Supporting Information

Nitrogen-Doped Graphene/Pt Counter Electrodes for Dye-Sensitized Solar Cells

1-An Lin,^{a,b} Chuan-Pei Lee,^b Shu-Te Ho,^a Tzu-Chiao Wei,^b Yu-Wen Chi,^c K. P. Huang,^c and Jr-Hau He^{a,}*

nputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science &

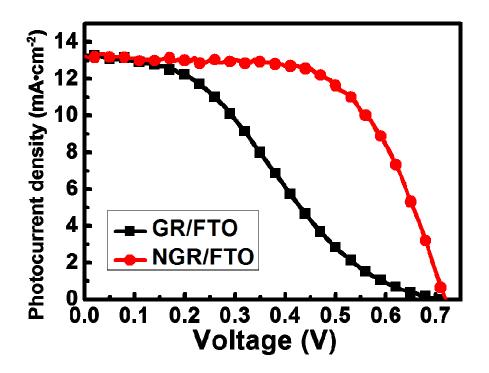
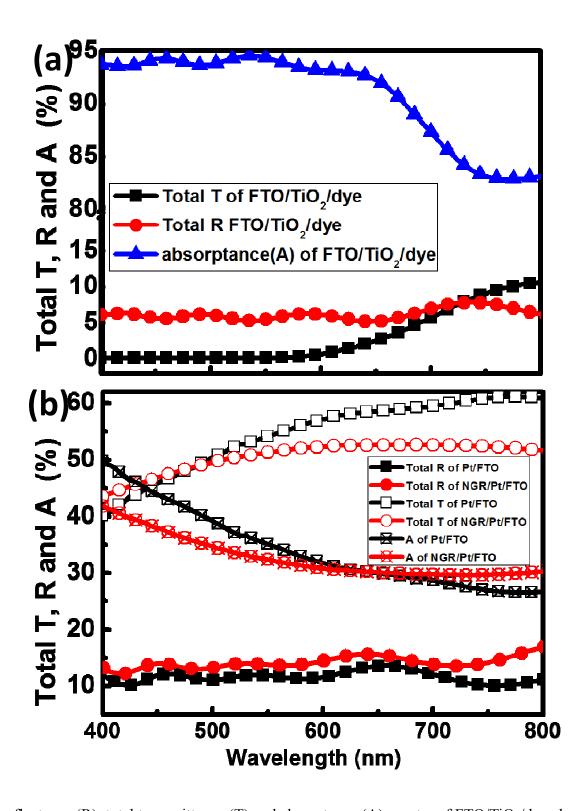
nology (KAUST), Thuwal 23955-6900, Saudi Arabia

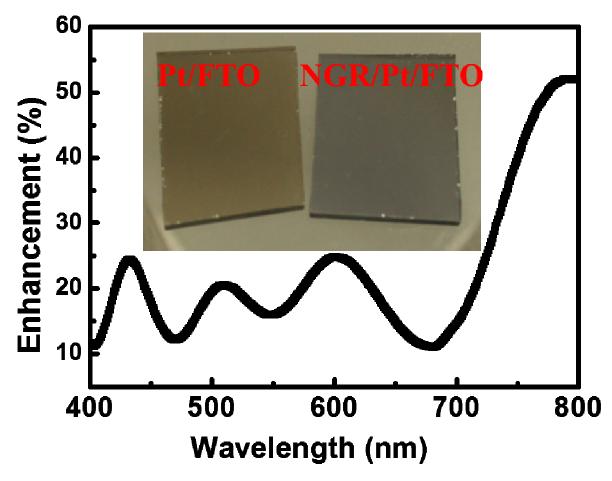
itute of Photonics and Optoelectronics, & Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, R

chanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan, ROC

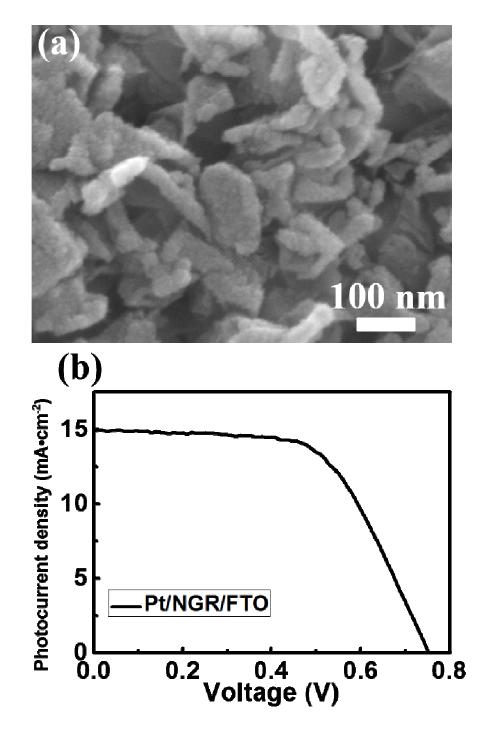
surements and instruments:

The electronic structures of NGRs were confirmed by PHI Quantera XPS. Morphological study of NGR has been performed w L JSM-6500 field emission scanning electron microscopy and a JEOL JEM-3000F high-resolution transmission electroscopy. The excitation source of Raman spectroscopy is a 532 nm laser beam (2.33 eV) with a power below 1 mW to a --induced heating. Optical reflectance spectroscopy was measured for wavelength region between 400 and 1100 nm und vis-NIR spectrometer (JASCO ARN-733). IPCE measurement has also been carried out with a spectral response system (anology Co., Ltd. R3011) for wavelength range from 400 to 850 nm. The Surface of the DSSC was covered by a mask we --illuminated area of 0.16 cm² and then illuminated under 1 sun intensity (AM1.5G). Incident light intensity (100 mW cm⁻²) rated with a standard Si Cell (Hong-Ming tech. Co., Ltd.). Photocurrent-voltage curves of the DSSC's were obtained with a dicce meter (2400, Keithley).


Figure S1 The *J*-*V* curves of DSSCs with CEs using GR and NGR.

e S1 Photovoltaic parameters of DSSCs with CEs using GR and NGR alone, measured under 100 mW·cm⁻² of AM 1.5G nination.

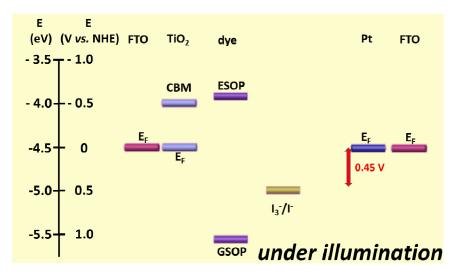

CEs	$V_{\rm OC}({\rm mV})$	$J_{\rm SC}({\rm mA}{\cdot}{\rm cm}^{-2})$	FF	η (%)
GR/FTO	710	13.24	0.31	2.94
NGR/FTO	718	13.26	0.61	5.84

Tre S2 (a) Total reflectance (R), total transmittance (T) and absorptance (A) spectra of FTO/TiO₂/dye electrodes. (b) Total R, to A spectra of Pt/FTO and NGR/Pt/FTO CEs.

re S3. The enhancement of total R spectrum. The inset is the photoimage of Pt/FTO and NGR/Pt/FTO CEs.



re S4. (a) The SEM image of Pt/NGR/FTO and (b) the *J-V* curve of the DSSC with Pt/NGR/FTO CEs.


In the case of the DSSC with CE using a reverse bi-layer structure, Pt/NGR/FTO, shows a η of 6.81%, and its J_{SC} , V_{OC} , and es are 14.92 mA·cm⁻², 745 mV, and 0.61, respectively

According to reported literatures, the conduction band minimum (CBM, -4.4 eV)^{S1} and Fermi level (E_F , -5.1 eV)^{S2} of TiO₂ figround/excited state oxidation potentials (GSOP/ESOP, -0.6/1.12 V *vs.* NHE)of N719 dye^{S3}, the redox potential of I₃⁻/ Γ (0.5 V E)^{S1}, and the E_F of FTO (-4.9 eV)^{S2} and Pt (-4.95 eV)^{S4} in the dark without E_F alignment have been schematically shown in Fi In Figure S5, the VBM of TiO₂ is not shown because it is much deeper than GSOP of dye and thus it does not participate in p ting.^{S5} Obviously, the E_F of Pt (0.45 V *vs.*NHE) is slightly higher than the redox potential of I₃⁻/ Γ (0.5 V *vs.* NHE)^{S1} under lition before E_F alignment.

While the DSSC is illuminated by solar light, the band diagram would be changed as shown in Figure S6. Under illumination A of TiO₂ film (-4.0 eV)^{S6}, the GSOP/ESOP (-0.6/1.12 V, *vs.* NHE)^{S3} of N719 dye, the redox potential of I₃/T (0.5 V *vs.* NH e schematically shown in Figure S6. Note that, under illumination, the E_F alignment of FTO, TiO₂ and Pt is achieved du ocarrier injection, and thus the E_F is called quasi-Fermi level (quasi-E_F).^{S7-S9} Zhang *et al.* have been reported the quasi-E_F of measuring the potential difference between the Ti electrode on the top of TiO₂ and the redox potential of I₃⁻/T u nination.^{S8,S9} The minimum of quasi-E_F is higher than the redox potential of I₃⁻/T at short-circuit (without applying voltage) by he quasi-E_F will be raised by applying voltage to measure the *J-V* curves of DSSCs.^{S8,S9} While the measured photocurrent is er open-circuit condition), the potential difference of quasi-E_F and redox potential of I₃⁻/T is open-circuit voltage.^{S8,S9} Thus, u nination, the E_F of Pt is much higher than the redox potential of I₃⁻/T.

re S5. Schematics of the energy diagram of a DSSC with Pt/FTO CE in the dark before E_F alignment.

re S6. Schematics of the energy diagram of a DSSC with Pt/FTO CEs under light illumination.

Song *et al.* have reported that the work function of graphene can be determined by the work function of the contact material trates.^{S10} In addition, Rani *et al.* have been reported that the bandgap of NGR is *ca.* 0.38 eV.^{S11} Thus, we can estimate that the VIGR should be located between the redox potential of I_3^-/I^- and the E_F of Pt/FTO CEs. The energy diagram of a DSSC R/Pt/FTO CE under light illumination is shown in Figure S7. Therefore, in our work, the mechanism of cascade-hole transvere electrolyte and NGR/Pt/FTO CEs is confirmed.

re S7. Schematics of the energy diagram of a DSSC with NGR/Pt/FTO CE under light illumination.

erence

- Dai, F. R.; Wu, W. J.; Wang, Q. W.; Tian, H.; Wong, W. Y. Heteroleptic ruthenium complexes containing uncom disubstituted-2,2'-bipyridine chromophores for dye-sensitized solar cells. *DaltonTrans.* **2011**, 40, 2314–2323
- Wei, X.; Xie, T.; Xu, D.; Zhao, Q.; Pang, S.; Wang, D. A study of the dynamic properties of photo-induced charge carrie porous TiO₂/conductive substrate interfaces by the transient photovoltage technique. *Nanotechnology* **19**, 2008, 275707-6.
- Daeneke, T.; Kwon, T. H.; Holmes, A. B.; Duffy, N. W.; Bach, U.; Spiccia, L. High-efficiency dye-sensitized solar cells beene-based electrolytes. *Nat. Chem.* **2011**, 3, 211-215.
- Sim, k.; Sung, S. J.; Jo, H. J.; Jeon, D. H.; Kim, D. H.; Kang, J. K. Electrochemical investigation of high-perform sensitized solar cells based on molybdenum for preparation of counter electrode. *Int. J. Electrochem. Sci.* **2013**, 8, 8272-8281.
- Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev., 2010, 110, 6595-6663.
- De Angelis, F.; Fantacci, S.; Selloni, A. Alignment of the dye's molecular levels with the TiO2 band edges in dye-sensitized so : a DFT–TDDFT study. *Nanotechnology* **2008**, 19, 424002-7.
- Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338-344.
- Zhang, S.; Yanagida, M.; Yang, X.; Han, L. Effect of 4-tert-butylpyridine on the quasi-fermi level of dye-sensitized TiO₂ for *Phys. Express* **2011**, 4, 042301-3.
- Zhang, S.; Yang, X; Zhang, K; Chen, H.; Yanagida, M.; Han, L. Effects of 4-tert-butylpyridine on the quasi-Fermi levels of TiC s in the presence of different cations in dye-sensitized solar cells. Phys. *Chem. Chem. Phys.* **2011**, 13, 19310-19313.
-)) Song, S. M.; Park, J. K.; Sul, O. J.; Jin, Cho, B. J. Determination of work function of graphene under a metal electrode an in contact resistance. *Nano lett.* **2012**, 12, 3887-3892.

) Rani, P.; Jindal, V. K. Designing band gap of graphene by B and N dopant atoms. *Rsc Adv.* 2013, 3, 802-812.