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Scheme S1. Synthesis of TP-ICPES and TP-MSN. 

Scheme S1 showed that two-photon MSNs were first synthesized by a base-catalyzed 

sol-gel procedure using a two-photon fluorophore-conjugated organic silane 

monomer. 

 

 

 

 

 

Figure S1. (a) TEM image of two-photon MSN; (b) DLS data of two-photon MSN. 

As seen from Figure S1, the two-photon MSN has good monodispersity and that the size (diameter) 

was measured at about 140 nm. 
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Figure S2. Energy dispersive spectroscopy analysis of TP-MSNs@MnO2. 

 

As seen from Figure S2, the presence of amino groups on the surface of the 

two-photon MSNs, negatively charged MnO2 nanosheets can be easily adsorbed onto 

positively charged MSNs through electrostatic interaction. 
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Figure S3. The UV-vis absorption spectrum of TP-MSN and TP-MSN@MnO2. 

 

As seen from Figure S3, the UV-vis absorption spectra of TP-MSN@MnO2 

nanocomposite indicate the formation of the MnO2 adsorbed onto the TP-MSNs with 

corresponding peaks at 380 nm.   
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Figure S4. Spectral overlap showing the fluorescence emission spectrum of the 

two-photon MSNs (blue) and the UV-vis absorption spectrum of MnO2 nanosheet 

(red).  

 

As shown in Figure S4, the absorbance spectrum of MnO2 nanosheet overlaps well 

with the fluorescence emission of the TP-MSNs, thereby leading to ET from the 

TP-MSNs to the MnO2. 
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Figure S5. Fluorescence quenching of TP-MSN (100 µg mL
-1
) by varying amounts of 

MnO2 nanosheets. 

 

It is clear from Figure S5 that the fluorescence quenching degree was dependent on 

the concentration of MnO2 nanaosheet and a maximum quenching degree up to 98.1% 

was achieved with 100 µg/mL quencher. 
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Figure S6. Effect of pH on the one-photon excited fluorescence intensity of 

TP-MSN@MnO2 nanocomposite in the presence of GSH (1 mM). 

 

This result indicates that these is no effect of pH on the fluorescent response of the 

probe. 
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Figure S7. Fluorescence response of TP-MSN@MnO2 nanocomposite in the absence 

of GSH (black) and in the presence of GSH (1 mM) (red),as a function of time. 

 

As seen from Figure S7, the fluorescence intensity of TP-MSNs gradually increased 

with the elongation of time and reached equilibrium after a few minutes, revealing a 

rapid decomposition of the nanoscale MnO2 by GSH at room temperature. Because of 

the GSH-mediated reduction of MnO2, the FRET process is inhibited. 
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Figure S8. TP confocal microscopy images of GSH detection in live Hela cells. (a) TP 

image of cells incubated with the TP-MSN@MnO2 nanocomposite; (b)TP image of Hela 

cells pretreated with LPA for 24 h and then NMM (500 µM) for 30 min, followed by 

incubation with the TP-MSN@MnO2 nanocomposite; (c) TP image of Hela cells 

pretreated with LPA (500 µM) for 24 h, followed by incubation with the 

TP-MSN@MnO2 nanocomposite. 

 

This result indicates that this TP-MSN@MnO2 nanocomposite can be rapidly 

delivered into the cytoplasm and a high level of GSH is expressed in HeLa cells. 
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Figure S9. Depth fluorescence images of TP-MSNs in tissues were obtained with 

spectral confocal multiphoton microscopy (Olympus, FV1000) with a 

high-performance mode-locked titanium-sapphire laser source (MaiTai, 

Spectra-Physics, USA). Next, the changes of fluorescence intensity with scan depth 

were determined by spectral confocal multiphoton microscopy (Olympus, FV1000) in 

the z-scan mode (from 0 to 400 µm; step size: 1 µm). The images were collected at 

450-530 nm (green channel). Scale bars: 30 µm. 

The results clearly demonstrate that TP-MSNs@MnO2 has increased light penetration 

depth in tissue. 

 


