Synthesis, Spectral and Electrochemical Studies of Electronically Tunable β-Substituted Porphyrins with Mixed Substituent Pattern

Ravi Kumar and Muniappan Sankar*

Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India

Supporting Information

Table of Contents (TOC)

Figure S1. The ORTEP diagrams showing top and side views of NiTPP(NO₂)(Th)₂(Py) (1a and 1b), ZnTPP(NO₂)(PE)₂(CH₃OH) (1d and 1e) and ZnTPP(NO₂)Br₂(CH₃OH) (1g and 1h). The solvates are not shown for clarity, and in side view, the β -substituents and *meso*-phenyl groups are not shown for clarity. The displacement of porphyrin-core atoms in Å from the mean plane are shown in figures 1c, 1f and 1i for NiTPP(NO₂)(Th)₂(Py), ZnTPP(NO₂)(PE)₂(CH₃OH) and ZnTPP(NO₂)Br₂, respectively.

Figure S2. B3LYP/LanL2DZ optimised geometries showing top as well as side views of $H_2TPP(NO_2)(CN)_2$ (1a and 1b) and $H_2TPP(NO_2)(PE)_2$ (1d and 1e), respectively. In side view, the β -substituents and *meso*-phenyl groups are not shown for clarity. The displacement of porphyrin-core atoms in Å from the mean plane are shown in figures 1c and 1f for $H_2TPP(NO_2)(CN)_2$ and $H_2TPP(NO_2)(PE)_2$, respectively. Color codes for atoms: C (black), N (blue) and O (red).

Figure S3. B3LYP/LanL2DZ optimised geometries showing top as well as side views of $H_2TPP(NO_2)Ph_2$ (1a and 1b) and $H_2TPP(NO_2)Br_2$ (1d and 1e), respectively. In side view, the β -substituents and *meso*-phenyl groups are not shown for clarity. The displacement of porphyrin-core atoms in Å from the mean plane are shown in figures 1c and 1f for $H_2TPP(NO_2)Ph_2$ and $H_2TPP(NO_2)Br_2$, respectively. Color codes for atoms: C (black), N (blue), O (red) and Br (brown).

Figure S4. B3LYP/LanL2DZ optimised geometries showing top as well as side views of $H_2TPP(NO_2)(PE)_6$ (1a and 1b) and $H_2TPP(NO_2)Ph_6$ (1d and 1e), respectively. In side view, the

β-substituents and *meso*-phenyl groups are not shown for clarity. The displacement of porphyrincore atoms in Å from the mean plane are shown in figures 1c and 1f for H₂TPP(NO₂)(PE)₆ and H₂TPP(NO₂)Ph₆, respectively. Color codes for atoms: C (black), N (blue) and O (red).

Figure S5. Electronic absorption spectra of $H_2TPP(NO_2)X_2$ (X = H, CN, PE) derivatives in CH_2Cl_2 at 298 K. Q bands are magnified 3 times.

Figure S6. UV- Visible spectra of $H_2TPP(NO_2)X_6$ (X = H, Ph, Th, PE) derivatives in CH_2Cl_2 at 298 K. Q bands are magnified 3 times.

Figure S7.Fluorescence spectra of H_2 TPP(NO₂)Th_n (n = 0, 2, 6) in CH₂Cl₂ at 298 K.

Figure S8. Emission spectra of (a) MTPP(NO₂)(CN)₂ and (b) MTPP(NO₂)(C₆H₅)₂, where M = 2H and Zn(II) in CH₂Cl₂ at 298 K.

Figure S9. Fluorescence spectra of (a) MTPP(NO₂)(PE)₂ and (b) MTPP(NO₂)(PE)₆ (M = 2H, Zn(II)) in CH₂Cl₂ at 298 K.

Figure S10.¹H NMR spectrum of H₂TPP(NO₂)Br₂ in CDCl₃at 298 K.

Figure S11. ¹H NMR spectrum of NiTPP(NO₂)Br₂ in CDCl₃.

Figure S12.¹H NMR spectrum of ZnTPP(NO₂)Br₂ in CDCl₃.

Figure S13.¹H NMR spectrum of H₂TPP(NO₂)Ph₂ in CDCl₃.

Figure S14.¹H NMR spectrum of NiTPP(NO₂)Ph₂ in CDCl₃.

Figure S15.¹H NMR spectrum of ZnTPP(NO₂)Ph₂ in CDCl₃.

Figure S16. ¹H NMR spectrum of H₂TPP(NO₂)(PE)₂ in CDCl₃.

Figure S17.¹H NMR spectrum of H₂TPP(NO₂)Th₂ in CDCl₃.

Figure S18. ¹H NMR spectrum of NiTPP(NO₂)Th₂ in CDCl₃.

Figure S19.¹H NMR spectrum of ZnTPP(NO₂)Th₂ in CDCl₃.

Figure S20.¹H NMR spectrum of H₂TPP(NO₂)(CN)₂ in CDCl₃.

Figure S21. ¹H NMR spectrum of NiTPP(NO₂)(CN)₂ in CDCl₃.

Figure S22. 1H NMR spectrum of ZnTPP(NO₂)(CN)₂ in CDCl₃.

Figure S23. ¹H NMR spectrum of NiTPP(NO₂)Br₆ in CDCl₃.

Figure S24.¹H NMR spectrum of ZnTPP(NO₂)Br₆ in CDCl₃.

Figure S25. ¹H NMR spectrum of NiTPP(NO₂)Ph₆ in CDCl₃.

Figure S26.¹H NMR spectrum of ZnTPP(NO₂)Ph₆ in CDCl₃.

Figure S27.¹H NMR spectrum of H₂TPP(NO₂)(PE)₆ in CDCl₃.

Figure S28.¹H NMR spectrum of NiTPP(NO₂)(PE)₆ in CDCl₃.

Figure S29.¹H NMR spectrum of ZnTPP(NO₂)(PE)₆ in CDCl₃.

Figure S30. UV-Visible spectral changes during titration of 2-9 with TFA, inset shows Hill plot

Figure S31. UV-Visible spectral changes during titration of TBAOH, inset shows Hill plot

Figure S32. UV-Visible spectral changes of Co(II) porphyrins upon addition of *tert*-butyl hydroperoxide (conversion of Co(II) to Co(III) porphyrins) in CH_2Cl_2 at 298 K.

Figure S33. Cyclic voltammograms of (a) $H_2TPP(NO_2)X_2$, (b) $NiTPP(NO_2)X_2$, (c) $ZnTPP(NO_2)X_2$, (d) $CoTPP(NO_2)X_2$ (where X = H, Br_2 , $(CN)_2$, $(PE)_2$, Th_2 , Ph_2) complexes in CH_2Cl_2 .

Figure S34. Cyclic voltammograms of (a) $H_2TPP(NO_2)X_6$, (b) $NiTPP(NO_2)X_6$, (c) $ZnTPP(NO_2)X_6$, (d) $CoTPP(NO_2)X_6$ (where X = H, Br, CN, PE, Th, Ph) complexes in CH₂Cl₂.

Figure S35. Cyclic voltammograms of (a) MTPP(NO₂)(PE)₂, (b) MTPP(NO₂)(PE)₆ where M = 2H, Cu(II), Zn(II), Ni(II), and Co(II) in CH₂Cl₂.

Figure S36. Cyclic voltammograms of (a) MTPP(NO₂)Th₂, (b) MTPP(NO₂)Th₆ where M = 2H, Cu(II), Zn(II), Ni(II), and Co(II) in CH₂Cl₂.

Figure S37. The HOMO-LUMO variation of $CuTPP(NO_2)X_2$ where X = PE, Br, Ph and Th in comparison to $CuTPP(NO_2)$ and CuTPP.

Figure S38. Plot of 1^{st} ring redox potentials *versus* the Hammett parameter (σ_p) of various Mixed substituted Porphyrins.

Table S1. Crystal structure data of NiTPP(NO₂)(Ph)₂(Pyridine) (1), ZnTPP(NO₂)(PE)₂(CH₃OH) (2), ZnTPP(NO₂)Br₂(CH₃OH) (3), NiTPP(NO₂)Br₆ (4), and H₂TPP(NO₂)(Th)₂ (5).

Table S2. Selected bond lengths and bond angles of NiTPP(NO₂)Ph₂(Py) (1), ZnTPP(NO₂)(PE)₂ (MeOH) (2), ZnTPP(NO₂)Br₂(MeOH) (3), NiTPP(NO₂)Br₆ (4) and H₂TPP(NO₂)(Th)₂ (5).

Table S3. Selected bond lengths (Å) and bond angles (°) for the B3LYP/LanLD2Z optimised geometries of $H_2TPP(NO_2)X_2$ (X = CN, PE, Br, Ph and Th).

Table S4. Selected bond lengths (Å) and bond angles (°) for the B3LYP/LanLD2Z optimised geometries of $H_2TPP(NO_2)X_6$ (X = PE, Br, Ph and Th).

Table S5. Optical absorption spectral data of metal complexes of mixed substituted porphyrins

Table S6. Fluorescence Spectral data of mixed substituted porphyrins

Table S7. Electrochemical redox data of various metal complexes of mixed substituted porphyrins in CH_2Cl_2 containing 0.1 M TBAPF₆ with a scan rate of 0.1 V/s at 298 K.

Table S8. UV-Visible spectral data of Co(II) and Co(III) porphyrins in CH₂Cl₂ at 298 K.

Experimental Section

All commercially available chemicals were purchased from appropriate sources and used as received unless otherwise mentioned. Freshly recrystallised N-bromosuccinimide was used for 2-nitro-12,13-dibromo-meso-tetraphenylporphyrin, bromination reactions. 2-nitro-7,8,12,13,17,18-hexabromo-meso-tetraphenylporphyrinato copper(II) and its free base were synthesized by modified literature methods.¹ Mixed substituted porphyrins, ZnTPP(NO₂)(PE)₂, $ZnTPP(NO_2)Br_2$, and $H_2TPP(NO_2)(Th)_2$ were crystallized by the direct diffusion of CH₃OH to a saturated porphyrin solution in CHCl₃ over a period of 10 - 15 days. X-ray quality single crystals of NiTPP(NO_2)Ph₂ was obtained by direct diffusion of hexane to a saturated porphyrin solution in CHCl₃ containing a few drops of pyridine over a period of seven days. Crystal of NiTPP(NO₂)Br₆ were obtained by vapor diffusion of hexane into the saturated solution of porphyrin in 1,2-dichloroethane containing a few drops of pyridine. The single crystals obtained were mounted on mounting loops. All diffraction data were collected by using a Bruker APEXII diffractometer at 25 °C equipped with graphite-monochromated Mo $K\alpha$ ($\lambda = 0.71073$ Å) by the ω -2 θ scan. The structures were solved by direct methods by using SIR97 and SHELX-97.² Crystallographic data for these compounds are summarized in Table S1 in the supporting information. CCDC- 1018319 (NiTPP(NO₂)Ph₂), -1018393 (ZnTPP(NO₂)(PE)₂), - 1018509 (H₂TPP(NO₂)(Th)₂), - 1019075 (ZnTPP(NO₂)Br₂), and -1019824 (NiTPP(NO₂)Br₆ contain the supplementary crystallographic data. The ground state geometries of mixed substituted free base porphyrins $(H_2TPP(NO_2)X_6$ and $H_2TPP(NO_2)X_2)$ were optimized in the gas phase by DFT calculations with B3LYP functional and LANL2DZ basis set using Gaussian 09.

UV-Vis absorption spectra were measured in distilled dichloromethane using Shimadzu UV-1800 spectrometer at 298 K. The fluorescence spectra were carried out using Hitachi F-4600 spectroflurometer in CH₂Cl₂. All ¹H NMR measurements were performed using Bruker AVANCE 500 spectrometer in CDCl₃. MALDI-TOF-MS spectra were measured using a Bruker UltrafleXtreme-TN MALDI-TOF/TOF spectrometer using dithranol as a matrix and ESI mass spectra were recorded using Bruker Daltanics-microTOF. The elemental analysis was carried out on Elementarvario EL III instrument. Cyclic voltammetric measurements were carried out using BAS Epsilon and CH 620E electrochemical workstation. A three electrode system was used and consisted of a Pt button working electrode (0.2 mm diameter), Ag/AgCl reference electrode and a Pt-wire counter electrode. The concentrations of all porphyrins employed were ~1 mM. All measurements were performed in triple distilled CH₂Cl₂ solution which was purged with Ar gas, using 0.1 M TBAPF₆ as the supporting electrolyte.

The stoichiometry and binding constants for protonation were analyzed by Hill equation.³ $\log[(A_n-A_0)/(A_f-A_n)] = \log \beta_2 + n\log[TFA]$

The Hill plot was constructed by plotting $\log[(A_n-A_0)/(A_f-A_n)]$ versus $\log[TFA]$ where A_0 and A_n are the absorbance values of porphyrin employed and protonated species, respectively at a given concentration of the TFA added. A_f denotes the absorbance of the diprotonated species at a particular wavelength. The slope of the line (n) was found to be two for one-to-two stoichiometry between the porphyrin and the added TFA. The value of $\log\beta_2$ is evaluated from the intercept of the line at $\log[(A_n-A_0)/(A_f-A_n)] = 0.0$. In the present study, the $\log\beta_2$ values were evaluated by using a minimum of two wavelengths and an average value of n and $\log\beta_2$ is reported. The similar methodology was employed for deprotonation studies also.

I. Synthesis of MTPP(NO₂)X₂ (X = Br, Ph, Th, PE and CN) derivatives:

(a) Synthesis of 2-nitro-12,13-dibromo-*meso*-tetraphenylporphyrin¹ and its metal complexes

2-nitro-*meso*-tetraphenylporphyrin (0.220 g, 0.447 mmol, 1 equiv.) was taken in 45 mL of distilled CHCl₃. To this, freshly recrystallized NBS (0.148 g, 1.119 mmol) was added and refluxed for 72 hrs. Solvent was rotary evaporated to dryness under vacuum. The crude porphyrin was purified on silica column using CHCl₃ as eluent. Yield was found to be 81% (0.220 g).

H₂TPP(NO₂)Br₂: ¹H NMR in CDCl₃: δ (ppm) 8.97 (s, 1H, β-pyrrole-H), 8.84 (t, 3H, J = 5 Hz, β-pyrrole-H), 8.78 (d, 1H, J = 4.5 Hz, β-pyrrole-H), 8.28 (d, 2H, J = 7 Hz, *meso-o*-phenyl-H), 8.22 (d, 2H, J = 7 Hz *meso-o*-phenyl-H), 8.16 (t, 4H, J = 8.5 Hz, *meso-o*-phenyl-H), 7.85-7.70 (m, 12H, *meso-m- and p*-phenyl-H), -2.63 (bs, 1H, imino-H), -2.68 (bs, 1H, imino-H). ESI-MS (m/z): found 818.10 [M+H]⁺, calcd. 818.22. Anal. Calcd for C₄₄H₂₇N₅O₂Br₂•0.5 CHCl₃: C, 60.93; H, 3.16; N, 7.98%. Found: C, 60.69; H, 3.34; N, 7.66%.

 $H_2TPP(NO_2)Br_2$ (0.0183mmol) was dissolved in 10 mL of CHCl₃. To this, 10 equiv. of $M(OAc)_2 \cdot nH_2O$ (M = Cu(II), Zn(II), Co(II), 10 equiv.) in 2 mL of methanol was added and refluxed for 40 minutes and then cooled to room temperature, washed with water, dried over anhydrous sodium sulphate. The crude product was purified by column chromatography on silica column using CHCl₃ as eluent. Further, Ni(II) complexes were prepared by refluxing $H_2TPP(NO_2)Br_2$ and Ni(OAc)₂·2H₂O (10 equiv.) in DMF²² for 2 hours followed by the precipitation with water. The crude product was purified on silica column using CHCl₃ as eluent. Yield was found to be 80 - 90%.

NiTPP(NO₂)Br₂: ¹H NMR in CDCl₃: *δ* (ppm) 8.90 (s, 1H, *β*-pyrrole-H), 8.64 (d, 1H, *J* = 5 Hz, *β*-pyrrole-H), 8.58 (d, 1H, *J* = 5 Hz, *β*-pyrrole-H), 8.51 (d, 1H, *J* = 4.5 Hz, *β*-pyrrole-H), 8.45 (d, 1H, *J* = 5 Hz, *β*-pyrrole-H), 8.02-7.92 (m, 4H, *meso-o*-phenyl-H), 7.85 (d, 4H, *J* = 6.5 Hz, *meso-o*-phenyl-H), 7.75-7.59 (m, 12H, *meso-m- and p*-phenyl-H). MALDI-TOF-MS (m/z): found 874.54 [M⁺], calcd. 874.22. Anal. Calcd for C₄₄H₂₅N₅O₂Br₂Ni•2H₂O: C, 58.38; H, 2.67; N, 7.73%. Found: C, 58.11; H, 2.80; N, 7.47%. CuTPP(NO₂)Br₂: MALDI-TOF-MS (m/z): found 879.48 [M⁺], calcd., 879.07. ZnTPP(NO₂)Br₂: ¹H NMR in CDCl₃: *δ* (ppm) 9.14 (s, 1H, *β*-pyrrole-H), 8.85 (dd, 2H, *Ja* = 8 Hz, *Jb* = 4.5 Hz *β*-pyrrole-H), 8.81-8.75 (m, 2H, *β*-pyrrole-H), 8.16 (t, 4H, *J* = 6 Hz, *meso-o*-phenyl-H). MALDI-TOF-MS (m/z): found 881.25 [M⁺], calcd. 880.91. CoTPP(NO₂)Br₂: ESI-MS (m/z): found 873.99 [M⁺], calcd. 874.46.

(b) Synthesis of 2-nitro-12,13-diphenyl-meso-tetraphenylporphyrin and its metal complexes

Two-way stoppered RB flask was charged with $H_2TPP(NO_2)Br_2$ (0.16 g, 0.196 mmol), phenyl boronic acid (0.284 g, 2.33 mmol) and K_2CO_3 (0.648 g, 4.68 mmol). To this, 50 mL of distilled toluene was added and purged with Ar gas for 10 minutes. Then Pd(PPh_3)_4(0.045 g, 0.039 mmol) was added under Ar and heated to 100 °C for 18 hrs. After completion of the reaction, the solvent was removed by rotary evaporation. The residue was redissolved in CHCl₃ (50 mL) and washed with saturated NaHCO₃ (50 ml) followed by 30% NaCl solution (50 ml). Finally, the organic

layer was dried over anhydrous Na₂SO₄. The crude product was purified on silica column using variant polarity from CHCl₃/hexane mixture (3:1, v/v) to 100% CHCl₃ as eluent. The desired product was recrystallised from CHCl₃/CH₃OH mixture (1:3, v/v). The yield was found to be 0.130 g (71%).

H₂**TPP(NO**₂)**Ph**₂: ¹H NMR in CDCl₃: δ (ppm) 8.98 (s, 1H, β-pyrrole-H), 8.81 (d, 1H, J = 5 Hz, β-pyrrole-H), 8.78 (d, 1H, J = 5 Hz, β-pyrrole-H), 8.58 (t, 2H, J = 5 Hz, β-pyrrole-H), 8.30 (dd, 2H, J = 7.5 Hz, J = 1.5 Hz, meso-o-phenyl-H), 8.23 (dd, 2H, J = 7.5 Hz, J = 1.5 Hz, meso-o-phenyl-H), 7.85 (d, 2H, J = 6.5 Hz, meso-o-phenyl-H), 7.80 (t, 5H, J = 8.0 Hz, meso-o and m-phenyl-H), 7.74 (d, 3H, J = 7.5 Hz, meso-o and m-phenyl-H), 7.33-7.21 (m, 6H, meso-m- and p-phenyl-H), 6.90-6.80 (m, 10H, β-pyrrolePh-H), -2.31 (bs, 1H, imino-H). ESI-MS (m/z): found 812.34 [M⁺], calcd. 812.39. Anal. Calcd for C₅₆H₃₇N₅O₂: C, 82.84; H, 4.59; N, 8.62%. Found: C, 82.98; H, 4.27; N, 8.34%.

The metal complexes were prepared with similar procedures of the corresponding metal complexes of MTPP(NO₂)Br₂. The yield was found to be 85 - 95%. NiTPP(NO₂)Ph₂: ¹H NMR in CDCl₃: δ (ppm) 8.92 (s, 1H, β -pyrrole-H), 8.54 (d, 1H, J = 5 Hz, β -pyrrole-H), 8.42 (d, 1H, J= 5 Hz, β -pyrrole-H), 8.29 (d, 1H, J = 5 Hz, β -pyrrole-H), 8.23 (d, 1H, J = 5 Hz, β -pyrrole-H), 8.00-7.94 (m, 4H, meso-o-phenyl-H), 7.73-7.58 (m, 6H, meso-m-phenyl-H), 7.48 (d, 2H, J = 7.0Hz, meso-o-phenyl-H), 7.42 (d, 2H, J = 7.0 Hz, meso-o-phenyl-H), 7.19 (AB quartet, 2H, J = 8.0Hz, meso-m-phenyl-H), 7.09 (t, 4H, J = 7.5 Hz, meso-p-phenyl-H), 6.95-6.76 (m, 10H, β pyrrolePh-H). MALDI-TOF-MS (m/z): found 868.98 [M⁺], calcd. 868.62. Anal. Calcd for C₅₆H₃₅N₅O₂Ni•0.5CH₃OH: C, 76.71; H, 4.22; N, 4.52%. Found: C, 76.98; H, 4.36; N, 4.74%. **ZnTPP(NO₂)Ph₂:** ¹H NMR in CDCl₃: δ (ppm) 9.12 (s, 1H, β -pyrrole-H), 8.80 (d, 1H, J = 5 Hz, β -pyrrole-H), 8.755 (d, 1H, J = 4.5 Hz, β -pyrrole-H), 8.53-8.51 (m, 2H, β -pyrrole-H), 8.21 (d, 2H, J = 7 Hz, meso-o-phenyl-H), 8.18 (d, 2H, J = 6.5 Hz, meso-o-phenyl-H), 7.80-7.70 (m, 8H, meso-o-phenyl-H), 7.67 (at, 2H, J = 7.5 Hz, meso-m-phenyl-H), 7.24-7.22 (m, 2H, meso-mphenyl-H), 7.15 (dt, 4H, J = 7.5Hz, J = 2.5Hz, meso-p-phenyl-H), 6.93 (d, 4H, J = 7.5 H, β pyrrolePh-o-H), 6.90-6.80 (m, 6H, β-pyrrolePh-m- and p-H). MALDI-TOF-MS (m/z): found 875.51 [M⁺], calcd. 875.32. Anal. Calcd for C₅₆H₃₅N₅O₂Zn: C, 76.84; H, 4.03; N, 8.00%. Found: C, 76.69; H, 4.04; N, 7.78%. CuTPP(NO₂)Ph₂: Anal. Calcd for C₅₆H₃₅N₅O₂Cu: C, 75.61; H, 4.34; N, 7.73%. Found: C, 75.52; H, 4.26; N, 7.44%. MALDI-TOF-MS (m/z): found 873.91 $[M^+]$, calcd. 873.47. CoTPP(NO₂)Ph₂: ESI-MS (m/z): found 868.23 $[M^+]$, calcd., 868.86.

(c) Synthesis of 2-nitro-12,13-diphenylethynyl-*meso*-tetraphenylporphyrin and its metal complexes

 $H_2TPP(NO_2)Br_2$ (0.3 g, 0.366 mmol), Pd(PPh_3)₄ (0.084 g, 0.073 mmol) were dissolved in distilled 1,4-dioxane (90 mL) and purged with argon gas for 15 minutes. To this, tributyl(phenylethynyl)stannane (0.406 mL, 1.158 mmol) in 42 mL of degassed dioxane was added and heated to 80 °C for 3 hrs under argon atmosphere. After completion of the reaction, the solvent was removed by vacuum distillation. The crude porphyrin was redissolved in CHCl₃ (20 mL) and purified on silica column using variant polarity from CHCl₃/hexane mixture (3:2, v/v) to 100% CHCl₃ as eluent. The desired product was recrystallised from CHCl₃/CH₃OH mixture (1:3, v/v) containing one drop of Et₃N. The yield was found to be 0.210 g (73%).

H₂TPP(NO₂)(PE)₂: ¹H NMR in CDCl₃: δ (ppm) 8.99 (s, 1H, β-pyrrole-H), 8.90 (d, 1H, J = 4.5 Hz, β-pyrrole-H), 8.86 (d, 1H, J = 5 Hz, β-pyrrole-H), 8.77 (d, 1H, J = 5.5 Hz, β-pyrrole-H), 8.76 (d, 1H, J = 5 Hz, β-pyrrole-H), 8.30-8.18 (m, 8H, *meso-o*-phenyl-H), 7.85-7.68 (m, 12H, *meso-m and p*-phenyl-H), 7.38-7.26 (m, 10H, β-pyrrole-PE-H), -2.51 (s, 1H, imino-H), -2.54 (s, 1H, imino-H). ESI-MS (m/z): found 860.27 [M⁺], calcd. 859.99. Anal. Calcd for C₆₀H₃₇N₅O₂•2H₂O: C, 80.43; H, 4.61; N, 7.82%. Found: C, 80.83; H, 4.37; N, 7.83%. The metal complexes were prepared with similar procedures of the corresponding metal complexes of MTPP(NO₂)Br₂ and the yields were found to be 80 - 85%.

NiTPP(NO₂)(PE)₂: ¹H NMR in CDCl₃: *δ* (ppm) 8.91 (s, 1H, *β*-pyrrole-H), 8.61 (d, 1H, *J* = 5 Hz, *β*-pyrrole-H), 8.60 (d, 1H, *J* = 5.5 Hz, *β*-pyrrole-H), 8.52 (d, 1H, *J* = 5 Hz, *β*-pyrrole-H), 8.45 (d, 1H, *J* = 5 Hz, *β*-pyrrole-H), 8.02-7.94 (m, 8H, *meso-o*-phenyl-H), 7.75-7.58 (m, 12H, *meso-m and p*-phenyl-H), 7.33-7.26 (m, 10H, *β*-pyrrole-PE-H). MALDI-TOF-MS (m/z): found 917.02 [M⁺], calcd. 916.66. Anal. Calcd for C₆₀H₃₅N₅O₂Ni: C, 78.62; H, 3.85; N, 7.64%. Found: C, 78.58; H, 3.94; N, 7.47%. **ZnTPP(NO₂)(PE)₂:** ¹H NMR in CDCl₃: *δ* (ppm) 9.14 (s, 1H, *β*-pyrrole-H), 8.88 (d, 1H, *J* = 5 Hz, *β*-pyrrole-H), 8.85 (d, 1H, *J* = 5 Hz, *β*-pyrrole-H), 8.74 (d, 1H, *J* = 4.5 Hz, *β*-pyrrole-H), 8.73 (d, 1H, *J* = 4.5 Hz, *β*-pyrrole-H), 8.21-8.13 (m, 8H,*meso-o*-phenyl-H), 7.82-7.64 (m, 12H, *meso-m* and *p*-phenyl-H), 7.40-7.34 (m, 4H, *β*-pyrrole-*o*-PE-H), 7.31-7.26 (m, 6H, *β*-pyrrole-*m* and *p*-PE-H). MALDI-TOF-MS (m/z): found 923.46 [M⁺], calcd. 923.36. Anal. Calcd for C₆₀H₃₅N₅O₂Zn·H₂O: C, 76.55; H, 3.96; N, 7.44%. Found: C, 76.24; H, 3.79; N, 7.29%. **CuTPP(NO₂)(PE)₂:** MALDI-TOF-MS (m/z): found 921.98 [M⁺], calcd. 921.52. Anal. Calcd. for C₆₀H₃₅N₅O₂Cu: C, 78.42; H, 3.92; N, 7.51%. Found: C, 78.20; H, 3.83; N, 7.60%. **CoTPP(NO₂)(PE)₂:** ESI-MS (m/z): found 916.25 [M⁺], calcd., 916.90. Anal. Calcd. for C₆₀H₃₅N₅O₂Cu: C, 78.42; H, 3.92; N, 7.51%. Found: C, 78.47; N, 7.31%.

(d) Synthesis of 2-nitro-12,13-dithienyl-*meso*-tetraphenylporphyrin and its metal complexes:

 $H_2TPP(NO_2)Br_2$ (0.15 g, 0.183 mmol), thiophene-2-boronic acid (0.117 g, 0.914 mmol) and K_2CO_3 (0.609 g, 4.40 mmol) were taken in a two-way stoppered RB flask. To this, 60 mL of distilled toluene was added and purged with Ar gas for 10 minutes. Then Pd(PPh_3)₄ (0.042 g, 0.036 mmol) was added under Ar and heated to 90°C for 10 hrs. After completion of the reaction, the solvent was removed by rotary evaporation. The crude porphyrin was redissolved in CHCl₃ (50 mL) and washed with saturated NaHCO₃ (50 mL) followed by 30% NaCl solution (50 mL). Finally, the organic layer was dried over anhydrous Na₂SO₄. The crude product was purified on silica column using variant polarity from CHCl₃ to 2% EtOAc/CHCl₃ as eluent. The desired product was recrystallised from CHCl₃/CH₃OH mixture (1:3, v/v). The yield was found to be 0.085 g (56%).

H₂TPP(NO₂)Th₂: ¹H NMR in CDCl₃: δ (ppm) 8.96 (s, 1H, β-pyrrole-H), 8.77 (t, 2H, J = 5.5 Hz, β-pyrrole-H), 8.68-8.59 (m, 2H, β-pyrrole-H), 8.30 (d, 2H, J = 6.5 Hz, meso-o-phenyl-H), 8.24 (d, 2H, J = 7 Hz, meso-o-phenyl-H), 7.99 (d, 2H, J = 7 Hz, meso-o-phenyl-H), 7.95 (d, 2H, J = 7 Hz, meso-o-phenyl-H), 7.84-7.70 (m, 6H, meso-m and p-phenyl-H), 7.46- 7.35 (m, 6H, meso-m and p-phenyl-H), 6.98 (s, 2H, β-pyrroleTh-H), 6.64-6.57 (m, 3H, β-pyrroleTh-H), 6.56 (s, 1H, β-pyrroleTh-H), -2.24 (s, 2H, imino-H). ESI-MS (m/z): found 824.23 [M⁺], calcd. 824.00. Anal.

Calcd for $C_{52}H_{33}N_5O_2S_2 \cdot 2H_2O$: C, 72.62; H, 4.34; N, 8.14; S, 7.46%. Found: C, 72.94; H, 4.22; N, 7.91; S, 7.16%.

The metal complexes were prepared with similar procedures of the corresponding metal complexes of MTPP(NO₂)Br₂ and the yields were found to be almost quantitative. **NiTPP(NO₂)Th₂:** ¹H NMR in CDCl₃: δ (ppm) 8.90 (s, 1H, β -pyrrole-H), 8.53 (d, 1H, J = 5 Hz, β -pyrrole-H), 8.43 (d, 1H, J = 5 Hz, β -pyrrole-H), 8.36 (d, 1H, J = 5 Hz, β -pyrrole-H), 8.29 (d, 1H, J = 5 Hz, β -pyrrole-H), 8.02-7.96 (m, 4H, meso-o-phenyl-H), 7.74-7.55 (m, 10H, meso-oand m-phenyl-H), 7.37-7.26 (m, 3H, meso-m- and p-phenyl-H), 7.24-7.21 (m, 3H, meso-pphenyl-H), 7.06 (d, 1H, J = 4.5 Hz, β -pyrroleTh-H), 7.02 (d, 1H, J = 5 Hz, β -pyrroleTh-H), 6.60 (t, 1H, J = 4.5 Hz, β -pyrroleTh-H), 6.53 (t, 1H, J = 4 Hz, β -pyrroleTh-H), 6.47 (d, 1H, J = 2.5Hz, β -pyrroleTh-H), 6.36 (d, 1H, J = 2.5 Hz, β -pyrroleTh-H). MALDI-TOF-MS (m/z): found 880.94 [M⁺], calcd. 880.68. **ZnTPP(NO₂)Th₂:** ¹H NMR in CDCl₃: δ (ppm) 9.15 (s, 1H, β pyrrole-H), 8.82 (d, 1H, J = 4.5 Hz, β -pyrrole-H), 8.79 (d, 1H, J = 4.5 Hz, β -pyrrole-H), 8.60 (t, 2H, J = 5 Hz, β -pyrrole-H), 8.18 (t, 4H, J = 8.5 Hz, meso-o-phenyl-H), 7.86 (t, 4H, J = 8 Hz meso-o-phenyl-H), 7.81-7.72 (m, 4H, meso-m-phenyl-H), 7.68 (t, 2H, J = 7.5 Hz meso-mphenyl-H), 7.42-7.35 (m, 2H, meso-m-phenyl-H), 7.33-7.28 (m, 4H, meso-p-phenyl-H), 7.04 (d, 2H, J = 5 Hz, β -pyrroleTh-H), 6.66-6.56 (m, 4H, β -pyrroleTh-H). MALDI-TOF-MS (m/z): found 887.59 [M⁺], calcd. 887.37. CuTPP(NO₂)Th₂: MALDI-TOF-MS (m/z): found 885.89 $[M^+]$, calcd. 885.53. Anal. Calcd for $C_{52}H_{31}N_5O_2S_2Cu$: C, 70.53; H, 3.53; N, 7.91; S, 7.24%. Found: C, 70.64; H, 3.56; N, 7.97; S, 7.51%. CoTPP(NO2)Th2: ESI-MS (m/z): found 880.16 [M⁺], calcd. 880.13. Anal. Calcd for C₅₂H₃₁N₅O₂S₂Co•0.5CHCl₃: C, 67.34; H, 3.38; N, 7.45; S, 6.82%. Found: C, 67.46; H, 3.42; N, 7.41; S, 6.55%.

(e) Synthesis of 2-nitro-12,13-dicyano-meso-tetraphenylporphyrinato Nickel(II)

NiTPP(NO₂)Br₂ (0.15 g, 0.172 mmol) and copper(I)cyanide (0.307 g, 3.43 mmol) was taken in 100 mL two neck RB and to it was added 10 mL of quinoline. The reaction mixture was refluxed at 200°C for 2 hours. At the end of this period the reaction mixture was cooled and filtered through G-4 crucible to remove excess copper cyanide. 30 mL of CHCl₃ was added and organic phase was washed with 10% HCl (3×50 mL), water (2 times), dried over Na₂SO₄ and then evaporated to dryness. The crude product was loaded on silica column and purified using CHCl₃ as eluent. NiTPP(NO₂)CN was obtained as first fraction in 24%m yield followed by NiTPP(NO₂)(CN)₂ in 61% yield.

NiTPP(NO₂)(CN)₂: ¹H NMR in CDCl₃: δ (ppm) 9.22 (s, 1H, β -pyrrole-H), 8.84-8.69 (m, 3H, β -pyrrole-H), 8.62 (d, 1H, J = 5 Hz, β -pyrrole-H), 7.92-7.81 (m, 11H, *meso-o- and m*-phenyl-H), 7.76-7.67 (m, 9H, *meso-m- and p*-phenyl-H). MALDI-TOF-MS (m/z): found 766.82 [M⁺], calcd. 766.44.

(f) Synthesis of 2-nitro-12,13-dicyano-meso-tetraphenylporphyrin and it metal complexes NiTPP(NO₂)(CN)₂ (0.07 g, 0.091 mmol) was taken in 20 mL of CHCl₃ and to it was added 0.1 mL of conc. H_2SO_4 dropwise, stirred vigorously at 0°C for 2 hours. At the end of this period, distilled water (40 mL) was added dropwise to the reaction mixture with constant stirring. The organic layer was separated and washed with water (2 × 30 mL) followed by neutralization using 25% aqueous ammonia solution (20 mL). The organic layer was dried over anhydrous Na₂SO₄

and concentrated to small volume. This was purified by silica gel chromatograpy using $CHCl_3$ as eluent and the yield of the product was found to be 0.05 g (77%).

H₂TPP(NO₂)(CN)₂: ¹H NMR in CDCl₃: δ (ppm) 9.33 (s, 1H, β-pyrrole-H), 9.02-8.94 (m, 3H, β-pyrrole-H), 8.91 (d, 1H, J = 5 Hz, β-pyrrole-H), 8.20-8.10 (m, 8H, *meso-o*-phenyl-H), 7.99-7.91 (m, 3H, *meso-m- and p*-phenyl-H), 7.88-7.77 (m, 9H, *meso-m- and p*-phenyl-H), -2.52(s, 2H, imino-H). ESI-MS (m/z): found 711.00 [M+H]⁺, calcd. 710.77. Anal. Calcd for C₄₆H₂₇N₇O₂: C, 77.84; H, 3.83; N, 13.81%. Found: C, 77.66; H, 4.13; N, 13.52%.

MTPP(NO₂)(CN)₂ (M = Co(II), Cu(II) and Zn(II)) were prepared with similar procedures of the corresponding metal complexes of MTPP(NO₂)Br₂ and the yields were found to be 80 - 90%. **ZnTPP(NO₂)(CN)**₂: ¹H NMR in CDCl₃: δ (ppm) 9.35 (s, 1H, β-pyrrole-H), 8.89-8.79 (m, 3H, β-pyrrole-H), 8.77 (br s, 1H, β-pyrrole-H), 8.15-7.98 (m, 8H *meso-o*-phenyl-H), 7.92-7.69 (m, 12H, *meso-m- and p*-phenyl-H). MALDI-TOF-MS (m/z): found 773.36 [M⁺], calcd., 773.14. **CuTPP(NO₂)(CN)**₂: MALDI-TOF-MS (m/z): 710.02 (calcd.,771.30). C₄₆H₂₅N₇O₂Cu+0.5H₂O: C, 70.81; H, 3.36; N, 12.57%. Found: C, 70.92; H, 3.50; N, 12.69%. **CoTPP(NO₂)(CN)**₂: MALDI-TOF-MS (m/z): found 766.19 [M⁺], calcd. 766.14. Anal. Calcd for C₄₆H₂₅N₇O₂Co+H₂O: C, 70.41; H, 3.47; N, 12.50%. Found: C, 70.64; H, 3.25; N, 12.32%.

II. Synthesis of $MTPP(NO_2)X_6$ (X = Br, Ph, Th and PE) derivatives:

(a) Synthesis of 2-nitro-7,8,12,13,17,18-hexabromo-*meso*-tetraphenylporphyrinato Copper(II):^{21c} CuTPP(NO₂) (0.3 g, 0.416 mmol) was taken in 40 mL of distilled 1,2-dichloroethane in a 100 mL RB. To this, recrystallized NBS (0.74 g, 4.16 mmol) was added and refluxed for 16 hrs at 80 °C. At the end of the reaction, the solvent was removed by rotary evaporation and redissolved in CHCl₃ (25 mL). The crude product was purified on silica column using CHCl₃ as eluent and recrystallised from CHCl₃/CH₃OH mixture (1:3, v/v). The yield was found to be 0.28 g (81%).

MALDI-TOF-MS (m/z): found 1195.84 $[M+H]^+$, calcd. 1194.65. Anal. Calcd for $C_{44}H_{21}N_5Br_6O_2Cu \cdot 0.5H_2O$: C, 43.91; H, 1.84; N, 5.82%. Found: C, 43.76; H, 2.20; N, 5.28%.

(b) Synthesis of 2-nitro-7,8,12,13,17,18-hexabromo-*meso*-tetraphenylporphyrin and its metal complexes

CuTPP(NO₂)Br₆ (0.25 g, 0.209 mmol) was dissolved in 40 mL of CHCl₃. To this, 1.5 mL of conc. H_2SO_4 was added dropwise and stirred vigorously at 0°C for 1 hour. At the end of this period, distilled water (80 mL) was added dropwise to the reaction mixture with stirring. The organic layer was separated and washed with water (2 × 50 mL) followed by neutralization using aquous ammonia (25%) solution (20 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated to small volume. This was purified by silica gel chromatography using CHCl₃ as eluent, and the yield of the product was found to be 92%.

H₂TPP(NO₂)Br₆: ¹H NMR in CDCl₃: δ (ppm) 8.59 (s, 1H, β-pyrrole-H), 8.24 (d, 4H, J = 7 Hz, *meso-o*-phenyl-H), 8.20 (ad, 4H, J = 7 Hz, *meso-o*-phenyl-H), 7.87-7.76 (m, 10H, J = 8.5 Hz, *meso-m-* and *p*-phenyl-H), 7.74 (t, 2H, J = 7.5 Hz, *meso-p*-phenyl-H). MALDI-TOF-MS (m/z): found 1133.51 [M⁺], calcd. 1133.12.

The metal complexes were prepared with similar procedures of the corresponding metal complexes of MTPP(NO₂)Br₂ and the yields were found to 84 - 90%. NiTPP(NO₂)Br₆: ¹H NMR in CDCl₃: δ (ppm) 8.50 (s, 1H, β -pyrrole-H), 7.97 (d, 2H, J = 7 Hz, *meso-o*-phenyl-H), 7.96-7.89 (m, 6H, *meso-o*-phenyl-H), 7.79-7.62 (m, 12H, *meso-m-* and *p*-phenyl-H). MALDI-TOF-MS (m/z): found 1190.12 [M⁺], calcd. 1189.80. Anal. Calcd for C₄₄H₂₁Br₆N₅O₂Ni: C, 44.42; H, 1.78; N, 5.89%. Found: C, 44.12; H, 1.92; N, 5.66%. ZnTPP(NO₂)Br₆: ¹H NMR in CDCl₃: δ (ppm) 8.74 (s, 1H, β -pyrrole-H), 8.17 (t, 4H, J = 8 Hz, *meso-o*-phenyl-H), 8.11 (t, 4H, J = 8.5 Hz, *meso-o*-phenyl-H), 7.86-7.72 (m, 10H, *meso-m-* and *p*-phenyl-H), 7.69 (t, 2H, J = 7.5 Hz, *meso-p*-phenyl-H). MALDI-TOF-MS (m/z): found 1196.67 [M⁺], calcd. 1196.50. CoTPP(NO₂)Br₆: MALDI-TOF-MS (m/z): found 1190.57 [M⁺], calcd. 1190.04.

(b) Synthesis of 2-nitro-7,8,12,13,17,18-hexaphenyl-*meso*-tetraphenylporphyrin and its metal complexes:

 $H_2TPP(NO_2)Br_6$ (0.3 g, 0.264 mmol), phenylboronic acid (0.774 g, 6.33 mmol) and K_2CO_3 (1.76 g, 12.67 mmol) were taken in a two-neck RB flask. To this, 120 mL of distilled toluene was added and purged with Ar gas for 15 minutes. Then Pd(PPh_3)_4 (0.061 g, 0.05 mmol) was added under Ar and heated to 100°C for 15 hrs. After completion of the reaction, the solvent was removed by rotary evaporation. The crude porphyrin was redissolved in CHCl₃ (80 mL) and washed with saturated NaHCO₃ (70 mL) followed by 30% NaCl solution (50 mL). Finally, the organic layer was dried over anhydrous Na₂SO₄. The crude product was purified on silica column using variant polarity from CHCl₃ to 5 - 8% EtOAc in CHCl₃ as eluent. The desired product was recrystallised from CHCl₃/CH₃OH mixture (1:3, v/v). The yield was found to be 0.23 g (78%).

H₂**TPP(NO**₂)**Ph**₆: ¹H NMR in CDCl₃: δ (ppm) 8.31 (s, 1H, β-pyrrole-H), 8.03 (d, 2H, J = 7 Hz, *meso-o*-phenyl-H), 7.85 (d, 2H, J = 7 Hz, *meso-o*-phenyl-H), 7.58 (d, 2H, J = 7 Hz, *meso-o*-phenyl-H), 7.56 (d, 2H, J = 8 Hz, *meso-o*-phenyl-H), 7.39-7.18 (m, 5H, *meso-m*-phenyl-H), 6.96-6.58 (m, 33H, β-pyrrolePh-H, *meso-m*- and *p*-phenyl-H), 6.5 (d, 4H, J = 7 Hz, β-pyrrole Ph-H). ESI-MS (m/z): found 1176.38 [M•Na•K-H]⁺, calcd. 1177.37. Anal. Calcd for C₈₀H₅₃N₅O₂: C, 86.07; H, 4.79; N, 6.27%. Found: C, 86.01; H, 4.93; N, 6.15%.

The metal complexes were prepared with similar procedures of the corresponding metal complexes of MTPP(NO₂)Br₂ and crude products were purified by silica gel (for Co (II), Ni(II) and Cu(II)) or alumina for ZnTPP(NO₂)Ph₆ column chromatography using CHCl₃/5 - 6% EtOAc in CHCl₃ as eluent. The desired product was recrystallised from CHCl₃/CH₃OH mixture (1:3, v/v) containing a drop of Et₃N. The yield was found to be 80-86%.

NiTPP(NO₂)Ph₆: ¹H NMR in CDCl₃: δ (ppm) 8.37 (s, 1H, β -pyrrole-H), 7.60 (dd, 2H, J = 7Hz,J = 1 Hz, *meso-o*-phenyl-H), 7.57 (dd, 2H, J = 7Hz,J = 1 Hz, *meso-o*-phenyl-H), 7.25-7.12 (m, 4H, *meso-o*-phenyl-H), 7.06 (t, 2H, J = 7.5 Hz, *meso-m*-phenyl-H), 7.03 (t, 4H, J = 7.0 Hz, *meso-m*-phenyl-H), 6.88-6.50 (m, 36H, β -pyrrolePh-H, *meso-m*- and p-phenyl-H). MALDI-TOF-MS (m/z): found 1173.12 [M⁺], calcd. 1173.01. **ZnTPP(NO₂)Ph₆:** ¹H NMR in CDCl₃: δ (ppm) 8.57 (s, 1H, β -pyrrole-H), 7.93 (d, 2H, J = 7 Hz, *meso-o*-phenyl-H), 7.78 (d, 2H, J = 7 Hz, *meso-o*-phenyl-H), 7.32-7.20 (m, 4H, J = 7.5 Hz, *meso-m*-phenyl-H), 7.16 (t, 2H, J = 8.0 Hz, *meso-m*-phenyl-H), 6.89-6.57 (m, 36H, β -pyrrolePh-H and *meso-m*- and p-phenyl-H). MALDI-TOF-MS (m/z): found 1179.62 [M⁺], calcd. 1179.71. **CuTPP(NO₂)Ph₆:** MALDI-TOF-MS (m/z): found 1178.18

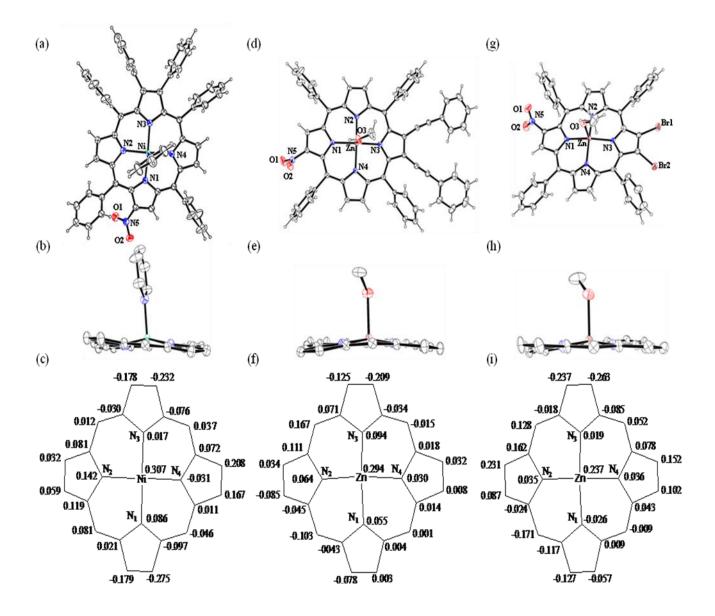
 $[M^+]$, calcd. 1177.86. Anal. Calcd for $C_{80}H_{51}N_5O_2Cu$: C, 78.13; H, 4.19; N, 5.66%. Found: C, 78.38; H, 4.30; N, 5.47%. **CoTPP(NO₂)Ph₆:** ESI-MS (m/z): found 1173.38 [M⁺], calcd. 1173.25. Anal. Calcd for $C_{80}H_{51}N_5O_2Co$: C, 81.90; H, 4.38; N, 5.97%. Found: C, 81.98; H, 4.24; N, 5.74%.

(c) Synthesis of 2-nitro-7,8,12,13,17,18-hexaphenylethynyl-*meso*-tetraphenylporphyrin and its metal complexes

H₂TPP(NO₂)Br₆ (0.2 g, 0.176 mmol) and Pd(PPh₃)₄ (0.04 g, 0.035 mmol) were dissolved in distilled 1.4-dioxane and purged with Ar gas for 15 minutes. То this. tributyl(phenylethynyl)stannane (0.618 mL, 1.76 mmol) in 100 mL of degassed dioxane was added and heated to 80°C for 40 minutes under Ar atmosphere. After completion of the reaction, the solvent was removed by vacuum distillation. The crude porphyrin was redissolved in CHCl₃ (20 mL) and purified on silica column using CHCl₃/hexane mixture (7:3, v/v) to 100% CHCl₃ as eluent. The desired product was recrystallised from CHCl₃/CH₃OH mixture (1:3, v/v) containing one drop of Et_3N . The yield was found to be 0.12 g (54%).

H₂TPP(NO₂)(PE)₆: ¹H NMR in CDCl₃: δ (ppm) 8.60 (bs, 1H, β-pyrrole-H), 8.44 (d, 2H, J = 6.5 Hz, *meso-o*-phenyl-H), 8.40 (d, 2H, J = 7.5 Hz, *meso-o*-phenyl-H), 8.28 (d, 2H, J = 7 Hz, *meso-o*-phenyl-H), 7.83-7.70 (m, 8H, *meso-m*-phenyl-H), 7.70-7.64 (m, 4H, *meso-p*-phenyl-H), 7.37-7.18 (m, 30H, β-pyrrole PE-H), -1.43 (bs, 2H, NH). ESI-MS (m/z): found 1261.47 [M+H]⁺, calcd. 1261.47. Anal. Calcd for C₉₂H₅₃N₅O₂•1.5 H₂O: C, 85.83; H, 4.38; N, 5.44%. Found: C, 85.98; H, 4.33; N, 5.34%.

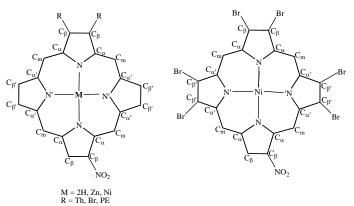
The metal complexes were prepared with similar procedures of the corresponding metal complexes of MTPP(NO₂)Br₂ and the yields were found to be 80 - 90%. NiTPP(NO₂)(PE)₆: ¹H NMR in CDCl₃: δ (ppm) 8.57 (s, 1H, β -pyrrole-H), 8.20 (d, 2H, J = 7 Hz, meso-o-phenyl-H), 8.17 (d, 2H, J = 7 Hz, meso-o-phenyl-H), 8.15-8.12 (m, 2H, meso-o-phenyl-H), 8.08 (d, 2H, J =7 Hz, meso-o-phenyl-H), 7.75-7.64 (m, 10H, meso-m- and p-phenyl-H), 7.62-7.54 (m, 2H, meso*p*-phenyl-H), 7.32-7.16 (m, 30H, β -pyrrole PE-H). MALDI-TOF-MS (m/z): found 1317.63 [M⁺], calcd. 1317.14. Anal. Calcd for C₉₂H₅₁N₅O₂Ni: C, 83.89; H, 3.90; N, 5.32%. Found: C, 83.53; H, 4.04; N, 5.19%. **ZnTPP(NO₂)(PE)**₆: ¹H NMR in CDCl₃: δ (ppm) 8.81 (s, 1H, β -pyrrole-H), 8.34 (d, 2H, J = 7.5 Hz, meso-o-phenyl-H), 8.32-8.29 (m, 4H, meso-o-phenyl-H), 8.22 (d, 2H, J = 8.5Hz, meso-o-phenyl-H), 7.78-7.66 (m, 10H, meso-m- and p-phenyl-H), 7.62 (dt, 2H, J = 5 Hz, J = 2 Hz, meso-p-phenyl-H), 7.40-7.18 (m, 30H, β-pyrrole PE-H). MALDI-TOF-MS (m/z): found 1324.17 [M⁺], calcd. 1323.84. CuTPP(NO₂)(PE)₆: MALDI-TOF-MS (m/z): found 1322.38 $[M^+]$, calcd. 1322.00. Anal. Calcd for $C_{92}H_{51}N_5O_2Cu \cdot 1.5H_2O$: C, 81.97; H, 4.19; N, 5.11%. Found: C, 81.79; H, 3.96; N, 5.12%. CoTPP(NO₂)(PE)₆: ESI-MS (m/z): found 1317.41 [M⁺], calcd. 1317.38. Anal. Calcd for C₉₂H₅₁N₅O₂Co: C, 83.88; H, 3.90; N, 5.31%. Found: C, 83.74; H, 3.73; N, 5.44%.


(d) Synthesis of 2-nitro-7,8,12,13,17,18-hexa(2-thienyl)-meso-tetraphenylporphyrin

 $H_2TPP(NO_2)Br_6$ (0.070 g, 0.0617 mmol), thiophene-2-boronic acid (0.189 g, 1.477 mmol) and K_2CO_3 (0.252 g, 1.823 mmol) were taken in two-neck RB flask. To this, 35 mL of distilled toluene was added and purged with Ar gas for 15 minutes. Then Pd(PPh_3)_4(0.014 g, 0.012 mmol) was added under Ar and heated to 90 °C for 15 hrs. After completion of the reaction, the solvent

was removed by rotary evaporation. The crude porphyrin was redissolved in CHCl₃ (30 mL) and washed with saturated NaHCO₃ (25 mL) followed by 30% NaCl solution (25 mL). Finally, the organic layer was dried over anhydrous Na₂SO₄.The crude product was purified on silica column using variant polarity from CHCl₃ to 5-8% EtOAc in CHCl₃ as eluent. The desired product was recrystallised from CHCl₃/CH₃OH mixture (1:3, v/v). The yield was found to be 0.036 g (51%). H₂TPP(NO₂)Th₆: ¹H NMR in CDCl₃: δ (ppm) 8.28 (s, 1H, β -pyrrole-H), 7.82 (d, 1H, J = 6.5 Hz, *meso-o*-phenyl-H), 7.98 (d, 1H, J = 6.5 Hz, *meso-o*-phenyl-H), 7.74 (s, 1H, *meso-o*-phenyl-H), 7.73 (s, 1H, *meso-o*-phenyl-H), 7.66 - 7.55 (m, 4H, *meso-o*-phenyl and *meso-m*-phenyl), 7.52 - 7.37 (m, 9H, *meso-m- and p*-phenyl), 7.37-7.27 (m, 2H, β -pyrroleTh-H), 7.15-6.96 (m, 6H, β -pyrroleTh-H), 6.95 - 6.84 (m, 2H, β -pyrroleTh-H), 6.80 - 6.25 (m, 8H, β -pyrroleTh-H). MALDI-TOF-MS (m/z): found 1152.21 [M⁺], calcd. 1152.50. Anal. Calcd for C₆₈H₄₁N₅O₂S₆•0.5H₂O: C, 70.32; H, 3.64; N, 6.03; S, 16.56%. Found: C, 70.39; H, 3.80; N, 5.90; S, 16.55%.

The metal complexes were prepared with similar procedures of the corresponding metal complexes of MTPP(NO₂)Br₂ and the yields were found to be 80 - 90%. NiTPP(NO₂)Th₆: ¹H NMR in CDCl₃: δ (ppm) 8.39 (s, 1H, β -pyrrole-H), 7.82-7.63 (m, 6H, meso-o-phenyl-H), 7.41-7.28 (m, 8H, meso-o- and m-phenyl-H), 7.25-7.18 (m, 2H, meso-m-phenyl-H), 7.01-6.80 (m, 11H, meso-p-phenyl and β-pyrroleTh-H), 6.55- 6.17 (m, 11H, β-pyrroleTh-H). MALDI-TOF-MS (m/z): found 1209.50 $[M^+]$, calcd. 1209.18. Anal. Calcd for $C_{68}H_{39}N_5O_2S_6Ni \cdot 0.5H_2O$: C, 64.84; H, 3.14; N, 5.52; S, 15.16%. Found: C, 64.69; H, 3.50; N, 5.20; S, 15.35%. ZnTPP(NO₂)Th₆: ¹H NMR in CDCl₃: δ (ppm) 8.50 (s, 1H, β -pyrrole-H), 8.09 (d, 2H, J = 7 Hz, meso-o-phenyl-H), 7.97 (d, 2H, J = 6.5 Hz, meso-m-phenyl-H), 7.84 - 7.73 (m, 4H, meso-o-phenyl-H), 7.44 - 7.28 (m, 6H, meso-m-phenyl), 7.08 - 6.89 (m, 8H, meso-m- and p-phenyl, β -pyrroleTh-H), 6.88 - 6.75 (m, 4H, β-pyrroleTh-H), 6.65 - 6.29 (m, 12H, β-pyrroleTh-H). MALDI-TOF-MS (m/z): found 1216.36 $[M^+]$, calcd. 1215.88. CuTPP(NO₂)Th₆: MALDI-TOF-MS (m/z): found 1214.49 $[M^+]$, calcd. 1214.03. Anal. Calcd for C₆₈H₃₉N₅O₂S₆Cu: C, 64.84; H, 3.24; N, 5.77; S, 15.85%. Found: C, 64.65; H, 3.50; N, 5.89; S, 15.67%. CoTPP(NO₂)Th₆: ESI-MS (m/z): found 1208.11 [M⁺], calcd. 1208.08. Anal. Calcd for C₆₈H₃₉N₅O₂S₆Co: C, 67.53; H, 3.25; N, 5.79; S, 15.91%. Found: C, 67.74; H, 3.42; N, 5.81; S, 15.45%.


Fig. S1. The ORTEP diagrams showing top and side views of NiTPP(NO₂)(Th)₂(Py) (1a and 1b), ZnTPP(NO₂)(PE)₂(CH₃OH) (1d and 1e) and ZnTPP(NO₂)Br₂(CH₃OH) (1g and 1h). The solvates are not shown for clarity, and in side view, the β -substituents and *meso*-phenyl groups are not shown for clarity. The displacement of porphyrin-core atoms in Å from the mean plane are shown in figures 1c, 1f and 1i for NiTPP(NO₂)(Th)₂(Py), ZnTPP(NO₂)(PE)₂(CH₃OH) and ZnTPP(NO₂)Br₂, respectively.

	1	2	3	4	5
Empirical	$C_{61}H_{40}N_6O_2Ni$	$C_{61}H_{43}N_5O_4Zn$	$C_{45}H_{29}N_5O_5Br_2Zn$	$C_{88}H_{42}N_{10}O_4Br_{12}Ni_2$	$C_{53}H_{39}C_{10}N_5O_4S_2$
formula					
Formula wt.	947.70	975.37	944.90	2379.66	874.01
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic
Space group	P-1	P-1	P-1	P-1	P-1
a (Å)	11.938(5)	12.7702(6)	12.490(1)	14.211(5)	13.948(5)
<i>b</i> (Å)	12.248(5)	13.5976(6)	13.544(2)	14.367(5)	14.270(5)
<i>c</i> (Å)	17.642(5)	16.1781(7)	14.381(2)	19.651(5)	14.559(5)
α (°)	109.644(5)	66.257(2)	107.593(7)	89.091(5)	118.629(5)
β (°)	99.080(5)	79.410(2)	108.531(7)	89.869(5)	94.368(5)
γ (°)	94.664(5)	75.696(2)	103.813(8)	89.984(5)	112.334(5)
Volume ($Å^3$)	2373.8(15)	2480.46(19)	2042.3(5)	4012(2)	2230.5(14)
Ζ	2	2	2	2	2
$D_{cald} (mg/m^3)$	1.326	1.306	1.537	1.970	1.301
Wavelength	0.71073	0.71073	0.71073	0.71073	0.71073
(Å)					
T (°C)	293 K	293 K	293 K	293 K	293 K
No. of total	11581	12091	30281	16103	11007
reflns.					
No. of	6207	8376	9620	9459	4083
indepnt.					
reflns.					
R ^a	0.0615	0.0625	0.1061	0.0585	0.1083
R_w^{b}	0.1337	0.1886	0.2598	0.1562	0.2415
CCDC	1018319	1018393	1019075	1019824	1018509

Table S1. Crystal structure data of NiTPP(NO₂)(Ph)₂(Pyridine) (1), ZnTPP(NO₂)(PE)₂(CH₃OH) (2), ZnTPP(NO₂)Br₂(CH₃OH) (3), NiTPP(NO₂)Br₆ (4), and H₂TPP(NO₂)(Th)₂ (5).

Table S2. Selected bond lengths and bond angles of NiTPP(NO₂)Ph₂(Py) (1), ZnTPP(NO₂)(PE)₂ (MeOH) (2), ZnTPP(NO₂)Br₂(MeOH) (3), NiTPP(NO₂)Br₆ (4) and H₂TPP(NO₂)(Th)₂ (5).

	1	2	3	4	5	
	Bond Length (Å)					
M-N	2.112(3)	2.088(2)	2.087(9)	1.920(6)	-	
M-N'	2.048(3)	2.042(3)	2.042(9)	1.927(6)	-	
M-O/M-N	2.156(3)	2.173(3)	2.154(12)	-	-	
N-C _a	1.377(4)	1.372(4)	1.370(13)	1.384(10)	1.368(7)	
N'-C _a	1.376(4)	1.372(4)	1.349(13)	1.375(10)	1.376(6)	
C_{α} - C_{β}	1.450(5)	1.448(4)	1.453(15)	1.447(10)	1.460(7)	
$C_{\alpha'}$ - $C_{\beta'}$	1.439(5)	1.445(5)	1.468(15)	1.443(10)	1.422(9)	
$C_{\beta}-C_{\beta}$	1.349(5)	1.370(5)	1.334(15)	1.336(10)	1.340(9)	
$C_{\beta'}-C_{\beta'}$	1.344(5)	1.339(5)	1.298(15)	1.349(10)	1.358(6)	
C_{α} - C_m	1.394(4)	1.402(4)	1.404(15)	1.392(10)	1.408(9)	
$C_{\alpha'}-C_m$	1.404(5)	1.403(4)	1.406(15)	1.399(10)	1.399(6)	
$\Delta C_{\beta}(A)^{a}$	0.166	0.072	0.157	1.10	0.750	
$\Delta 24 (\text{\AA})^{\text{b}}$	0.095	0.061	0.095	0.564	0.367	
ΔMetal (Å)	0.397	0.295	0.237	0.035	-	
			Bond Angle (de	eg)		
M-N-C _a	126.2(2)	126.0(2)	125.9(8)	125.4(5)	-	
M-N'- C_{α}	125.9(2)	126.4(2)	125.7(8)	125.0(5)	-	
N-M-N	160.7(1)	167.9(1)	166.7(4)	169.8(3)	-	
N'-M-N'	161.1(1)	166.1(1)	168.7(4)	170.2(2)	-	
$N-C_{\alpha}-C_{m}$	125.0(3)	125.2(3)	125.4(10)	123.3(7)	124.1(5)	
$N'-C_{\alpha'}-C_m$	126.4(3)	126.6(3)	127.6(10)	122.9(7)	125.9(5)	
N- C_{α} - C_{β}	108.8(3)	108.9(3)	108.2(10)	109.0(6)	109.7(5)	
N'- $C_{\alpha'}$ - $C_{\beta'}$	109.5(3)	109.2(3)	108.6(10)	108.9(6)	106.0(5)	
$C_{\beta} - C_{\alpha} - C_{m}$	126.1(3)	125.5(3)	126.3(10)	127.2(7)	125.9(5)	
$C_{\beta'} - C_{\alpha'} - C_m$	124.0(3)	124.2(3)	123.8(10)	127.2(7)	128.1(5)	
C_{α} - C_m - $C_{\alpha'}$	125.2(3)	125.0(3)	124.3(10)	120.3(7)	124.2(5)	
C_{α} - C_{β} - C_{β}	107.5(3)	107.0(3)	107.7(10)	107.7(7)	106.9(5)	
$C_{\alpha'}-C_{\beta'}-C_{\beta'}$	107.4(3)	107.4(3)	107.5(11)	107.3(7)	108.6(6)	
C_{α} -N- C_{α}	107.5(3)	107.9(2)	108.0(9)	106.2(6)	106.3(4)	
$C_{\alpha'}$ -N- $C_{\alpha'}$	106.3(3)	106.8(2)	107.8(9)	106.8(6)	110.8(4)	

 ${}^{a}\Delta C_{\beta}$ refers to the mean plane displacement of the β -pyrrole carbons ${}^{b}\Delta 24$ refers to the mean plane deviation of 24-atom core

Figure S2. B3LYP/LanLD2Z optimised geometries showing top as well as side views of $H_2TPP(NO_2)(CN)_2$ (1a and 1b) and $H_2TPP(NO_2)(PE)_2$ (1d and 1e), respectively. In side view, the β -substituents and *meso*-phenyl groups are not shown for clarity. The displacement of porphyrin-core atoms in Å from the mean plane are shown in figures 1c and 1f for $H_2TPP(NO_2)(CN)_2$ and $H_2TPP(NO_2)(PE)_2$, respectively. Color codes for atoms: C (black), N (blue) and O (red).

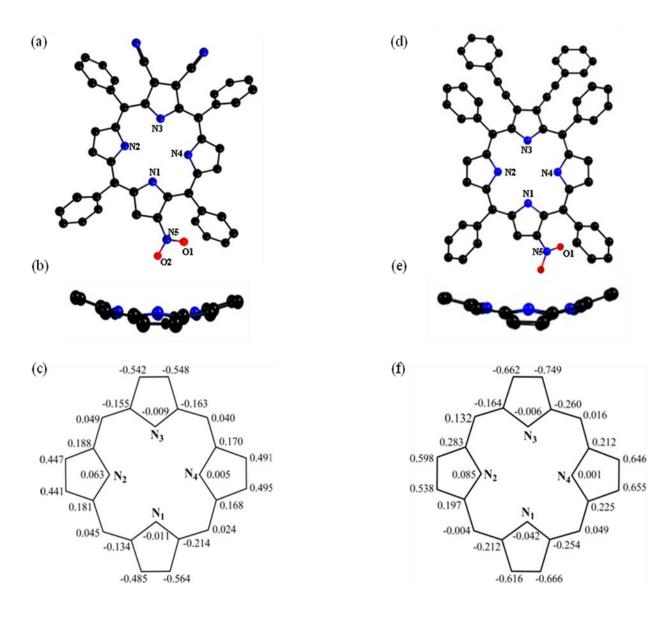
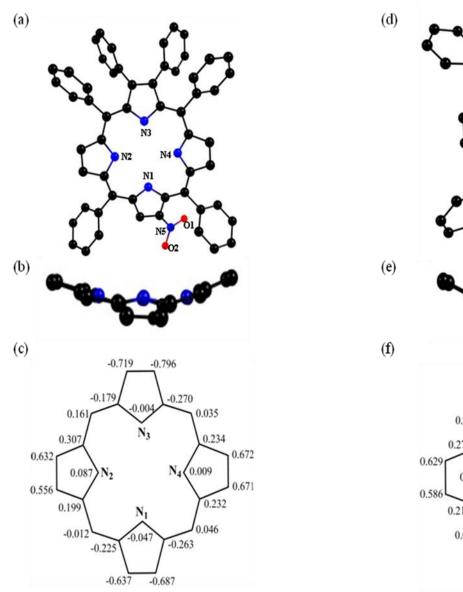



Figure S3. B3LYP/LanLD2Z optimised geometries showing top as well as side views of $H_2TPP(NO_2)Ph_2$ (1a and 1b) and $H_2TPP(NO_2)Br_2$ (1d and 1e), respectively. In side view, the β -substituents and *meso*-phenyl groups are not shown for clarity. The displacement of porphyrin-core atoms in Å from the mean plane are shown in figures 1c and 1f for $H_2TPP(NO_2)Ph_2$ and $H_2TPP(NO_2)Br_2$, respectively. Color codes for atoms: C (black), N (blue), O (red) and Br (brown).

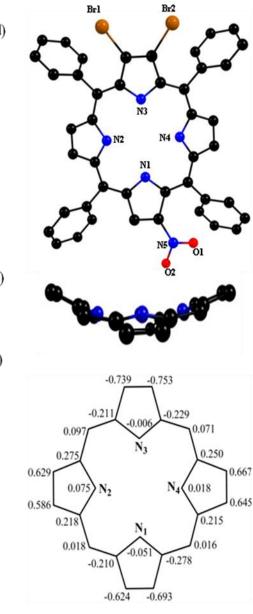


Figure S4. B3LYP/LanLD2Z optimised geometries showing top as well as side views of $H_2TPP(NO_2)(PE)_6$ (1a and 1b) and $H_2TPP(NO_2)Ph_6$ (1d and 1e), respectively. In side view, the β -substituents and *meso*-phenyl groups are not shown for clarity. The displacement of porphyrin-core atoms in Å from the mean plane are shown in figures 1c and 1f for $H_2TPP(NO_2)(PE)_6$ and $H_2TPP(NO_2)Ph_6$, respectively. Color codes for atoms: C (black), N (blue) and O (red).

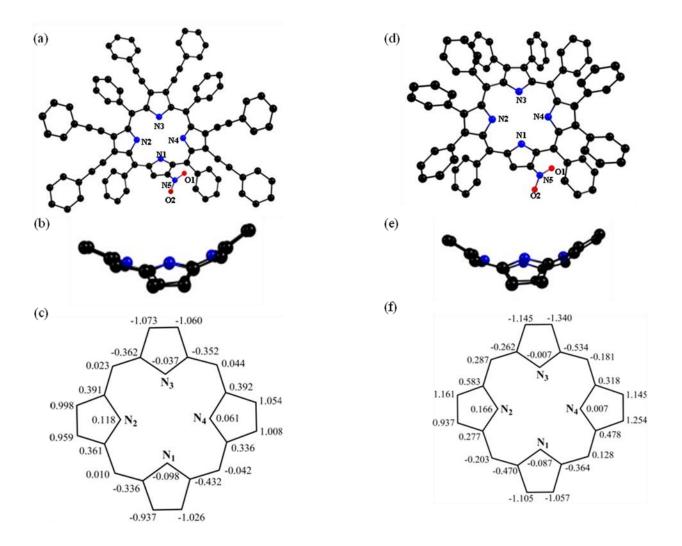
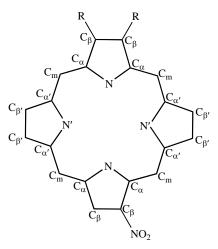
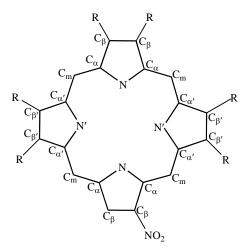



Table S3. Selected bond lengths (Å) and bond angles (°) for the B3LYP/LanLD2Z optimised geometries of $H_2TPP(NO_2)X_2$ (X = CN, PE, Br, Ph and Th).



R = CN, PE, Br, Ph and Th

	H ₂ TPP(NO ₂)	$H_2TPP(NO_2)$	H ₂ TPP(NO ₂)	H ₂ TPP(NO ₂)	$H_2TPP(NO_2)$		
	(CN) ₂	(PE) ₂	Br ₂	(Ph) ₂	(Th) ₂		
Bond Length (Å)							
N-C _a	1.386	1.387	1.389	1.388	1.387		
N'-C _a	1.392	1.393	1.392	1.392	1.392		
C_{α} - C_{β}	1.467	1.471	1.460	1.472	1.471		
$C_{\alpha'}-C_{\beta'}$	1.447	1.447	1.394	1.447	1.447		
$C_{\beta}-C_{\beta}$	1.382	1.390	1.375	1.380	1.384		
$C_{\beta'}-C_{\beta'}$	1.380	1.380	1.380	1.381	1.381		
C_{α} - C_m	1.423	1.423	1.420	1.424	1.425		
$C_{\alpha'}-C_m$	1.411	1.413	1.413	1.412	1.413		
$\Delta C_{\beta}(A)^{a}$	0.501	0.641	0.667	0.671	0.727		
$\Delta 24 (\text{\AA})^{\text{b}}$	0.234	0.294	0.315	0.320	0.344		
		Bond Ar	ngle (deg)				
$N-C_{\alpha}-C_{m}$	125.7	124.7	124.7	124.6	124.5		
$N'-C_{\alpha'}-C_m$	127.2	127.1	127.0	126.7	126.6		
N- C_{α} - C_{β}	109.5	109.8	109.2	109.9	109.9		
N'- $C_{\alpha'}$ - $C_{\beta'}$	106.5	106.4	106.4	106.4	106.3		
C_{β} - C_{α} - C_{m}	124.7	125.3	125.9	125.3	125.4		
$C_{\beta'} - C_{\alpha'} - C_m$	126.3	126.5	126.6	126.9	127.1		
C_{α} - C_m - $C_{\alpha'}$	124.0	123.9	123.8	123.8	123.5		
C_{α} - C_{β} - C_{β}	106.8	106.6	107.0	106.6	106.6		
$C_{\alpha'}-C_{\beta'}-C_{\beta'}$	108.3	108.3	108.2	108.2	108.3		
C_{α} -N- C_{α}	107.1	106.9	107.2	106.5	106.7		
$\boxed{\begin{array}{c} C_{\alpha'} - N - C_{\alpha'} \\ a \to C \\ \end{array}}$	110.4	110.5	110.6	110.6	110.6		

 ${}^{a}\Delta C_{\beta}$ refers to the mean plane displacement of the β -pyrrole carbons ${}^{b}\Delta 24$ refers to the mean plane deviation of 24-atom core

Table S4. Selected bond lengths (Å) and bond angles (°) for the B3LYP/LanLD2Z optimised geometries of $H_2TPP(NO_2)X_6$ (X = PE, Br, Ph and Th).

R = PE, Br, Ph and Th

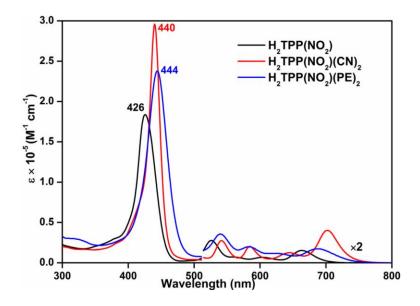
	$H_2TPP(NO_2)(PE)_6$	H ₂ TPP(NO ₂)Br ₆	H ₂ TPP(NO ₂)Ph ₆	H ₂ TPP(NO ₂)(Th) ₆			
	Bond Length (Å)						
N-C _a	1.387	1.388	1.386	1.385			
N'-C _a	1.389	1.391	1.387	1.386			
C_{α} - C_{β}	1.470	1.470	1.473	1.473			
$C_{\alpha'}$ - $C_{\beta'}$	1.453	1.451	1.457	1.456			
$C_{\beta}-C_{\beta}$	1.388	1.375	1.382	1.385			
$C_{\beta'}-C_{\beta'}$	1.417	1.391	1.404	1.410			
C_{α} - C_m	1.425	1.425	1.427	1.428			
$C_{\alpha'}-C_m$	1.415	1.419	1.419	1.421			
$\Delta C_{\beta}(\text{\AA})$	1.014	1.152	1.143	1.240			
Δ24 (Å)	0.479	0.542	0.562	0.581			
		Bond Ang	gle (deg)				
$N-C_{\alpha}-C_{m}$	124.6	124.0	123.8	123.4			
$N'-C_{\alpha'}-C_m$	124.5	123.8	123.2	123.1			
N- C_{α} - C_{β}	109.7	109.2	109.8	109.6			
N'- $C_{\alpha'}$ - $C_{\beta'}$	106.1	105.2	106.3	106.2			
C _β - C _α -C _m	125.5	126.5	126.2	126.7			
$C_{\beta'} - C_{\alpha'} - C_m$	129.2	130.8	130.3	130.6			
C_{α} - C_{m} - $C_{\alpha'}$	123.0	122.2	122.3	121.7			
C_{α} - C_{β} - C_{β}	106.1	107.0	106.6	106.6			
$C_{\alpha'}-C_{\beta'}-C_{\beta'}$	107.7	108.4	107.8	107.7			
C_{α} -N- C_{α}	107.0	107.3	106.8	107.8			
$C_{\alpha'}$ -N- $C_{\alpha'}$	111.9	112.2	111.5	111.8			

^a ΔC_{β} refers to the mean plane displacement of the β-pyrrole carbons ^b $\Delta 24$ refers to the mean plane deviation of 24-atom core

Porphyrin	B band(s), nm	Q band(s), nm
CoTPP(NO ₂)	382(sh), 420(5.08)	540(4.03), 578(3.94)
CoTPP(NO ₂)Br ₂	383(sh), 431(5.04)	551(3.94), 595(4.02)
CoTPP(NO ₂)Ph ₂	388(sh), 434(4.98)	553(3.96), 593(3.98)
CoTPP(NO ₂)(PE) ₂	441(5.16)	609(4.30)
CoTPP(NO ₂)Th ₂	435(5.07)	602(4.13)
CoTPP(NO ₂)(CN) ₂	431(5.18)	609(4.39)
CoTPP(NO ₂)Br ₆	453(5.11)	567(4.07)
CoTPP(NO ₂)Ph ₆	400(sh), 454(5.01)	570(4.00), 611(3.96)
CoTPP(NO ₂)(PE) ₆	487(5.29)	597(4.39)
CoTPP(NO ₂)Th ₆	464(5.00)	580(4.13), 627(3.96)
NiTPP(NO ₂)	386(sh), 428(5.14)	539(4.07), 583(3.97)
NiTPP(NO ₂)Br ₂	385(sh), 437(5.17)	548(4.02), 597(4.11)
NiTPP(NO ₂)Ph ₂	389(sh), 440(5.10)	550(4.04), 598(4.07)
NiTPP(NO ₂)(PE) ₂	446(5.23)	561(4.06), 614(4.94)
NiTPP(NO ₂)Th ₂	323(4.26), 441(5.12)	555(4.03), 605(4.17)
NiTPP(NO ₂)(CN) ₂	435(5.25)	612(4.47)
NiTPP(NO ₂)Br ₆	348(4.36), 454(5.22)	565(4.16), 603(3.90)
NiTPP(NO ₂)Ph ₆	456(5.04)	569(4.03), 621(3.99)
NiTPP(NO ₂)(PE) ₆	489(5.30)	598(4.43), 638(4.16)
NiTPP(NO ₂)Th ₆	466(5.09)	580(4.17), 631(4.09)
CuTPP(NO ₂)	380(sh), 422(5.26)	547(4.15), 589(3.96)
CuTPP(NO ₂)Br ₂	430(5.23)	556(4.02), 600(4.05)
CuTPP(NO ₂)Ph ₂	384(sh), 432(5.18)	556(4.06), 601(4.00)
CuTPP(NO ₂)(PE) ₂	442(5.28)	565(4.05), 613(4.30)
CuTPP(NO ₂)Th ₂	433(5.23)	561(4.07), 608(4.14)

Table S5. Optical absorption spectral data of metal complexes of mixed substituted porphyrins

CuTPP(NO2)(CN)2434(5.41)571(3.99), 618(4.58)CuTPP(NO2)Br6361(4.34), 461(5.01)584(4.07), 625(3.80)CuTPP(NO2)Ph6450(5.01)582(4.02), 630(3.90)CuTPP(NO2)(PE)6493(5.28)610(4.43)CuTPP(NO2)Th6460(4.81)596(3.93), 639(3.72)ZnTPP(NO2)426(5.23)556(4.07), 599(3.90)ZnTPP(NO2)Br2340(4.29), 433(5.36)562(4.12), 606(4.10)ZnTPP(NO2)Ph2435(5.27)561(4.12), 607(4.00)ZnTPP(NO2)(PE)2446(5.38)573(4.16), 620(4.35)
CuTPP(NO2)Ph6450(5.01)582(4.02), 630(3.90)CuTPP(NO2)(PE)6493(5.28)610(4.43)CuTPP(NO2)Th6460(4.81)596(3.93), 639(3.72)ZnTPP(NO2)426(5.23)556(4.07), 599(3.90)ZnTPP(NO2)Br2340(4.29), 433(5.36)562(4.12), 606(4.10)ZnTPP(NO2)Ph2435(5.27)561(4.12), 607(4.00)ZnTPP(NO2)(PE)2446(5.38)573(4.16), 620(4.35)
CuTPP(NO2)(PE)6493(5.28)610(4.43)CuTPP(NO2)Th6460(4.81)596(3.93), 639(3.72)ZnTPP(NO2)426(5.23)556(4.07), 599(3.90)ZnTPP(NO2)Br2340(4.29), 433(5.36)562(4.12), 606(4.10)ZnTPP(NO2)Ph2435(5.27)561(4.12), 607(4.00)ZnTPP(NO2)(PE)2446(5.38)573(4.16), 620(4.35)
CuTPP(NO2)Th6 $460(4.81)$ $596(3.93), 639(3.72)$ ZnTPP(NO2) $426(5.23)$ $556(4.07), 599(3.90)$ ZnTPP(NO2)Br2 $340(4.29), 433(5.36)$ $562(4.12), 606(4.10)$ ZnTPP(NO2)Ph2 $435(5.27)$ $561(4.12), 607(4.00)$ ZnTPP(NO2)(PE)2 $446(5.38)$ $573(4.16), 620(4.35)$
$ZnTPP(NO_2)$ 426(5.23)556(4.07), 599(3.90) $ZnTPP(NO_2)Br_2$ 340(4.29), 433(5.36)562(4.12), 606(4.10) $ZnTPP(NO_2)Ph_2$ 435(5.27)561(4.12), 607(4.00) $ZnTPP(NO_2)(PE)_2$ 446(5.38)573(4.16), 620(4.35)
$ZnTPP(NO_2)Br_2$ 340(4.29), 433(5.36)562(4.12), 606(4.10) $ZnTPP(NO_2)Ph_2$ 435(5.27)561(4.12), 607(4.00) $ZnTPP(NO_2)(PE)_2$ 446(5.38)573(4.16), 620(4.35)
ZnTPP(NO2)Ph2435(5.27)561(4.12), 607(4.00)ZnTPP(NO2)(PE)2446(5.38)573(4.16), 620(4.35)
$ZnTPP(NO_2)(PE)_2$ 446(5.38) 573(4.16), 620(4.35)
$ZnTPP(NO_2)Th_2$ 437(5.25) 564(4.07), 612(4.08)
$ZnTPP(NO_2)(CN)_2$ 442(5.42) 634(4.47)
ZnTPP(NO ₂)Br ₆ 377(4.38), 476(5.00) 600(sh), 682(4.11)
$ZnTPP(NO_2)Ph_6$ 379(4.37), 467(5.07) 595(3.90), 648(3.86)
ZnTPP(NO ₂)(PE) ₆ 494(5.35) $613(4.35)$, 696(sh)
$ZnTPP(NO_2)Th_6$ 476(5.06) 607(4.01), 663(3.92)


Values in parentheses refer to $\log \varepsilon$ (ε in Mol⁻¹ cm⁻¹).

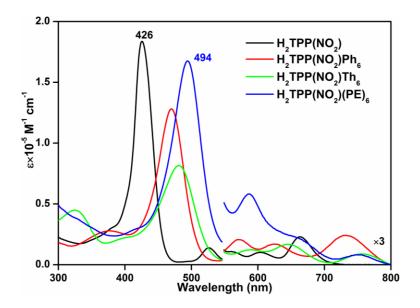
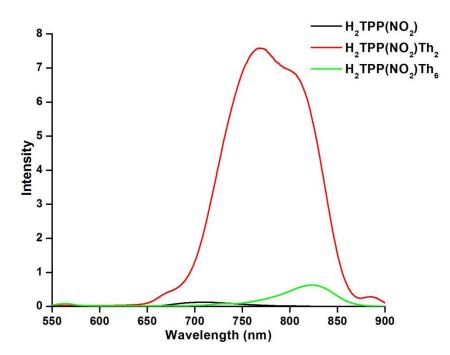
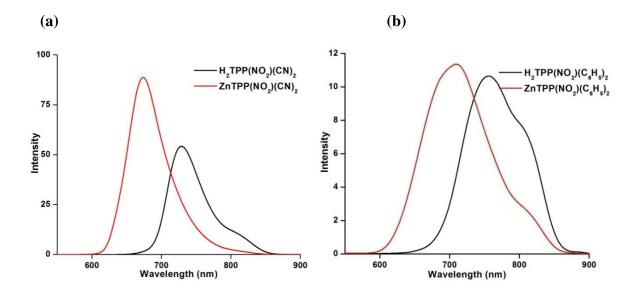
_

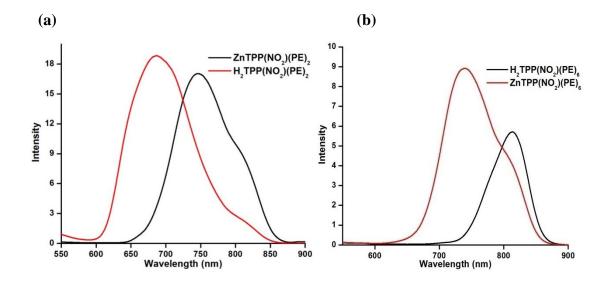
Porphyrin	λ_{Ex} nm	$\lambda_{\mathrm{fl},\mathrm{max}}\mathbf{nm}$	Quantum Yield, φ _f	Stoke shift (nm)	Stokes shift (cm ⁻¹)
H ₂ TPP(NO ₂)Ph ₂	439	756	0.0167	70	1350
$H_2TPP(NO_2)(PE)_2$	444	746	0.0180	59	1151
H ₂ TPP(NO ₂)Th ₂	440	768, 805(sh)	0.0092	73	1367
$H_2TPP(NO_2)(CN)_2$	440	728	0.0582	26	509
$H_2TPP(NO_2)(PE)_6$	494	813	0.0023	62	1016
ZnTPP(NO ₂)Ph ₂	435	709	0.0110	102	2370
ZnTPP(NO ₂)(PE) ₂	446	687	0.0160	67	1573
ZnTPP(NO ₂)Th ₂	437	712	0.0100	100	2295
ZnTPP(NO ₂)(CN) ₂	442	662	0.0334	28	667
ZnTPP(NO ₂)(PE) ₆	494	737	0.0051	41	799

Table S6. Fluorescence Spectral data of mixed substituted porphyrins in CH₂Cl₂ at 298 K.

Figure S5. Electronic absorption spectra of $H_2TPP(NO_2)X_2$ (X = H, CN, PE) derivatives in CH₂Cl₂ at 298 K. Q bands are magnified 3 times.

Figure S6. UV- Visible spectra of $H_2TPP(NO_2)X_6$ (X = H, Ph, Th, PE) derivatives in CH_2Cl_2 at 298 K. Q bands are magnified 3 times.


Figure S7. Fluorescence spectra of $H_2TPP(NO_2)Th_n$ (n = 0, 2, 6) in CH_2Cl_2 at 298 K.

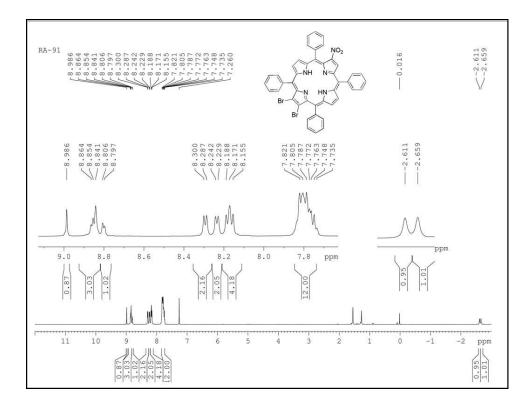
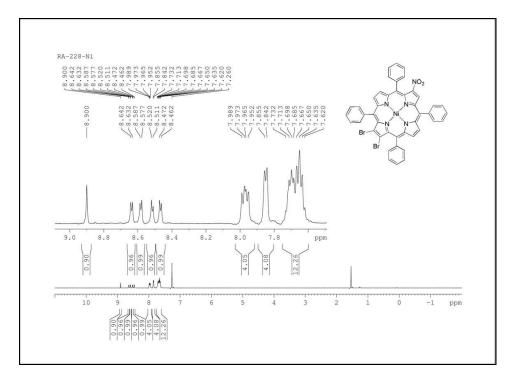


Figure S8. Emission spectra of (a) MTPP(NO₂)(CN)₂ and (b) MTPP(NO₂)(C₆H₅)₂, where M = 2H and Zn(II) in CH₂Cl₂ at 298 K.


Figure S9. Fluorescence spectra of (a) MTPP(NO₂)(PE)₂ and (b) MTPP(NO₂)(PE)₆ (M = 2H, Zn(II)) in CH₂Cl₂ at 298 K.

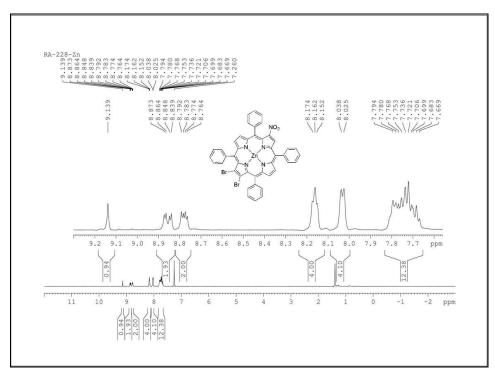


Figure S10.¹H NMR spectrum of H₂TPP(NO₂)Br₂ in CDCl₃at 298 K.

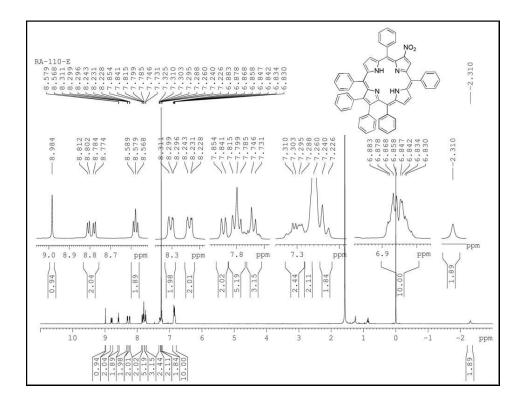

Figure S11. ¹H NMR spectrum of NiTPP(NO₂)Br₂ in CDCl₃.

Figure S12.¹H NMR spectrum of ZnTPP(NO₂)Br₂ in CDCl₃.

Figure S13.¹H NMR spectrum of H₂TPP(NO₂)Ph₂ in CDCl₃.

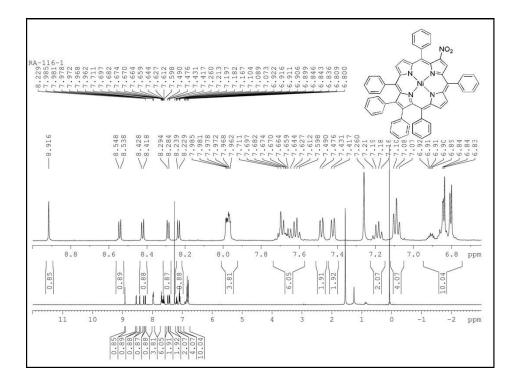
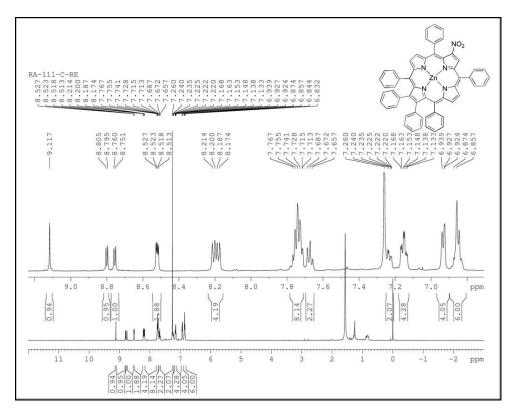



Figure S14.¹H NMR spectrum of NiTPP(NO₂)Ph₂ in CDCl₃.

Figure S15.¹H NMR spectrum of ZnTPP(NO₂)Ph₂ in CDCl₃.

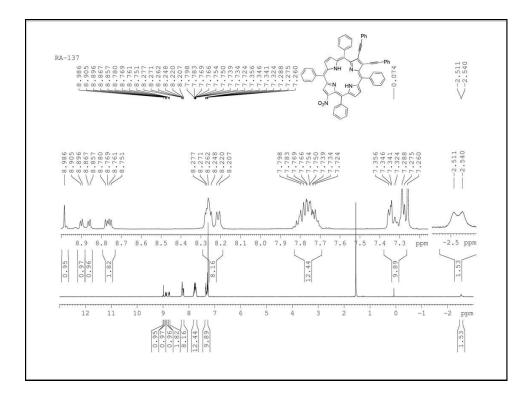
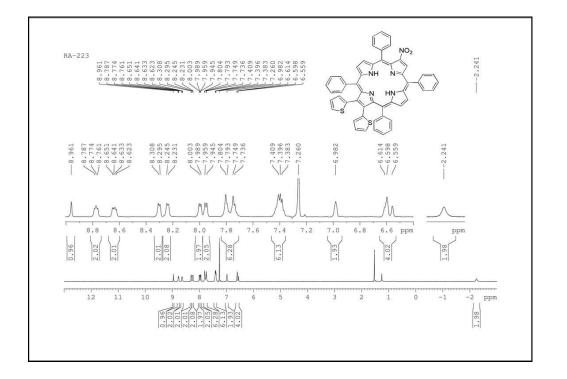



Figure S16. ¹H NMR spectrum of H₂TPP(NO₂)(PE)₂ in CDCl₃.

Figure S17.¹H NMR spectrum of H₂TPP(NO₂)Th₂ in CDCl₃.

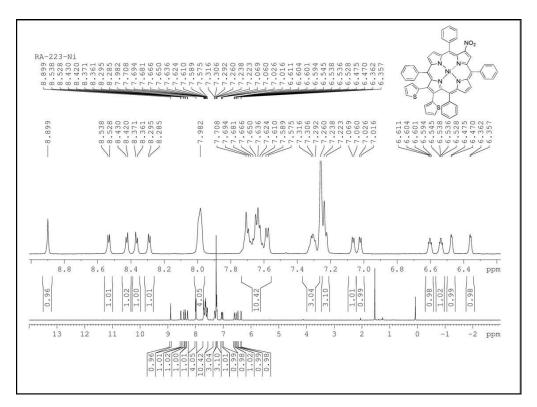
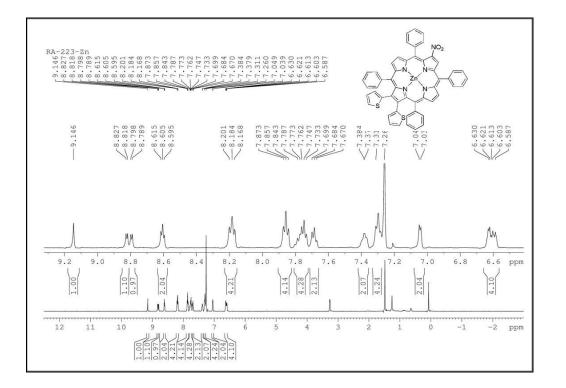
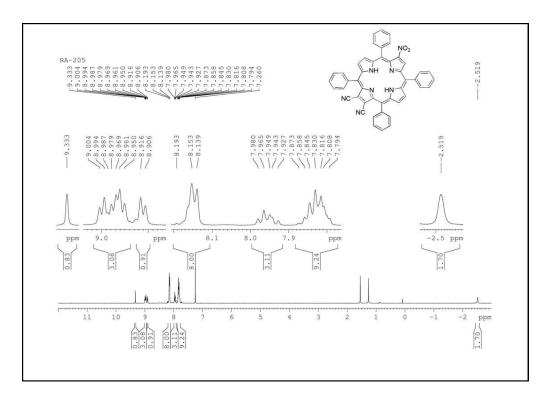




Figure S18. ¹H NMR spectrum of NiTPP(NO₂)Th₂ in CDCl₃.

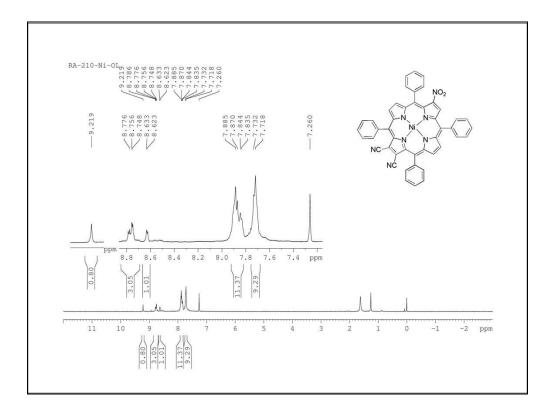

Figure S19.¹H NMR spectrum of ZnTPP(NO₂)Th₂ in CDCl₃.

Figure S20.¹H NMR spectrum of H₂TPP(NO₂)(CN)₂ in CDCl₃.

Figure S21. ¹H NMR spectrum of NiTPP(NO₂)(CN)₂ in CDCl₃.

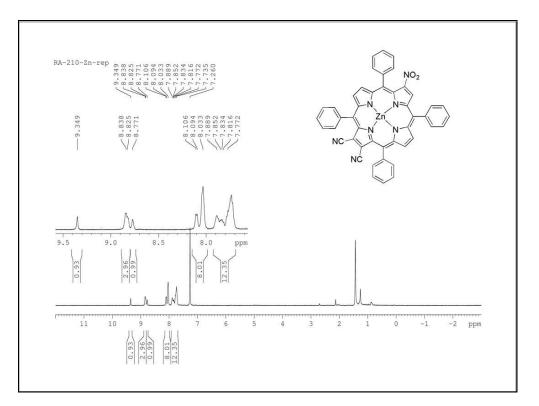
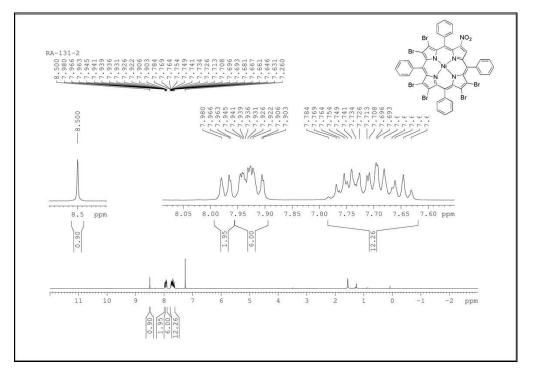
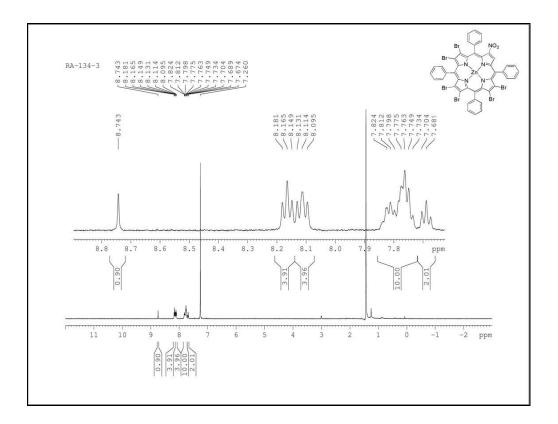
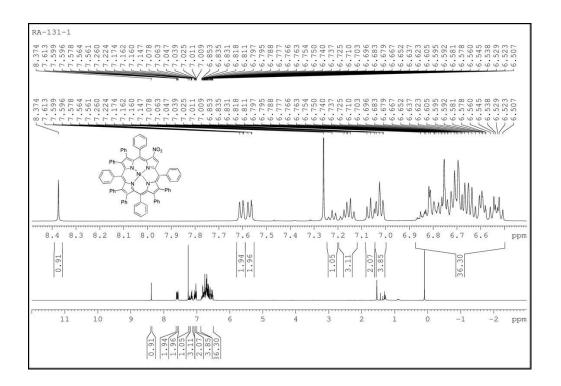




Figure S22. 1H NMR spectrum of ZnTPP(NO₂)(CN)₂ in CDCl₃.


Figure S23. ¹H NMR spectrum of NiTPP(NO₂)Br₆ in CDCl₃.

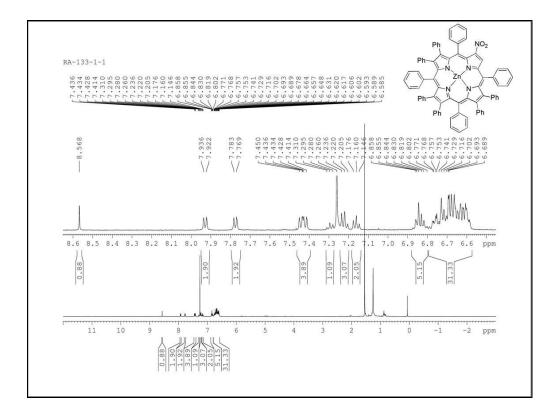


Figure S24.¹H NMR spectrum of ZnTPP(NO₂)Br₆ in CDCl₃.

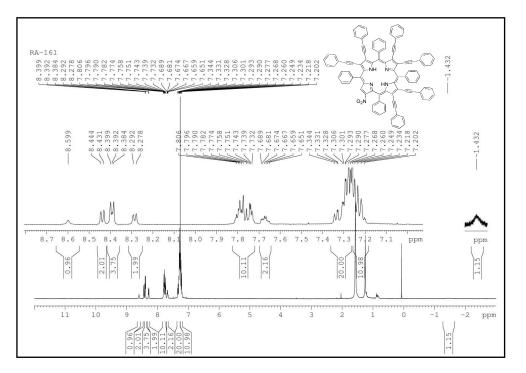

Figure S25. ¹H NMR spectrum of NiTPP(NO₂)Ph₆ in CDCl₃.

Figure S26.¹H NMR spectrum of ZnTPP(NO₂)Ph₆ in CDCl₃.

Figure S27.¹H NMR spectrum of H₂TPP(NO₂)(PE)₆ in CDCl₃

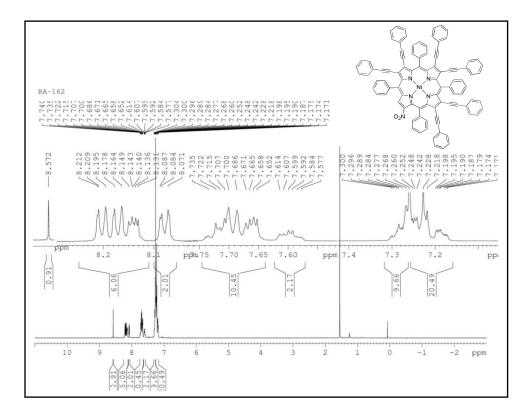
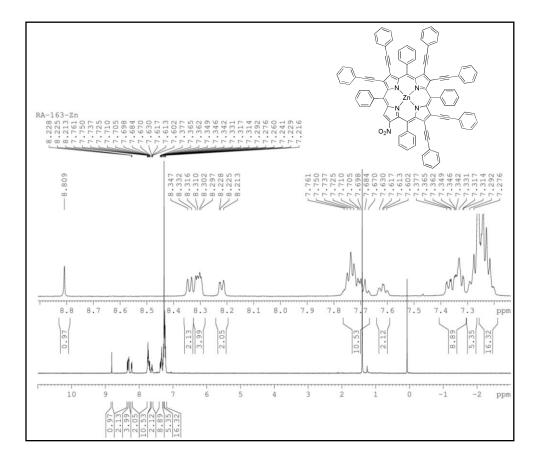



Figure S28. 1H NMR spectrum of NiTPP(NO₂)(PE)₆ in CDCl₃

Figure S29. 1H NMR spectrum of ZnTPP(NO₂)(PE)₆ in CDCl₃

Figure S30. UV-Visible spectral changes during titration of **2-9** while increasing [TFA], insets show the corresponding Hill plots.

(b). $H_2TPP(NO_2)Th_6(3)$ (a). H₂TPP(NO₂)(PE)₆ (2) 1.6 λ = 495 nm
 λ = 534 nm λ = 636 nm
 λ = 766 nm 2+2H 2 0.5 0.9 0.0 0.0 0.5 0.0 0.5 0.5 0.5 0.5 (("Y-'Y)("Y-"Y)) 6ol 0.5 3+2H 3 1.6 1.2 Absorbance Absorbance lope = 2.01 ogß_ = 8.47 slope = 2.12 logβ₂ = 11.21 -1.0 0.8 -3.8 -4.0 .3 -4.8 -4.6 -4.2 TFA) -4.4 -5.2 -5.0 -5.8 -5.6 -5.4 log[TFA 0.4 0.4 0.0 -500 600 700 Wavelength (nm) 0.0 400 900 300 800 500 600 700 Wavelength (nm) 300 400 800 900 (d). $H_2TPP(NO_2)Br_2$ (5) (c). $H_2TPP(NO_2)Ph_6(4)$ 1.5 λ = 466 nm
 λ = 435 nm λ = 464
 λ = 496 1.6 4+2H 4 log((A, A, A)/(A, A)) 0.5 (("A-,A))(A-,A))(o) 1.2 1.2 Absorbance Absorbance -0.8 2.50 log_{β2} = 11.74 $\log \beta_2 = 7.92$ -1.6 -3.6 -2.8 -5.6 -5.4 -3.2 log[TFA] -2. -6.2 -5.8 -6.0 0.3 0.3 0.0 + 300 0.0 + 300 500 600 Wavelength (nm) 800 500 60 Wavelength (nm) 700 400 700 900 400 600 800 (e). H₂TPP(NO₂)(PE)₂ (6) (f). H_2 TPP(NO₂)Ph₂ (7) 1.4 λ = 479 nm
 λ = 443 nm λ = 464 nm λ = 436 nm : 1.0 0.8 1.2 ((^uV-ⁱV)/(^bV-^uV))601 1.2 1.0 1.0 Absorbance Absorption -0.4 -1.0 slope = 2.63 $log\beta_2 = 8.65$ logβ₂ = 9.55 -0.8 -1.5 -3.4 -3.2 log[TFA] -3.8 -3.6 -3.0 -2.8 -2. -5.0 log[TFA] -4.6 -5.4 -4.8 -5.2 4. 56 0.4 0.4

0.2

0.0 -

300

400

0.2

0.0 -

300

400

500 600 Wavelength (nm)

700

800

800

700

500 600 Wavelength (nm)

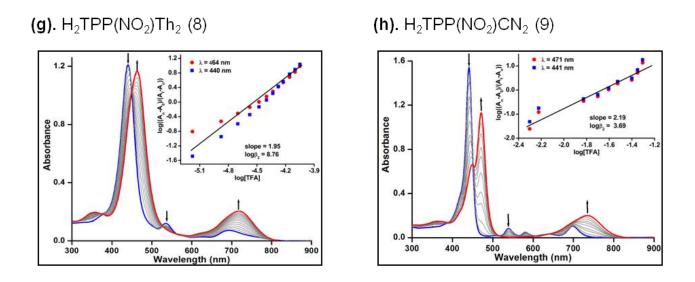
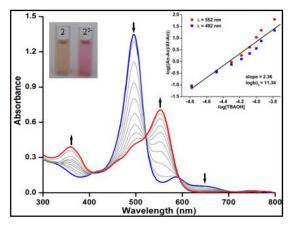
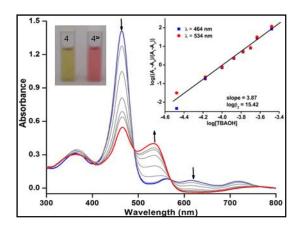
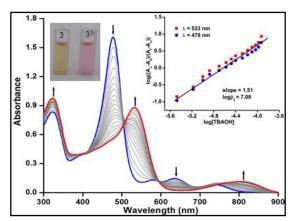




Figure S31. UV-Visible spectral changes during titration of TBAOH, insets show Hill plots.


(a). $H_2TPP(NO_2)(PE)_6(2)$

(c). $H_2TPP(NO_2)Ph_6$ (4)

(b). $H_2TPP(NO_2)Th_6$ (3)

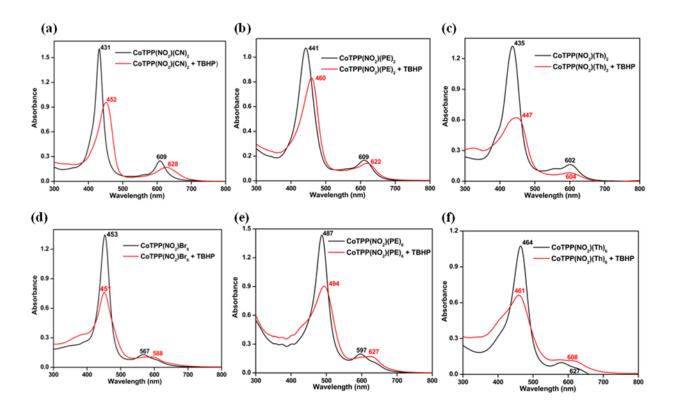
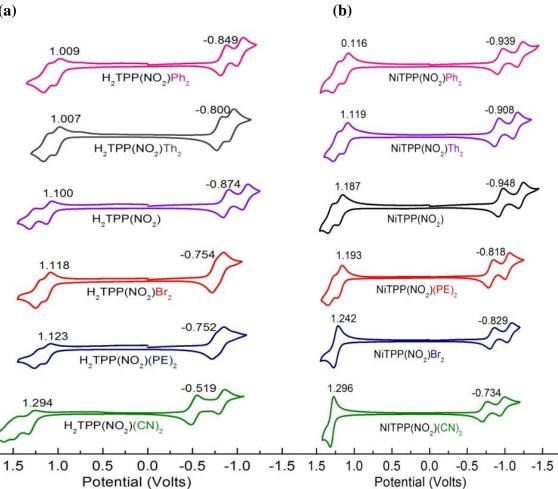
Dornhumin	Oxidation (mV)		Reduction (mV)			Metal Centred		$\Delta E(mV)$
Porphyrin						Oxdn.	Redn.	_ ````
	Ι	II	Ι	II	III	Ι	II	-
СоТРР	1060	1315	-1380			850	-860	2440
CoTPP(NO ₂)	1175	1421	-1298			910	-661	2473
CoTPP(NO ₂)Br ₂	1223	1442	-1208			922	-515	2431
CoTPP(NO ₂)Ph ₂	1134	1348	-1292			886	-644	2426
CoTPP(NO ₂)(PE) ₂	1212	1414	-1187			957	-545	2399
CoTPP(NO ₂)Th ₂	1117	1317	-1260			881	-585	2377
CoTPP(NO ₂)(CN) ₂	1267	1391	-1147			965	-380	2414
CoTPP(NO ₂)Br ₆	1377	1513	-1103			1012	-269	2480
CoTPP(NO ₂)Ph ₆	1082	1192	-1382			801	-638	2463
CoTPP(NO ₂)(PE) ₆	1273	1397	-1073			1009	-337	2346
CoTPP(NO ₂)Th ₆	1158	-	-1253			884	-472	2411
NiTPP	1020	1315	-1280	-1720				2300
NiTPP(NO ₂)	1187	1316	-948	-1212				2136
NiTPP(NO ₂)Br ₂	1242 ^a	-	-829	-1061				2071
NiTPP(NO ₂)Ph ₂	1116	1241	-939	-1200				2055
NiTPP(NO ₂)(PE) ₂	1193	1306	-818	-1032				2011
NiTPP(NO ₂)Th ₂	1119	1238	-908	-1137				2027
NiTPP(NO ₂)(CN) ₂	1296 ^a	-	-734	-966				2030
NiTPP(NO ₂)Br ₆	1305 ^a	-	-703	-950				2008
NiTPP(NO ₂)Ph ₆	956	1183	-988	-1275				1944
NiTPP(NO ₂)(PE) ₆	1244 ^a	-	-732	-943				1976
NiTPP(NO ₂)Th ₆	1018	1266	-902	-1165				1920
CuTPP	970	1350	-1325	-1705				2295
CuTPP(NO ₂)	1076	1442	-979	-1229				2055
CuTPP(NO ₂)Br ₂	1072	1491	-856	-1074				1928
CuTPP(NO ₂)Ph ₂	962	1320	-967	-1214				1929
CuTPP(NO ₂)(PE) ₂	1061	1456	-847	-1055				1908

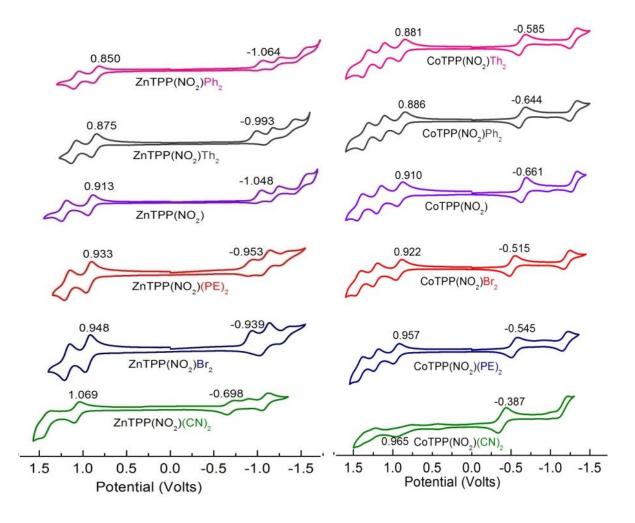
Table S7. Electrochemical redox data of various metal complexes of mixed substitutedporphyrins in CH_2Cl_2 containing 0.1 M TBAPF₆ with a scan rate of 0.1 V/s at 298 K.

CuTPP(NO ₂)Th ₂	956	1402	-911	-1140		1867
CuTPP(NO ₂)(CN) ₂	1331	1599	-626	-1049		1957
CuTPP(NO ₂)Br ₆	1066	1609	-693	-922		1753
CuTPP(NO ₂)Ph ₆	698	1213	-985	-1288		1683
$CuTPP(NO_2)(PE)_6$	1013	1498	-749	-944	-1421	1762
CuTPP(NO ₂)Th ₆	780	1305	-864	-1163		1644
ZnTPP	835	1140	-1360	-1765		2195
ZnTPP(NO ₂)	913	1217	-1048 ⁱ	-1192	-1500	1961
ZnTPP(NO ₂)Br ₂	948	1182	-939 ⁱ	-1080		1887
ZnTPP(NO ₂)Ph ₂	850	1074	-1064 ⁱ	-1204	-1498	1914
ZnTPP(NO ₂)(PE) ₂	933	1181	-953 ⁱ	-1085		1886
ZnTPP(NO ₂)Th ₂	875	1106	-993 ⁱ	-1126	-1376	1868
ZnTPP(NO ₂)(CN) ₂	1069	1429	-698	-1089		1767
ZnTPP(NO ₂)Br ₆	931	1192	-839 ⁱ	-977	-1227	1770
ZnTPP(NO ₂)Ph ₆	686	853	-1076 ⁱ	-1377 ⁱ		1762
ZnTPP(NO ₂)(PE) ₆	925	1176	-858 ⁱ	-976		1783
ZnTPP(NO ₂)Th ₆	754	985	-93 1 ⁱ	-1106	-1496	1685

^arefers two electron oxidation and ⁱrefers to irreversible

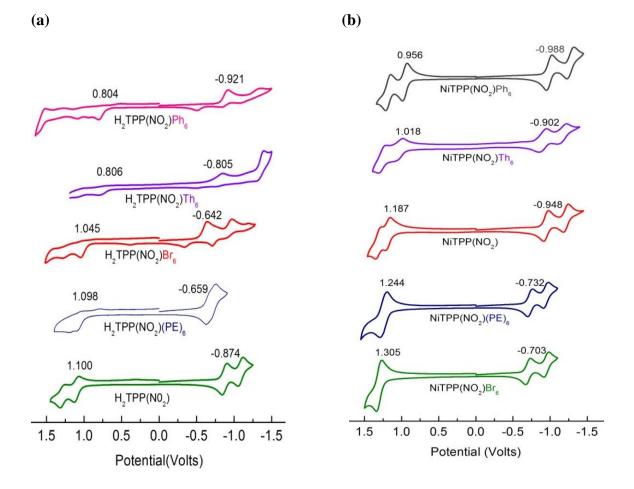
Figure S32. UV-Visible spectral changes of Co(II) porphyrins upon addition of *tert*-butyl hydroperoxide (conversion of Co(II) to Co(III) porphyrins) in CH_2Cl_2 at 298 K.


Table S8. UV-Visible spectral data of Co(II) and Co(III) porphyrins in CH₂Cl₂ at 298 K.

Porphyrin	Without	ГВНР (Со ^п)	With TBHP (Co ^{III})		
Torphyrm	B band, nm	Q band(s), nm	B band, nm	Q band(s), nm	
CoTPP(NO ₂)	420	540, 578	442	557	
CoTPP(NO ₂)Br ₂	431	551, 595	450	597	
CoTPP(NO ₂)Ph ₂	434	553, 593	430	588	
CoTPP(NO ₂)(PE) ₂	441	609	460	620	
CoTPP(NO ₂)Th ₂	435	602	447	604	
CoTPP(NO ₂)(CN) ₂	431	609	452	628	
CoTPP(NO ₂)Br ₆	453	567	451	588	
CoTPP(NO ₂)Ph ₆	454	570, 611	446	604	
CoTPP(NO ₂)(PE) ₆	487	597	494	627	
CoTPP(NO ₂)Th ₆	464	580, 627	461	608	

Figure S33. Cyclic voltammograms of (a) $H_2TPP(NO_2)X_2$, (b) $NiTPP(NO_2)X_2$, (c) $ZnTPP(NO_2)X_2$, (d) $CoTPP(NO_2)X_2$ (where X = H, Br, CN, PE, Th and Ph) complexes in $CH_2Cl_2^{a}$.


(a)

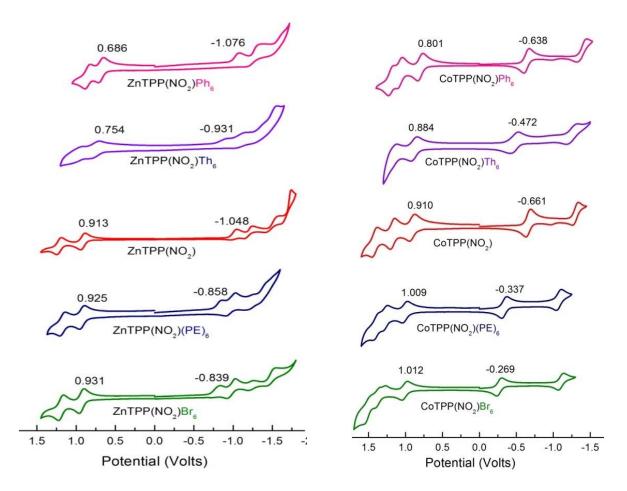
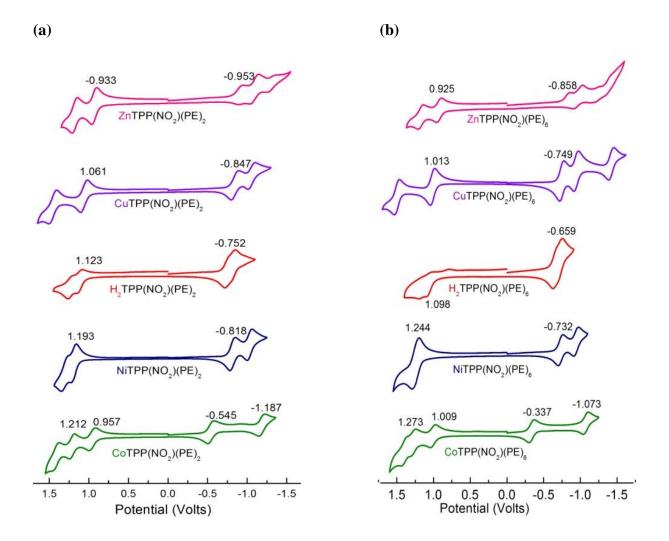

^aContaining 0.1M TBAPF₆ with a scan rate of 0.1 V/s. Pt Working electrode, Ag/AgCl Reference electrode and Pt wire counter electrode were used.

Figure S34. Cyclic voltammograms of (a) $H_2TPP(NO_2)X_6$, (b) $NiTPP(NO_2)X_6$, (c) $ZnTPP(NO_2)X_6$, (d) $CoTPP(NO_2)X_6$ (where X = H, Br, PE, Th and Ph) complexes in CH_2Cl_2 .


(c)

(d)

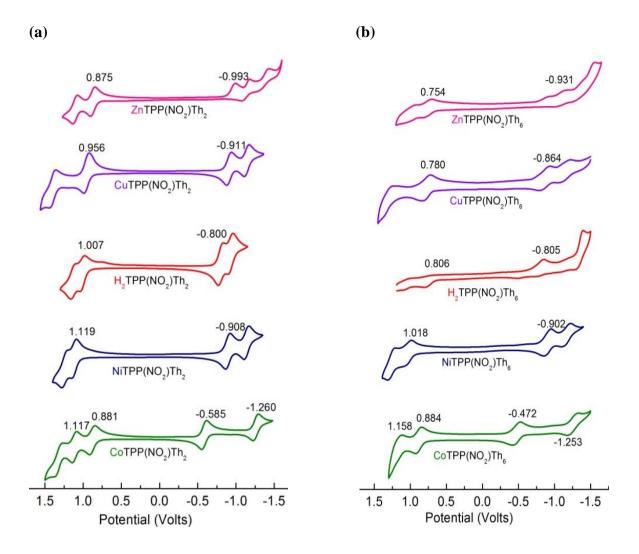

^aContaining 0.1M TBAPF6 with a scan rate of 0.1 V/s. Pt Working electrode, Ag/AgCl Reference electrode and Pt wire counter electrode were used.

Figure S35. Cyclic voltammograms of (a) MTPP(NO₂)(PE)₂, (b) MTPP(NO₂)(PE)₆ where M = 2H, Cu(II), Zn(II), Ni(II), and Co(II) in CH₂Cl₂^a.

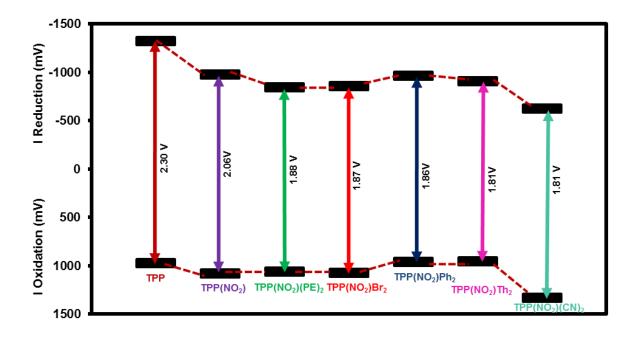
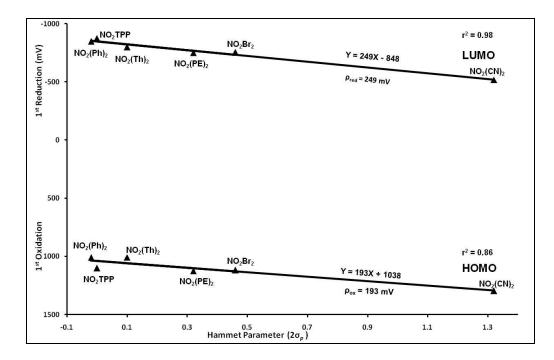
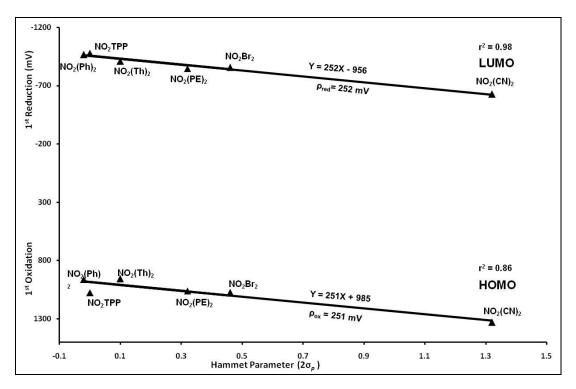
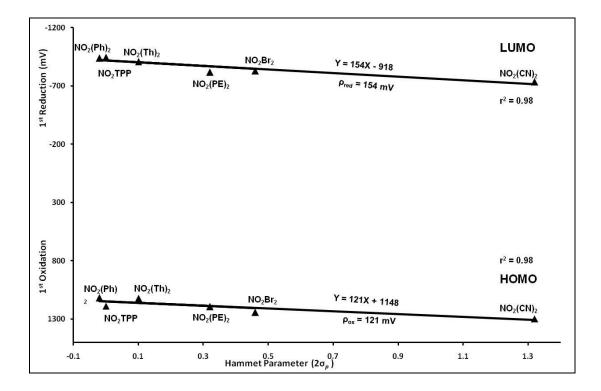

^aContaining 0.1M TBAPF6 with a scan rate of 0.1 V/s. Pt Working electrode, Ag/AgCl Reference electrode and Pt wire counter electrode were used.

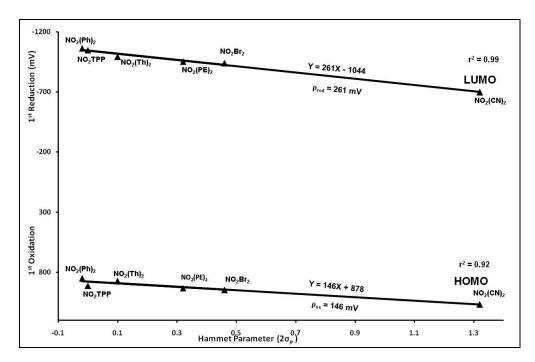
Figure S36. Cyclic voltammograms of (a) MTPP(NO₂)Th₂, (b) MTPP(NO₂)Th₆ where M = 2H, Cu(II), Zn(II), Ni(II), and Co(II) in CH₂Cl₂^a.

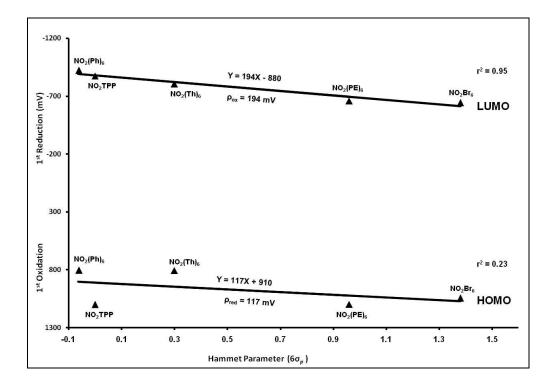


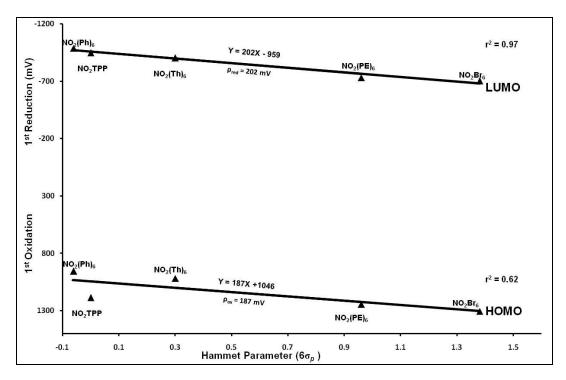
^aContaining 0.1M TBAPF6 with a scan rate of 0.1 V/s. Pt Working electrode, Ag/AgCl Reference electrode and Pt wire counter electrode were used.

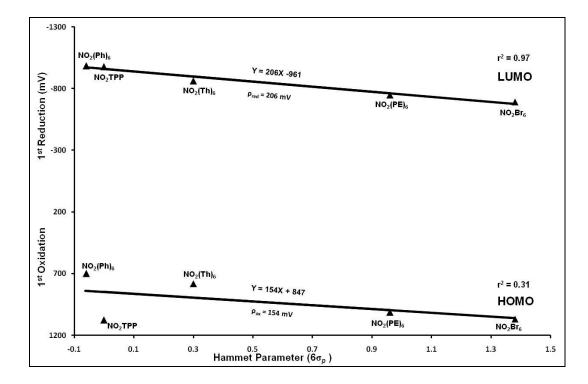

Figure S37. The HOMO-LUMO variation of $CuTPP(NO_2)X_2$ where X = PE, Br, Ph and Th in comparison to $CuTPP(NO_2)$ and CuTPP.

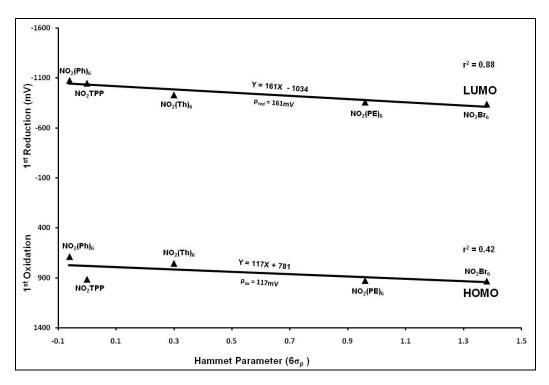

Figure S38. Plot of 1^{st} ring redox potentials *versus* the Hammett parameter (σ_p) of various Mixed substituted Porphyrins.(**a**)H₂TPP(NO₂)X₂

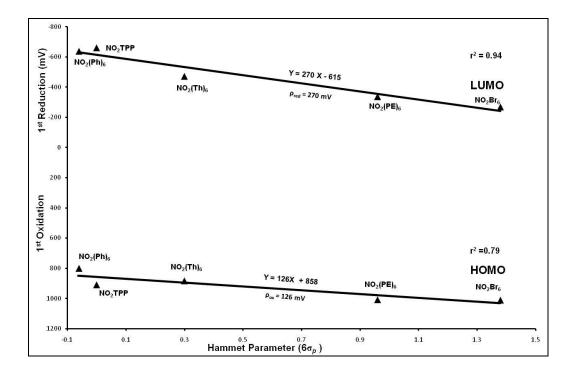

(b) CuTPP(NO₂)X₂

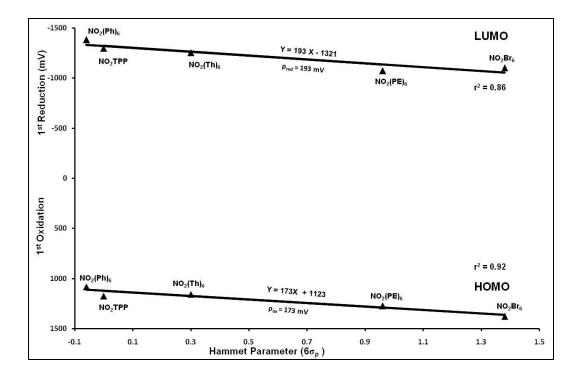

(c) NiTPP(NO₂)X₂


(d) ZnTPP(NO₂)X₂


(e) H₂TPP(NO₂)X₆


(f) NiTPP(NO₂) X_6


(g) CuTPP(NO₂)X₆


(**h**) $ZnTPP(NO_2)X_6$

(i) CoTPP(NO₂)X₆ (metal centered)

(j) CoTPP(NO₂)X₆ (ring centered)

References:

- 1. Jaquinod, L.; Khoury, R. G.; Shea K. M.; Smith, K. M. Tetrahedron 1999, 5, 13151-13158.
- 2. G. M. Sheldrick, SIR97 and SHELX97, Programs for Crystal Structure Refinement, University of Göttingen, Göttingen (Germany), 1997.
- 3. (a) Hill, A. V. J. Physiol. London. **1910**, 40, IV-VII. (b) Hunter, C. A.; Meah, M. N.; Sanders, J. K. M. J. Am. Chem. Soc. **1990**, 112, 5773-5780.