

fluctuations are visible in each domain. Each domain recieves a grade between 1-5 (not visible-

well visible) depending on how clearly a red-shifted band, distinct intensity levels, or well-

defined localization clusters are seen. Each movie has also a short summarizing comment. 

 

Aggregate  

Movie name 

 

Spectral 

Domain 

Intensity 

Domain 

Spatial 

Domain 

Comment 

SI-M63 4 5 4 The aggregate exhibits a clear correlation 

between all domains. Intensity blinking due to 

the ‘on/off‘ switching of the red band is very 

strong. Red emission is also very localized 

compared to the blue. 

SI-M78 5 5 4 This aggregate (#78) shows a clear correlation in 

all domains. It is the example discussed in the 

main text of the article. 

SI-M128 5 5 3 Interesting behavior since it appears that we are 

dealing with 3 states. The original ‘blue‘ and 

‘red‘ bands are observed throughout the entire 

acquisition while there is an additional band 

centered around 680 nm that switches ’on‘ and 

‘off‘. Could be an indication of the presence of 
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more than one Lévy state. 

SI-M139 4 4 5 The aggregate shows a very clear correlation in 

all frames. However, the spectrum does not 

show an obvious separation between the red and 

blue bands, (see also Figure SI-4) but with the 

correlation to the spatial domain, the behavior 

becomes more clear. The spatial domain shows 

exceptional clustering. As Figure SI-4 shows, 

band separation of this aggregate spectra 

revealed two bands. 

SI-M173 3 3 5 The spectral fluctuations seem to be dominated 

by the band centered at 680 nm. The switching 

of this band correlates very well with the spatial 

fluctuations, however, the intensity levels are not 

stable. This could have something to do with the 

exposure time being too long to resolve the fast 

blinking behavior of this aggregate. 

Table SI-1 | Summary of the additional single aggregate movies 

 

 

SI-V. 2D Polarization Imaging of Single-Aggregate Sample 

 In 2D-POLIM the fluorescence intensity I of the sample (an isolated aggregate) is measured for 

a set of combinations of the excitation and emission polarization angles, ex and em, 

respectively.
4
 From this data we construct a 2D function that receives the name of polarization 

portrait, I(ex,em), for each isolated aggregate. In essence, the polarization portrait contains the 

correlation between the sample’s emission polarization and the electric field’s direction of the 

linearly polarized excitation light. 

 

 
Figure SI-6 | Polarization portrait and calculation of parameters 
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Integration of the polarization portrait (Figure SI-6) over the excitation (ex) or emission (em) 

polarization angle yields a one dimensional function having the following functional form: 

 

𝐼(𝜑𝑒𝑚) = ∫ 𝐼(𝜑𝑒𝑥, 𝜑𝑒𝑚)
𝜋

0

𝑑𝜑𝑒𝑥 = 𝐼̅ + 𝑀𝑒𝑚 cos(2(𝜑𝑒𝑚 − 𝜃𝑒𝑚)) 

(SI-3) 

𝐼(𝜑𝑒𝑥) = ∫ 𝐼(𝜑𝑒𝑥, 𝜑𝑒𝑚)
𝜋

0

𝑑𝜑𝑒𝑚 = 𝐼̅ + 𝑀𝑒𝑥 cos(2(𝜑𝑒𝑥 − 𝜃𝑒𝑥)) 

(SI-4) 

 

where, Mem is the modulation depth in emission (excitation - Mex), em is the emission 

polarization phase (excitation – ex), and 𝐼 ̅is the average value of the corresponding 1D function.  

 Further, the modulation depths can be calculated from the maximum (Imax) and minimum (Imin) 

values (Figure SI-6) of the corresponding 1D function: 

 

𝑀 =
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛
 

(SI-5) 

 

Correlation between modulation depth in excitation and emission 

 Figure SI-7shows histograms of (a) the modulation depth in excitation - Mex (also referred to as 

fluorescence detected linear dichroism) and (b) modulation depth in emission - Mem (emission 

polarization degree), as well as the correlation between the two (c) for 223 individual aggregates 

from a single-aggregate sample. The data points are shifted up from the diagonal, which is an 

indication of energy transfer towards less randomly polarized emitting sites.
4
 A broad 

distribution of Mex indicates that aggregates are not straight rods, but rather possess worm-like 

shapes. 
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Figure SI-7 | Modulation Depth in Excitation vs. Modulation Depth in Emission for 

individual aggregates. 
 

 

SI-VI. Simulation of the exciton band  

Frenkel Exciton Hamiltonian with Disorder 

J-aggregate exciton states and optical transitions are described using the Frenkel exciton 

Hamiltonian of a disordered 1-D chain
5
 in the nearest-neighbor approximation according to; 

 

𝐻 = ∑ 𝐸𝑛

𝑁

𝑛=1

|𝑛⟩⟨𝑛|  + ∑ 𝐽𝑛,𝑚|𝑛⟩⟨𝑚|

𝑁−1

𝑛=1
𝑚=𝑛+1

 

(SI-6) 

 

where En is the transition energy of the n
th

 monomer and |n> is the state in which it is excited. 

Jn,m is the intermolecular resonance interaction between the n
th 

and the m
th

 monomers (Jn,n+1=J) 

and N is the total number of monomers in the aggregate chain. The disorder is introduced as 

fluctuations of the monomer transition energies (diagonal disorder) or of the intermolecular 

interactions (off-diagonal disorder). The purpose of modeling the exciton structure is not to 

obtain any quantitative information of the exciton states, but rather show the relative energy 

differences of the states. Therefore, as a first approximation, we assume that the experimental 
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bathochromic shift (the energy difference the monomer absorption maximum to the J-aggregate 

absorption maximum) is equal to 2 J. 

We used MatLab® to diagonalize the Hamiltonian for N = 250 monomers. J was chosen as -

975 cm
-1 

according to the -1950 cm
-1

 bathochromic shift seen in Figure SI-1 (from 17575 cm
-1

/ 

569 nm to 15625 cm
-1

/ 640 nm, which is in good agreement with previous measurements of the 

same molecule
6
). All energy parameters are measured in units of J here forth. 

The Frenkel Hamiltonian describes the exciton states and absorption properties of a J-

aggregate. Modeling of fluorescence is much more complex and goes beyond this Hamiltonian. 

At first approximation we assume thermal relaxation of the excitons within the exciton band. 

Even such simple picture gets complicated since not all states are equally accessible for a 

particular exciton because each state has its own location on the chain.
7
 However, at first 

approximation we assume that emission maximum corresponds to the states located in the 

vicinity of the red edge of the exciton band (kT<<exciton band width).  

As will be seen from the simulations below, this edge is situated at approximately -2.7 J. This 

energy then corresponds to the ‘blue’ fluorescence band of the aggregate #78. The ‘red’ band is 

shifted by 750 cm
-1

 which is 0.76 J. So, we should look for a single state by 0.8 J from all other 

low states forming the band edge. 

 

 

Molecular disorder: Gaussian vs Lévy distributions 

In the modeling we used either a Gaussian distribution or a heavy-tailed Lévy distribution with 

α=1.5, s=0.5 for the diagonal disorder. The Gaussian distribution had a standard deviation of 

=0.6 J, the Lévy distribution had FWHM=1.3 J (Figure SI-8a).  

For each distribution, 100 realizations were made in order to calculate the absorption spectrum 

(Figure SI-8e and f shows the histogram with black face color generated by binning the oscillator 

strengths of all states, bin-size ≈ 0.01 J). Both distributions give the absorption bandwidth similar 

to that observed experimentally (1000 cm
-1

). Density of states (DOS) is also shown (c,d). 

In order to see the exciton states for a single aggregate we look at the exciton states obtained 

from a single realization of the disorder. 

In the case of the Gaussian disorder, we do not see any isolated state significantly below the 

group of several states that form the exciton band edge ((e), the amplitude of each red ‘stick’ 

gives the oscillator strength). Actually, even 100 realizations did not yield a drastically red-

shifted state. The situation is different for the Lévy disorder. A state shifted from the edge by 

≈0.8 J (Lévy state) is observed already in a single realization. 

 

The dotted vertical lines in (a) show the standard deviations of the Gaussian distribution. In (b) 

the distributions are plotted in a logarithmic scale where the difference between the tails becomes 

obvious. It is clear that an ‘outlier’ monomer has orders of magnitude smaller chance to occur for 

the Gaussian disorder in comparison to the Lévy disorder. The vertical dotted line in (b) shows 
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the energy of the monomer which lead to formation of the Lévy state in the realization shown in 

(f).  

 We stress that the goal of these simulations is not to exactly fit the experimental data (a much 

more advanced model is needed for that), but to demonstrate the crucial difference between 

Gaussian and heavy-tailed Lévy distributions in regard to the formation of exciton outliers with a 

shift on the order of J in a single disorder realization. 

 

 
 

Figure SI-8 | Simulation results using different disorder distributions 

 (a) shows the different distributions used for the simulations (Gaussian – black, Lévy – 

red). (b) shows a logarithmic plot of the distributions to emphasize the differences in the 

tails. Vertical dotted line represents the outlier monomer forming the outlier exciton state in 

(f). (c-d) show the density of states (DOS) of the Gaussian and Lévy distributions 

respectively. (e-f) show the corresponding absorption spectra (black, 100 realization of the 

disorder) generated using the Gaussian and Lévy distributions respectively. The results from 

a single realization is plotted in red, where the oscillator strength is on the right y-axes. 
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SI- VII Experimental Setup 

 Figure SI-9 shows a schematic of the experimental setup used for the fluorescence 

measurements.The objective lens together with the additional imaging lens provided a 

magnification of 80X resulting in an effective pixel size of 200x200 nm. The diffraction grating 

had 150 grooves/mm and allowed for simultaneous observation of the three domains (spectral, 

intensity, spatial) as seen in the figure. The figure shows an example of experimental data of a 

single aggregate fluorescence in one acquisition frame where the emission pattern is seen in the 

zero order together with its spectrum in the first order diffraction. Depending on the sample 

under investigation, different excitation sources were used. For low temperature measurements, 

the sample was placed inside a cryostat as the figure shows. 

 
 

Figure SI-9 | Experimental Setup 
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