Supporting Information

State-of-art of recycling e-wastes by vacuum metallurgy separation

Lu Zhan^{a*}, Zhenming Xu^b

a Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and

Environmental Science, East China Normal University, 500 Dong chuan Road, Shanghai, P.R. China

b School of Environmental Science and Engineering, Shanghai Jiao Tong University

800 Dong chuan Road, Shanghai, P.R. China

Supporting Information Content

9 pages (including the cover page)

6 Figures

3 Tables

Corresponding author phone: +86 21 54341064; fax:+86 21 54747495; e-mail: lzhan@des.ecnu.edu.cn

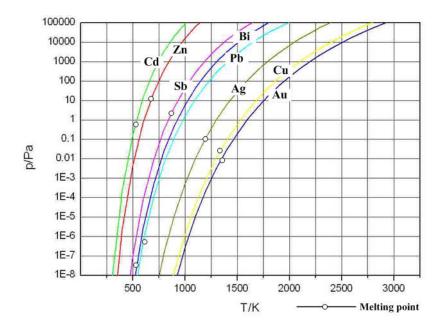


FIGURE S1 The relationship between the saturation pressure and temperature of metals (37).

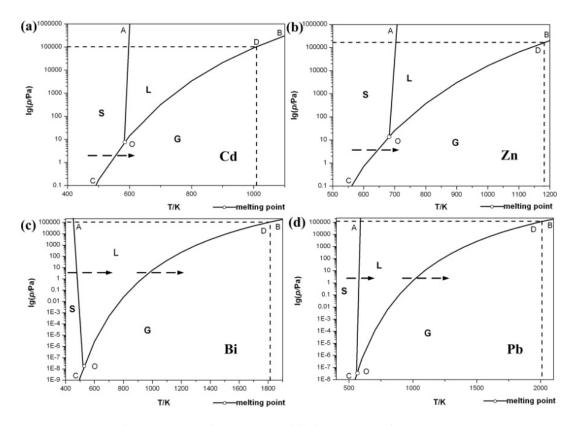


Figure S2. The triple phase equilibrium graphs of metals (38).

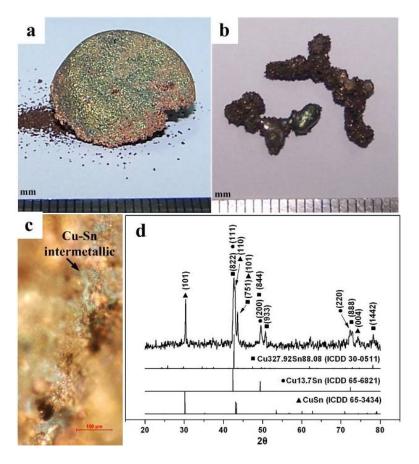


FIGURE S3. Cu-Sn intermetallic formed on the bottom of crucible (a), among Cu particles (b),

its micrograph (c) and the corresponding XRD pattern (d) (41).

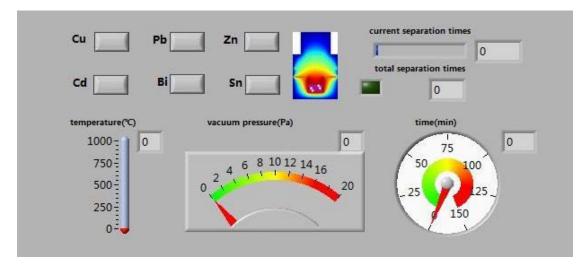


Figure S4 The designed front panel based on Labview (42)

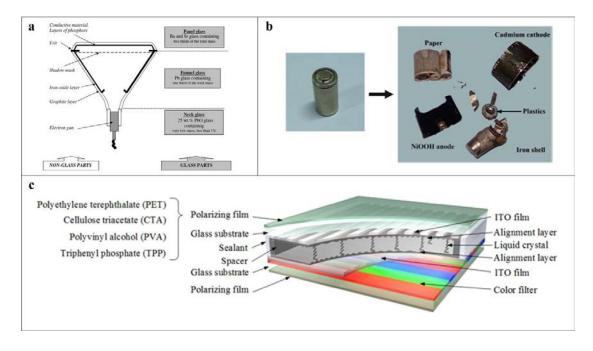


Figure S5 Schematic diagrams of several kinds of e-wastes

a Schematic diagram of the CRT components (46), b Schematic diagram of a dismantled waste

Ni-Cd battery (53), c Schematic diagram of the LCD panel (78).

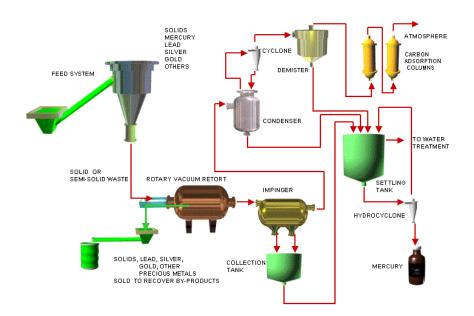


Figure S6. Flow diagram of the SepraDyne separation process (70)

	methods	materials recycled	advantages	disadvantages
Hydrometallurgical recycling	adsorption, leaching, cementation, solvent extraction, ion exchange, etc.	mainly Cu, Au, Ag, Pd	low costs, operational flexibility, high selectivity, high metal purity	high solvent consumption, leaching solution needs to be further treated
Pyrometallurgical recycling	incineration, smelting, drossing, sintering, melting, etc.	mainly precious metals	no requirements for the compositions of wastes	high costs, gas/dust needs to be further treated, possible formation of dioxins
Biological recycling	bioleaching, biosorption, etc.	mainly Cu, Au	low costs, easier operability, better environmental property	low recovery efficiency, time consuming, difficult to select the biomass with high adsorption capacities
Mechanical physical recycling	screening, magnetic separation, eddy current separation, electrostatic separation, jigging, etc.	Fe, Al, glasses, plastics	better environmental property, easier operability, low costs	loss of valuable metals due to the insufficient liberation, generate noises and dusts
VMS	vacuum evaporation, vacuum carbon reduction, vacuum pyrolysis, etc.	mainly Cd, Pb, Hg, Zn, also toxic organics	no waste gas nor liquid, high metal purity, high recovery efficiency	high costs, require sufficient pretreatments

Table S1 The comparison of different methods for e-wastes recycling

Vacuum	Combined	Participant	Treated object	Operating parameters	Recovered	Residues	Appeared	Literature
technology	measures	reactant			materials		section	
Vacuum	Dismantling,	-	WPCBs	1123 K under 0.1-1 Pa	Pb, Cd	Cu-Sn alloy	3.1	37, 39,
evaporation	crushing, and			for 90 min				41
	electrostatic							
	separating							
Vacuum carbon	Crushing	Carbon	CRT	1273 K under 1000 Pa	Pb, K, Na	foam glass	3.2	47,48
reduction				for 4 h, 9% of carbon				
				adding amount				
Vacuum carbon	Inert-gas	Carbon	CRT	1273 K under 500-	nano-lead	harmless glass	3.2	49
reduction	injecting			2000 Pa for 2-4 h,10%	particles with 4-	powder		
				of carbon adding	34nm			
				amount, 50–200				
				ml/min of the argon gas				
				flow rate				
Vacuum	-	-	Grids of waste	900 K under 5-7 Pa for	Sb, Sb ₂ O ₃ and Pb	-	3.3	51
evaporation			lead-acid battery	30 min	bullion			
Vacuum	Treated with	Carbon	Pastes of waste	1000 K under 2-4 kPa	Pb	-	3.3	51
reduction	Na ₂ CO ₃ solution		lead-acid battery	for 90 min				
Vacuum	-	-	Plastics of waste	923 K under 50-80 Pa	Pyrolysis oil, gas	-	3.3	51
pyrolysis			lead-acid battery	for 30 min				
Vacuum	-	-	Ni-Cd batteries	1173 K under 100 Pa	Cd	Ni–20% Co	3.4	56, 57
distillation				for 2h		alloy		
Vacuum	-	Carbon	Ni-Cd batteries	1027 K under 1.33 Pa	Cd	NiFe scrap	3.4	63
distillation				for 1.5 h, 1 % of				

Table S2 Applications of VMS on e-wastes recycling.

				carbon adding amount				
Vacuum	-	-	Zn-Mn batteries	573 K under 35-600 Pa	Hg	Slags of Fe,	3.5	65
evaporation				for 4h		MnO ₂ , and ZnO		
Vacuum	-	-	Mercury button	623 K-923 K under	Hg	not mention	3.5	67, 68
evaporation			cells	100 Pa				
Vacuum	Magnetic	CaO	Zn-Mn dry	1073-1123 K under 250	Zn	manganese	3.6	74
evaporation	separation		batteries	Pa for 60 min, 20% of		oxide		
				CaO adding amount				
Vacuum	-	-	Alkaline manganese	1200 K under 10Pa	Zn	Slags of MnO ₂ ,	3.6	76
evaporation			dry batteries			ZnO and steel		
Vacuum	Grinding to less	NH ₄ Cl	LCDs	673 K under 0.09 MPa	Indium chloride	Glass powder	3.7	81
chlorinated	than 0.13 mm			for 10 min, with 33%				
separation				of NH ₄ Cl adding				
				amount				
Vacuum carbon	Grinding to less	Carbon	LCDs	1223 K under 1 Pa with	In	Glass powder	3.7	82
reduction	than 0.3 mm			30 wt% carbon				
				addition for 30 min				
Vacuum CO	-	СО	ITO scraps	1023 K, with 70 vol%	In-Sn alloy	-	3.7	83
reduction and				CO for 90 min				
evaporation	-	-	In-Sn alloy	1373 K under 1 Pa for	In	Sn	3.7	83
				30 min				
Vacuum	Centrifugal	-	WPCBs	873 K under1.5 kPa for	pyrolysis oils,	metals, glass	4.1	85, 86
pyrolysis	separation			30 min	gases, solders	fibers, etc.		
Vacuum	Crushing,	-	WPCBs	825 K under 20 kPa for	pyrolysis oils,	Cu foil, glass	4.1	88
pyrolysis	screening			120 min	gases	fibers, carbon		

Vacuum co-pyrolysis	-	Chinese fir sawdust	WPCBs	773 K under 10 kPa for 30 min	co-pyrolysis oils with more	not mention	4.1	89
I J J J					brominated			
					compounds, gases			
Vacuum	Dismantle	-	Pole transformers	473 K under <7Pa for	oil	component	4.2	92, 93
evaporation				10 h		materials with		
						PCB less than		
						0.05 mg/kg		
Vacuum	Dismantle	-	Capacitors and	668 -673 K under 6.0	oil	component	4.2	96
evaporation			pressure-sensitive	to 6.5 kPa for 4 h		materials with		
			paper			PCB less than		
						0.1 mg/kg		
Vacuum	-	-	LCDs	573 K under 50 Pa for	pyrolysis oils,	residues	4.3	78
pyrolysis				30 min	gases	containing In		
Vacuum	-	-	Metal-free electric	723 K under 20 kPa for	pyrolysis oils,	wax and	4.3	101
pyrolysis			cable waste	30 min	gases	carbon black		

Parameter	Design and Cost Basis
Plant Life	10 years
Operations	250 days/year, 5 days/week, 8 hrs/day
Throughput	1000 lbs/hr
Treatment Process	High vacuum rotary retort
Capital Costs	Processing equipment, air pollution control equipment, scale
	and forklift
Operating Cost	Laborers, oversight and management support and electricity
Disposal Costs	$1000/M^3$ for solids, $0.10/gal$ for wastewater, $25/gal$ for organics
Decommissioning Costs	Not included
Personal protection equipment	Purchase and disposal costs
Transportation	Shipping costs to disposal site

Table S3. Summary of cost basis information for the SepraDyne process (70)

All the references cited in SI have been listed in the text, and they have the same numbers.