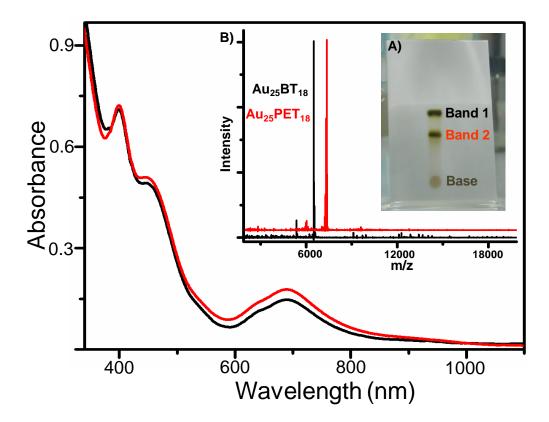
Simple and Efficient Separation of Atomically Precise Noble Metal Clusters

Atanu Ghosh,^{†,‡} Jukka Hassinen,^{§,‡} Petri Pulkkinen,[#] Heikki Tenhu,[#] Robin H. A. Ras^{§,*} and Thalappil Pradeep^{†,*}

[†] DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.

[§] Department of Applied Physics, Aalto University (Helsinki University of Technology), Puumiehenkuja 2, FI-02150 Espoo, Finland.

[#] Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland.


[‡] These authors contributed equally.

* robin.ras@aalto.fi (fax: +358-9-47023155), pradeep@iitm.ac.in (fax: +91-44-2257 0509/0545)

Content

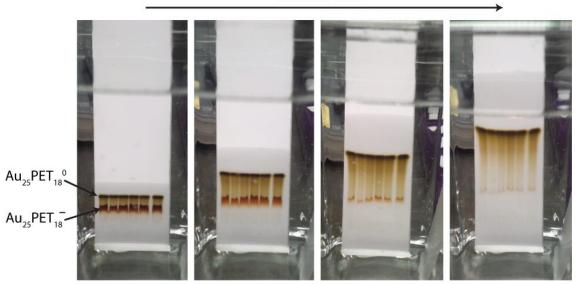

#	Description	Page number
1	Separation of BT and PET Protected Au ₂₅	S-2
2	Oxidation of $Au_{25}PET_{18}^{-}$ During a TLC Run	S-3
3	TLC Separation of $Au_{25}PET_{18}^{-}$ and $Au_{25}PET_{18}^{0}$	S-4
4	Retention Factors for All Separated Clusters	S-5
5	Peak Positions and Assigned Compositions of Au ₂₅ Calix ₀₋₃ BT ₆₋₁₈	S-6
6	Sticking of Clusters to TLC Plate Demonstrated	S-7
7	Monitoring the Progress of a Reaction Using TLC	S-8
8	References	S-9

Figure S-1. UV-vis spectra of TLC separated materials. A) Photograph of the TLC plate used for cluster separation. Bands 1 and 2 are due to two separated clusters. B) MALDI MS data of TLC separated materials confirming that bands 1 (black trace) and 2 (red trace) are pure $Au_{25}BT_{18}$ and $Au_{25}PET_{18}$, respectively.

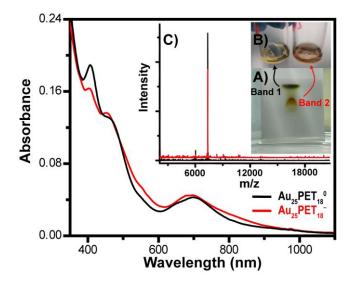

2. Oxidation of Au₂₅PET₁₈⁻ During a TLC Run

Figure S-2. Oxidation of $Au_{25}PET_{18}^{-}$ to $Au_{25}PET_{18}^{0}$ during the TLC run (DCM/hexane 60:40). The clusters were spotted directly after the synthesis of $Au_{25}PET_{18}$ in order to prevent oxidation during storage. However, we observed the presence of both oxidation states already in the beginning of the TLC run. During elution, the lower band ($Au_{25}PET_{18}^{-}$) gradually converts to $Au_{25}PET_{18}^{-}$ and causes a tail to the upper band.

Elution time

3. TLC Separation of Au₂₅PET₁₈⁻ and Au₂₅PET₁₈⁰

Figure S-3. UV-vis spectra of the TLC separated $Au_{25}PET_{18}^0$ and $Au_{25}PET_{18}^-$. A) Photograph of the TLC plate used for cluster separation (DCM/hexane 70:30). Bands 1 and 2 are due to two separated clusters. B) Photograph of the extracted clusters showing the visible color difference between the two charge states of $Au_{25}PET_{18}$. C) MALDI MS data of TLC separated materials confirming that bands 1 (black trace) and 2 (red trace) are pure $Au_{25}PET_{18}^0$ and $Au_{25}PET_{18}^-$, respectively.

4. Retention Factors for All Separated Clusters

Figure	Eluent (DCM/Hexane)	Separated Clusters*	<i>R</i> ^{<i>f</i>} Value
1	40:60	$Au_{25}HT_{18}$	0.89
		$Au_{25}BT_{18}$	0.77
2	60:40	Au ₂₅ PET ₁₈	0.65
		$Au_{144}PET_{60}$	0.44
4		$Au_{25}BT_{18}$	0.33
	30:70	Au ₂₅ Calix ₁ BT ₁₆	0.14
		Au ₂₅ Calix ₁ BT ₁₄	0.09
		Au ₂₅ Calix ₂ BT ₁₀₋₁₆	0.04
5	35:65	Au ₂₅ Calix ₂ BT ₁₂₋₁₄	0.19
		Au ₂₅ Calix ₂ BT ₁₀₋₁₂	0.11
		Au ₂₅ Calix ₂₋₄ BT ₆₋₁₂	0.06
S-1	60:40	$Au_{25}BT_{18}$	0.88
		$Au_{25}PET_{18}$	0.62
S-3	70:30	Au ₂₅ PET ₁₈	0.73
		$Au_{25}PET_{18}$	0.58

Table S-1. TLC Eluent Compositions and R_f Values of All Separated Clusters

* Unless otherwise noted, the clusters have a neutral core charge.

5. Peak Positions and Assigned Compositions of Au₂₅Calix₀₋₃BT₆₋₁₈

Peak ID	Commention	m/z		D:///
	Composition	Exp.	Theor.	- Difference*
1	$Au_{25}BT_{18}$	6506.0	6528.9	22.9
2	Au ₂₅ Calix ₁ BT ₁₄	6919.1	6945.0	25.9
3	Au ₂₅ Calix ₁ BT ₁₆	7098.0	7123.1	25.1
4	Au ₂₅ Calix ₁ BT ₁₈	7274.8	7301.5	26.7
5	Au ₂₅ Calix ₂ BT ₁₀	7335.5	7361.2	25.7
6	Au ₂₅ Calix ₂ BT ₁₂	7512.8	7539.2	26.4
7	Au ₂₅ Calix ₂ BT ₁₄	7691.1	7718.2	27.1
8	Au ₂₅ Calix ₂ BT ₁₆	7868.6	7896.6	28.0
9	Au ₂₅ Calix ₃ BT ₆	7747.8	7777.0	29.2
10	Au ₂₅ Calix ₃ BT ₈	7925.3	7955.3	30.0
11	Au ₂₅ Calix ₃ BT ₁₀	8104.9	8134.4	29.5
12	Au ₂₅ Calix ₃ BT ₁₂	8281.1	8312.8	31.7
13	Au ₂₅ Calix ₃ BT ₁₄	8459.8	8491.2	31.4

Table S-2. Compositions Observed in MALDI MS of Au₂₅Calix₀₋₃BT₆₋₁₈: Experimental and Theoretical m/z Values

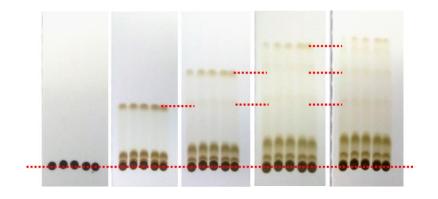
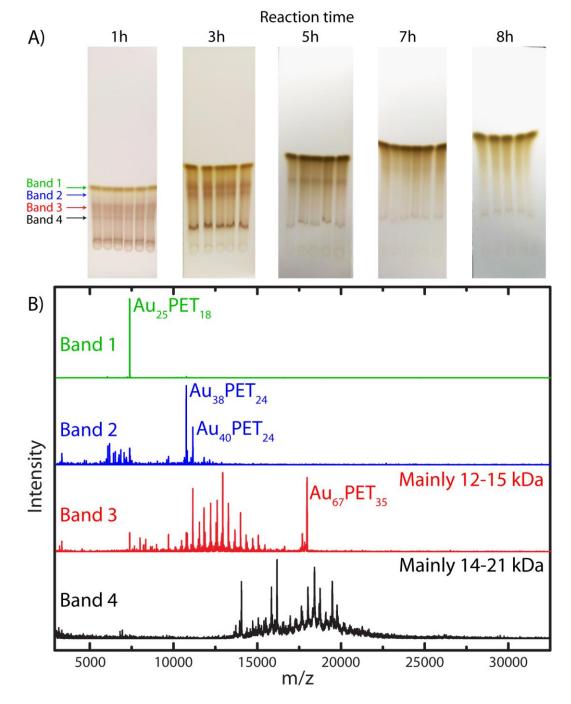

* Difference increases in a linear fashion indicating that the difference originates from slight inaccuracy in mass calibration. However, the peak pattern in MALDI MS closely resembles the pattern observed in ESI MS from a similar sample,¹ thus confirming the interpretation.

Table S-3. Inter	pretations of Ligands	' Binding Modes on A	Au ₂₅ Calix ₀₋₃ BT ₆₋₁₈ Clusters


	Number of Calix		
Composition	Tetradentate	Bidentate	BT bound to Au
$Au_{25}BT_{18}$	0	0	18
$Au_{25}Calix_1BT_{14}$	1	0	14
$Au_{25}Calix_1BT_{16}$	0	1	16
Au ₂₅ Calix ₁ BT ₁₈	0	1	16 ^a
Au ₂₅ Calix ₂ BT ₁₀	2	0	10
Au ₂₅ Calix ₂ BT ₁₂	1	1	12
Au ₂₅ Calix ₂ BT ₁₄	0	2	14
Au ₂₅ Calix ₂ BT ₁₆	0	2	14 ^a
Au ₂₅ Calix ₃ BT ₆	3	0	6
Au ₂₅ Calix ₃ BT ₈	2	1	8
Au ₂₅ Calix ₃ BT ₁₀	1	2	10
Au ₂₅ Calix ₃ BT ₁₂	0	3	12
Au ₂₅ Calix ₃ BT ₁₄	0	3	12 ^a

^a Two BT are presumed to bind to Au-bound Calix with disulfide bridges.

6. Sticking of Clusters to TLC Plate Demonstrated

Figure S-4. TLC separation of $Au_{25}Calix_{0-3}BT_{6-18}$ clusters: photographs of the same TLC plate between runs showing slight sticking of the first band. Eluent used in the separation was DCM/hexane 30:70.

7. Monitoring the Progress of Cluster Synthesis Using TLC

Figure S-5. A) Photographs of $Au_{25}PET_{18}$ synthesis monitored by TLC (DCM/hexane 60:40). The relative amount of $Au_{25}PET_{18}$ clusters increases with time, whereas larger clusters disappear. B) MALDI MS data of bands 1–4 after 1 h of reaction. Band 1 is composed of pure $Au_{25}PET_{18}$ clusters (obs. 7380 m/z, theor. 7391 m/z) and band 2 is a mixture of $Au_{38}PET_{24}$ and $Au_{40}PET_{24}$, which are known, stable compositions (obs. 10759 and 11152 m/z, theor. 10774 and 11168 m/z, respectively).³ Bands 3 and 4 are composed of multiple larger clusters. In addition, band 3 shows a signal separate from the main pattern, which is interpreted as $Au_{67}PET_{35}$ (obs. 17975 m/z, theor. 17999 m/z) based on previous reports.⁴ In general, the data implies a correlation between the size and the retention factor of clusters protected with the same ligand.

8. References

- 1. Hassinen, J.; Pulkkinen, P.; Kalenius, E.; Pradeep, T.; Tenhu, H.; Häkkinen, H.; Ras, R. H. A. J. Phys. Chem. Lett. 2014, 5, 585–589.
- 2. Qian, H.; Jin, R. Chem. Mater. 2011, 23, 2209-2217.
- 3. Knoppe, S.; Dharmaratne, A. C.; Schreiner, E.; Dass, A.; Bürgi, T. J. Am. Chem. Soc. 2010, 132, 16783–16789.
- 4. Nimmala, P. R.; Yoon, B.; Whetten, R. L.; Landman, U.; Dass, A. J. Phys. Chem. A 2013, 117, 504–517.