\mathbf{N}-Heterocyclic Carbene Catalyzed Switchable Reactions of enals with Azoalkenes: Formal $[4+3]$ and $[4+1]$ Annulations for the synthesis of 1,2-Diazepines and Pyrazoles
Chang Guo, Basudev Sahoo, Constantin G. Daniliuc, Frank Glorius*
Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
glorius@uni-muenster.de

CONTENTS:

1 General information S2

2 Synthesis of Substrates S3

3 Synthesis and Characterization of Products S6

4 X-ray Crystallography data S19

5 Synthetic Transformation of 3ad S20
6 References S21

7 NMR spectra S22

8 HPLC traces S69

1. General information

Unless otherwise noted, all reactions were carried out under an atmosphere of argon in flamedried glassware. Reaction temperatures are reported as the temperature of the bath surrounding the vessel unless otherwise stated. The solvents used were purified by distillation over the drying agents indicated in parentheses and were transferred under argon: n-hexane $\left(\mathrm{CaH}_{2}\right)$, THF (Na-benzophenone), toluene $\left(\mathrm{CaH}_{2}\right)$.

Analytical thin layer chromatography was performed on Polygram SIL G/UV254 plates. Flash chromatography was either performed on Merck silica gel (40-63 mesh) by standard technique eluting with solvents as indicated.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectra were recorded on a Bruker AV 300 or AV 400 , Varian 500 MHz INOVA or Varian Unity plus 600 in solvents as indicate. Chemical shifts (δ) are given in ppm relative to TMS. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale ($\left.\mathrm{CDCl}_{3}: \delta \mathrm{H}=7.26 \mathrm{ppm}, \delta \mathrm{C}=77.16 \mathrm{ppm}\right)$. ESI mass spectra were recorded on a Bruker Daltonics MicroTof. Specific rotation was measured on a Perkin Elmer 341 polarimeter at $20^{\circ} \mathrm{C}$ using a quartz glass cell (100 mm path length). The enantiomeric ratio (ee) was determined by HPLC analysis using chiral column OD-H and AD-H. No attempts were made to optimize yields for substrate synthesis.

2. Synthesis and characterization of α-chloro \mathbf{N}-Boc hydrazones. ${ }^{1}$

2-Chloroacetophenone ($3.08 \mathrm{~g}, 20 \mathrm{mmol}$) and tert-Butyl carbazate ($2.64 \mathrm{~g}, 20 \mathrm{mmol}$) were stirred in ether (50 mL) at RT for 24 h . After this time the product had precipitated as a white solid which was collected and dried to give hydrazone as a white powder.

Other hydrazones were synthesized according to the above procedures.
tert-butyl 2-(2-chloro-1-phenylethylidene)hydrazinecarboxylate (2d)
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 3 \mathrm{H})$,
 4.43 (s, 2H), 1.58 ($\mathrm{s}, 9 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR ($7 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 152.44,135.51,129.71$, 129.61, 128.64, 126.10, 82.13, 33.69, 28.22, 28.15. ATR-FTIR (cm ${ }^{-1}$): 3198, 2977, 1727, 1699, 1552, 1276, 1253, 1148, 1007, 864, 773; ESI-MS: calculated $\left[\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}+\mathrm{Na}\right]^{+}: 291.0871$, found: 291.0869;
tert-butyl 2-(2-chloro-1-(p-tolyl)ethylidene)hydrazinecarboxylate (2e)
 FTIR (cm^{-1}): 3190, 2976, 2360, 1699, 1549, 1276, 1253, 1158, 1146, 1004, 821;ESI-MS: calculated $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}+\mathrm{Na}\right]^{+}$: 305.1027, found: 305.1023;
tert-butyl 2-(2-chloro-1-(4-methoxyphenyl)ethylidene)hydrazinecarboxylate (2f)
 735; ESI-MS: calculated $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}+\mathrm{Na}\right]^{+}: 321.0976$, found: 321.0971;
tert-butyl 2-(2-chloro-1-(4-fluorophenyl)ethylidene)hydrazinecarboxylate (2g)
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.96(\mathrm{~m}$,
 2 H), $4.33(\mathrm{~s}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 165.28, 131.70, 128.12, 128.01, 115.84, 115.55, 82.23, 33.54, 28.21. ATR-FTIR (cm^{-1}): 3056, 2987, 1721, 1699, 1545, 1509, 1370, 1265, 1146, 1005, 839, 732, 705; ESI-MS: calculated $\left[\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{ClF}+\mathrm{Na}\right]^{+}: 309.0788$, found: 309.0769;
tert-butyl 2-(2-chloro-1-(4-chlorophenyl)ethylidene)hydrazinecarboxylate (2h)
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.77-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.34(\mathrm{~m}$, ${ }^{t} \mathrm{BuO}_{Y}=$
$\left.{ }_{N^{N H}}{ }^{\mathrm{NH}} 2 \mathrm{H}\right), 4.40(\mathrm{~s}, 2 \mathrm{H}), 1.58(\mathrm{~s}, 9 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 152.24,135.66$, 133.95, 130.10, 129.12, 128.87, 127.37, 82.33, 33.32, 28.21, 28.14. ATR-FTIR $\left(\mathbf{c m}^{-1}\right): 3179,2980,2362,1699,1547,1490,1368,1275,1253,1149,1004,832$;

ESI-MS: calculated $\left[\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2}+\mathrm{Na}\right]^{+}: 325.0492$, found: 325.0484;
tert-butyl 2-(1-(4-bromophenyl)-2-chloroethylidene)hydrazinecarboxylate (2i)
${ }^{t}{ }^{\text {BuO }}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.42(\mathrm{~m}$, $2 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 134.38,131.83$, 127.61, 124.02, 82.37, 33.27, 28.20. ATR-FTIR ($\mathbf{c m}^{-1}$): 3188, 2980, 1724, 1698, 1602, 1546, 1486, 1460, 1275, 1252, 1160, 1148, 1070, 1003, 831; ESI-MS: calculated $\left[\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{BrCl}+\mathrm{Na}\right]^{+}: 370.9966$, found: 370.9935;
tert-butyl 2-(2-chloro-1-(4-(trifluoromethyl)phenyl)ethylidene)hydrazinecarboxylate (2j)
 FTIR (cm ${ }^{-1}$): 3166, 2363, 1698, 1684, 1598, 1457, 1380, 1327, 1144, 1113, 1065, 1004, 849; ESI-MS: calculated $\left[\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{ClF}_{3}+\mathrm{Na}\right]^{+}: 359.0756$, found: 359.0742;
tert-butyl 2-(2-chloro-1-(naphthalen-2-yl)ethylidene)hydrazinecarboxylate ($\mathbf{2 k}$)
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.14-8.03(\mathrm{~m}, \mathbf{2 H}), 7.86(\mathrm{dt}, J=9.4$,

$5.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.57-7.45(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (75 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta 152.39,133.82,133.00,132.83,128.57,128.51,127.70,126.97,126.52$, 125.69, 123.51, 82.21, 33.46, 28.26, 28.15. ATR-FTIR ($\mathbf{c m}^{-1}$): 3174, 2981, 1731, 1698, 1552, 1465, 1253, 1154, 1077, 1013, 943, 815; ESI-MS: calculated $\left[\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}+\mathrm{Na}\right]^{+}$: 341.1038, found: 341.1027;
tert-butyl 2-(1-(3-bromophenyl)-2-chloroethylidene)hydrazinecarboxylate (21)

	${ }^{1} \mathrm{H}$ NMR (300
	$5.7,3.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{ddd}, J=6.8,4.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}) \text {, }$
130.09,	

$1700,1549,1473,1369,1280,1250,1146,1013,782$; ESI-MS: calculated $\left[\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{BrCl}+\right.$ $\mathrm{Na}^{+}: 370.9966$, found: 370.9948;
tert-butyl 2-(2-chloro-1-(m-tolyl)ethylidene)hydrazinecarboxylate (2m)

$\left.{ }^{\mathrm{NH}} \mathrm{Hz}, 1 \mathrm{H}\right), 7.06(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 152.13,139.64,135.48,130.93,129.55,127.83$, 124.54, 81.80, 47.84, 28.13, 21.49. ATR-FTIR ($\mathbf{c m}^{-1}$): 2980, 1745, 1486, 1368, 1238, 1153, 1105, 1019, 854, 713; ESI-MS: calculated $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}+\mathrm{Na}\right]^{+}: 305.1038$, found: 305.1022;
tert-butyl 2-(1-chloro-3,3-dimethylbutan-2-ylidene)hydrazinecarboxylate (2n)
${ }^{\text {tBuo }} \mathrm{Y}^{0} \quad{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.99(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}), 1.21$ (s, 9H).
 $\left(\mathbf{c m}^{-1}\right): 3206,2977,2364,1701,1551,1367,1276,1252,1150,1019,875 ;$ ESI-MS: calculated $\left[\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}+\mathrm{Na}\right]^{+}: 271.1184$, found: 271.1182;
tert-butyl 2-(2-chloro-3,4-dihydronaphthalen-1(2H)-ylidene)hydrazinecarboxylate (20)

${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.16(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.08$ (dd, $J=8.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{ddd}, J=16.4,12.2,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.65(\mathrm{dt}, J=16.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 146.51,137.61,129.75,129.43,128.26,126.88,125.48,81.94,48.95,31.22$, 28.25, 24.08. ATR-FTIR ($\mathbf{c m}^{-1}$): 2980, 1702, 1487, 1394, 1368, 1248, 1146, 1068, 1010, 860, 722; ESI-MS: calculated $\left[\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}+\mathrm{Na}\right]^{+}$: 317.1038, found: 317.1026;
tert-butyl 2-(3-chlorochroman-4-ylidene)hydrazinecarboxylate (2p)

	MR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ \%
	$\begin{aligned} & 7.00(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=8.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dd}, J=3.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, \\ & J=12.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=12.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathbf{C} \text { NMR }(75 \end{aligned}$
MHz, Cl	3) $\delta 155.55,131.40,125.47,122.58,117.48,82.27,70.05,45.35,28.22$. ATR-FTIR
$\left(\mathrm{cm}^{-1}\right): 3$	2982, 1693, 1615, 1497, 1369, 1217, 1148, 1027, 982, 758; ESI-MS: calculated
$\mathrm{C}_{14} \mathrm{H}$	$1+\mathrm{Na}]^{+}: 319.0831$, found: 319.0827;

3. Synthesis and Characterization of Products

General procedure for enantioselective synthesis of 3 by formal [4+3] cycloaddition of in situ-derived azoalkenes and enals.

A dried and argon-filled Schlenk flask was charged with hydrazone 2 ($0.2 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{mmol})$. Then, enal $\mathbf{1}(0.4 \mathrm{mmol})$ was added quickly to the mixture. Subsequently, triazolium salt $5 \mathbf{c}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in 2.5 mL THF was added to the mixture. The mixture was stirred at RT for 16 h . After purification by column chromatography on silica gel (Pentane: Ethyl acetate $=4: 1$) the desired product $\mathbf{3}$ was obtained.

Optimization of the reaction conditions. ${ }^{a}$

entry	Precat.	2	Base	Solvent	Yield (\%) ${ }^{\text {b }}$	3/4 ${ }^{\text {c }}$	$e e$ of $\mathbf{3}(\%)^{d}$
1	5a	2a	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	trace	-	-
2	5b	2a	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	trace	-	-
3	5 c	2a	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	52	2:3	91
4	5 c	2b	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	50	>20:1	21
5	5c	2c	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	37	$4: 1$	98
6	5 c	2d	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	77	9:1	99
7	5 c	2d	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	THF	25	8:1	99
8	5 c	2d	DIPEA	THF	49	9:1	99
9	5 c	2d	DBU	THF	trace	-	-
10	5 c	2d	NaOAc	THF	22	5:1	99
11	5 c	2d	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	THF	70	6:1	99
12	5 c	2d	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DCM	trace	-	-
13	5c	2d	$\mathrm{K}_{2} \mathrm{CO}_{3}$	toluene	trace	-	-
14	5 c	2d	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DME	36	7:1	99
15	5 c	2d	$\mathrm{K}_{2} \mathrm{CO}_{3}$	Dioxane	45	5:1	99
16	5c	2 d	$\mathrm{K}_{2} \mathrm{CO}_{3}$	CHCl_{3}	trace	-	-
17	5 c	2d	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$\mathrm{Et}_{2} \mathrm{O}$	trace	-	-
18	5d	2d	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	42	8:1	99
19	5 e	2d	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	75	1:2	99
20	5 f	2d	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	12	6:1	99
21	5 g	2d	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	trace	-	-
22	5h	2d	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	52	6:1	99
$23^{\text {e }}$	$5 i$	2d	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	64	<1:20	-
24	5j	2d	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	trace	-	-
25	5k	2 d	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	trace	-	-
26	51	2d	$\mathrm{K}_{2} \mathrm{CO}_{3}$	THF	19	<1:20	-

${ }^{a}$ Conditions: 1a $(0.2 \mathrm{mmol})$, $\mathbf{2 a}(0.1 \mathrm{mmol})$, chiral precatalyst ($10 \mathrm{~mol} \%$), base ($250 \mathrm{~mol} \%$), THF (1.5 mL), room temperature, $16 \mathrm{~h} .{ }^{b}$ Yield of the isolated product after column chromatograpy, and combined yield of 3 and 4. ${ }^{c}$ determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{d}$ The $e e$ value of $\mathbf{3}$ was determined by HPLC using a chiral column. ${ }^{e}$ After 16 h , 6.0 equiv TsOH was added.
(S)-tert-butyl 7-oxo-3,5-diphenyl-4,5,6,7-tetrahydro-1H-1,2-diazepine-1-carboxylate (3ad)

Total yield: $50 \mathrm{mg}(70 \%)$; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 7.70-7.62(\mathrm{~m}, \mathbf{2 H})$, $7.42-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.16(\mathrm{~m}, 5 \mathrm{H}), 3.76-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.17$ (dd, $J=13.2$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=13.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.68(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 169.28,168.68,149.98,142.23,135.62,131.15$, 128.94, 128.70, 127.52, 127.40, 126.84, 83.93, 43.77, 41.00, 35.24, 28.05. ATR-FTIR ($\mathbf{c m}^{-1}$): 2981, 1769, 1736, 1453, 1369, 1245, 1145, 1025, 848, 757, 696; ESI-MS: calculated $\left[\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}: 387.1679$, found: 387.1679; The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (OD-H, hexane $/ i-\mathrm{PrOH}=70 / 30$, detector: 254 nm , flow rate: $1 \mathrm{~mL} / \mathrm{min}), \mathrm{t}_{1}($ major $)=6.5 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=15.3 \mathrm{~min}$.
(S)-tert-butyl 5-(4-fluorophenyl)-7-oxo-3-phenyl-4,5,6,7-tetrahydro-1H-1,2-diazepine-1carboxylate (3bd)

Total yield: $45 \mathrm{mg}(60 \%) ;{ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.73$ - $7.64(\mathrm{~m}, 2 \mathrm{H})$, $7.46-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.13$ (m, 2H), $7.00-6.89$ (m, 2H), $3.76-3.63$ (m, 1 H), 3.16 (dd, $J=13.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=13.2,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}$, $J=12.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=12.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 169.10,168.51,135.50,131.26,128.77,128.52,128.41$, 127.35, 115.92, 115.63, 110.00, 109.57, 84.06, 43.12, 41.19, 35.30, 28.03. ${ }^{\mathbf{1 9}}{ }^{\mathbf{F}} \mathbf{~ N M R ~ (2 8 2 ~ M H z , ~}$ $\mathbf{C D C l}_{3}$) δ-114.9. ATR-FTIR ($\mathbf{c m}^{-1}$): 2982, 1769, 1736, 1511, 1369, 1247, 1228, 1147, 837, 759; ESI-MS: calculated $\left[\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}+\mathrm{Na}\right]^{+}: 405.1585$, found: 405.1582; The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (OD-H, hexane $/ i-\mathrm{PrOH}=70 / 30$, detector: 254 nm , flow rate: $1 \mathrm{~mL} / \mathrm{min}$), $\mathrm{t}_{1}($ major $)=5.9 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=8.6 \mathrm{~min}$.
(S)-tert-butyl 5-(4-chlorophenyl)-7-oxo-3-phenyl-4,5,6,7-tetrahydro-1H-1,2-diazepine-1carboxylate (3cd)

Total yield: $40 \mathrm{mg}(51 \%) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.70(\mathrm{dd}, J=8.2$, $1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.13$ (m, 4H), 3.66 (dt, $J=14.5,7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=13.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=13.2,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80$ (dd, $J=12.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=12.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 168.99,168.44,149.90,140.72,135.45,133.33$, 131.30, 129.07, 128.80, 128.27, 127.33, 84.10, 43.24, 41.04, 35.07, 28.02. ATR-FTIR ($\mathbf{c m}^{-1}$):

2981, 1770, 1736, 1494, 1369, 1265, 1248, 1148, 1094, 1014, 732; ESI-MS: calculated $\left[\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}+\mathrm{Na}\right]^{+}: 421.1289$, found: 421.1293; The product was analyzed by HPLC to determine the enantiomeric excess: 93% ee (OD-H, hexane $/ i-\mathrm{PrOH}=70 / 30$, detector: 254 nm , flow rate: $1 \mathrm{~mL} / \mathrm{min}), \mathrm{t}_{1}($ major $)=6.3 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=8.3 \mathrm{~min}$.

(S)-tert-butyl 5-(4-bromophenyl)-7-oxo-3-phenyl-4,5,6,7-tetrahydro-1H-1,2-diazepine-1carboxylate (3dd)

Total yield: $35 \mathrm{mg}(40 \%) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.72-7.67(\mathrm{~m}$, 2H), $7.44-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{dt}, J=19.9,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.15(\mathrm{dd}, J=13.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=13.2,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=$ $12.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=12.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 168.96,168.42,141.25,135.46,132.04,131.31,128.82$, 128.62, 127.33, 121.42, 84.11, 43.31, 40.99, 34.99, 28.03. ATR-FTIR ($\mathbf{c m}^{-1}$): 2981, 1769, 1734, 1490, 1369, 1265, 1246, 1147, 1010, 759, 693; ESI-MS: calculated $\left[\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}+\mathrm{Na}\right]^{+}$: 465.0784, found: 465.0780; The product was analyzed by HPLC to determine the enantiomeric excess: 96% ee (OD-H, hexane $/ i-\operatorname{PrOH}=85 / 15$, detector: 254 nm , flow rate: $1 \mathrm{~mL} / \mathrm{min}$), t_{1} (major) $=10.5 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=16.3 \mathrm{~min}$.
(S)-tert-butyl 7-oxo-3-phenyl-5-(p-tolyl)-4,5,6,7-tetrahydro-1H-1,2-diazepine-1-carboxylate (3ed)

Total yield: $47 \mathrm{mg}(63 \%)$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.72$ - 7.65 (m, 2H), $7.43-7.29$ (m, 3H), $7.14-6.98(\mathrm{~m}, 4 \mathrm{H}), 3.67$ (dt, $J=14.3,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.15 (dd, $J=13.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=13.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.66$ $(\mathrm{m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 169.36, 168.78, 139.27, 137.18, 135.69, 131.10, 129.56, 128.69, 127.42, 126.71, 83.91, 43.48, 41.24, 35.29, 28.04, 21.03. ATR-FTIR ($\mathbf{c m}^{-1}$): 2980, 2922, 1769, 1737, 1369, 1265, 1246, 1147, 1048, 847, 758, 693; ESI-MS: calculated $\left[\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}: 401.1836$, found: 401.1834; The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee $(\mathrm{OD}-\mathrm{H}$, hexane $/ i-\mathrm{PrOH}=70 / 30$, detector: 254 nm , flow rate: $1 \mathrm{~mL} / \mathrm{min}), \mathrm{t}_{1}($ major $)=5.3 \mathrm{~min}$, $\mathrm{t}_{2}($ minor $)=8.4 \mathrm{~min}$.
(S)-tert-butyl 5-(4-methoxyphenyl)-7-oxo-3-phenyl-4,5,6,7-tetrahydro-1H-1,2-diazepine-1carboxylate (3fd)

Total yield: $41 \mathrm{mg}(52 \%)$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.72-7.64(\mathrm{~m}$, $2 \mathrm{H}), 7.45-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.13$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.72(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{dd}, J=14.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=13.2,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.97 (dd, $J=13.2,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{qd}, J=12.5,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 169.35,168.73,158.86,149.99,135.69$, 134.37, 131.11, 128.70, 127.91, 127.42, 114.22, 83.90, 55.31, 43.12, 41.36, 35.42, 28.04. ATRFTIR ($\mathbf{c m}^{-1}$): 2981, 1769, 1736, 1611, 1515, 1369, 1247, 1148, 1031, 835, 759, 693; ESI-MS: calculated $\left[\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}: 417.1785$, found: 417.1787; HPLC $(\mathrm{OD}-\mathrm{H}$, hexane $/ i-\mathrm{PrOH}=$ $70 / 30$, detector: 254 nm , flow rate: $1 \mathrm{~mL} / \mathrm{min}), \mathrm{t}_{1}($ major $)=7.2 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=11.1 \mathrm{~min}$.
(S)-tert-butyl 5-(furan-2-yl)-7-oxo-3-phenyl-4,5,6,7-tetrahydro-1H-1,2-diazepine-1carboxylate (3gd)

Total yield: $42 \mathrm{mg}(60 \%)$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.62-7.50(\mathrm{~m}, 2 \mathrm{H})$,
 $7.42-7.23(\mathrm{~m}, 4 \mathrm{H}), 6.22(\mathrm{dd}, J=3.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.81(\mathrm{p}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{qd}, J=13.4,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 168.42, 168.37, 154.47, $149.80,141.98,135.73,131.08,128.60,127.25,110.48,106.02,83.96,38.92$, 37.21, 32.29, 28.02. ATR-FTIR ($\mathbf{c m}^{-1}$): 2982, 1770, 1734, 1369, 1245, 1147, 1015, 757, 731, 692; ESI-MS: calculated $\left[\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}: 377.1472$, found: 377.1478 ; The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (OD-H, hexane $/ i-\mathrm{PrOH}=70 / 30$, detector: 254 nm , flow rate: $1 \mathrm{~mL} / \mathrm{min}$), $\mathrm{t}_{1}($ major $)=5.7 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=10.0 \mathrm{~min}$.
(S)-tert-butyl 5-methyl-7-oxo-3-phenyl-4,5,6,7-tetrahydro-1H-1,2-diazepine-1-carboxylate (3hd)

Total yield: $38 \mathrm{mg}(62 \%) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.81(\mathrm{~m}, 2 \mathrm{H}), 7.45-$ $7.34(\mathrm{~m}, 3 \mathrm{H}), 2.99-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.51(\mathrm{~m}, 3 \mathrm{H}), 2.20-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.51$ (s, 9H), 1.13 (d, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 169.35,169.32$, $149.96,136.14,131.07,128.75,127.24,83.74,42.67,34.65,33.84,28.02,21.46$. ATR-FTIR ($\mathbf{c m}^{-1}$): 2978, 2362, 1769, 1734, 1458, 1369, 1244, 1148, 1017, 851, 758, 692; ESIMS: calculated $\left[\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{Na}^{+}\right.$: 325.1523 , found: 325.1525 ; The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (OD-H, hexane $/ i-\mathrm{PrOH}=70 / 30$, detector: 254 nm , flow rate: $1 \mathrm{~mL} / \mathrm{min}), \mathrm{t}_{1}($ major $)=5.0 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=5.9 \mathrm{~min}$.
(S)-tert-butyl (3id)

Total yield: $37 \mathrm{mg}(57 \%)$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.84-7.76(\mathrm{~m}, \mathbf{2 H})$, $7.45-7.35(\mathrm{~m}, 3 \mathrm{H}), 2.92(\mathrm{dd}, J=12.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.48-$ $2.36(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{dd}, J=11.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 1.40(\mathrm{dd}, J=8.7,4.1$ $\mathrm{Hz}, 4 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 169.59,169.44$, 149.98 , 136.20, 131.05, 128.75, 127.19, 83.75, 40.80, 38.48, 37.62, 33.02, 28.02, 20.22, 13.85. ATR-FTIR ($\mathbf{c m}^{-1}$): 2960, 1770, 1717, 1456, 1368, 1244, 1148, 851, 757, 693; ESI-MS: calculated $\left[\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}: 353.1836$, found: 353.1828 ; The product was analyzed by HPLC to determine the enantiomeric excess: 93% ee (OD-H, hexane $/ i-\operatorname{PrOH}=85 / 15$, detector: 254 nm , flow rate: $1 \mathrm{~mL} / \mathrm{min}), \mathrm{t}_{1}($ major $)=5.5 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=7.0 \mathrm{~min}$.
(S)-tert-butyl 7-oxo-5-phenyl-3-(p-tolyl)-4,5,6,7-tetrahydro-1H-1,2-diazepine-1-carboxylate (3ae)

Total yield: $51 \mathrm{mg}(68 \%)$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.56(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.32-7.19$ (m, 5H), 7.12 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.74-3.62$ (m, 1H), 3.16 (dd, $J=13.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=13.2,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.67$ $(\mathrm{m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 169.39$, 168.70, 150.02, 142.31, 141.66, 132.77, 129.42, 128.92, 127.48, 127.38, 126.87, 83.86, 43.65, 40.97, 35.09, 28.05, 21.45. ATR-FTIR (cm^{-1}): 2981, 1769, 1734, 1454, 1369, 1245, 1146, 847, 759, 734, 700; ESI-MS: calculated $\left[\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}: 401.1836$, found: 401.1830; The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee $(\mathrm{OD}-\mathrm{H}$, hexane $/ i-\mathrm{PrOH}=$ $70 / 30$, detector: 254 nm , flow rate: $1 \mathrm{~mL} / \mathrm{min}$), t_{1} (major) $=6.8 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=12.7 \mathrm{~min}$.
(S)-tert-butyl 3-(4-methoxyphenyl)-7-oxo-5-phenyl-4,5,6,7-tetrahydro-1H-1,2-diazepine-1carboxylate (3af)

Total yield: $50 \mathrm{mg}(64 \%) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.65-7.58(\mathrm{~m}$, $2 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.85-6.80(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.62(\mathrm{~m}$, $1 \mathrm{H}), 3.15(\mathrm{dd}, J=13.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=13.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80$ $-2.69(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 169.47, 168.24, 162.07, 150.07, 142.33, 129.16, 128.92, 127.99, 127.47, 126.89, 114.01, 83.80, 55.42, 43.51, 40.89, 34.92, 28.06. ATR-FTIR ($\mathbf{c m}^{-1}$): 2979, 1768, 1735, 1606, 1515, 1455, 1369, 1249, 1149, 1027, 842, 701; ESI-MS: calculated $\left[\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}: 417.1785$, found: 417.1785; The
product was analyzed by HPLC to determine the enantiomeric excess: 99\% ee (OD-H, hexane/i$\operatorname{PrOH}=70 / 30$, detector: 254 nm , flow rate: $1 \mathrm{~mL} / \mathrm{min}), \mathrm{t}_{1}($ major $)=9.5 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=16.6 \mathrm{~min}$.
(S)-tert-butyl 3-(4-fluorophenyl)-7-oxo-5-phenyl-4,5,6,7-tetrahydro-1H-1,2-diazepine-1carboxylate (3ag)

Total yield: $44 \mathrm{mg}(58 \%)$; ${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 7.69$ - 7.60 (m, 2H), $7.29-7.19$ (m, 5H), $7.04-6.94(\mathrm{~m}, 2 \mathrm{H}), 3.71$ (p, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ $(\mathrm{dd}, J=13.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=13.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.58-1.49(\mathrm{~m}, 9 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (75 MHz, CDCl ${ }_{3}$) δ 169.24, 167.46, $162.91,149.95,142.00,131.77,129.65,129.53,128.98,127.62,126.81,115.92,115.63,84.06$, 43.65, 40.81, 35.20, 28.14, 28.03. ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{2 8 2} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-108.6. ATR-FTIR ($\mathbf{c m}^{-1}$): 2981, 1769, 1734, 1602, 1511, 1369, 1235, 1148, 845, 760, 700; ESI-MS: calculated $\left[\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}+\mathrm{Na}\right]^{+}: 405.1585$, found: 405.1590; The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (OD-H, hexane $/ i-\mathrm{PrOH}=70 / 30$, detector: 254 nm , flow rate: $1 \mathrm{~mL} / \mathrm{min}), \mathrm{t}_{1}($ major $)=7.3 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=12.6 \mathrm{~min}$.

(S)-tert-butyl 3-(4-chlorophenyl)-7-oxo-5-phenyl-4,5,6,7-tetrahydro-1H-1,2-diazepine-1carboxylate (3ah)

Total yield: $56 \mathrm{mg}(71 \%) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.60-7.54(\mathrm{~m}$, $2 \mathrm{H}), 7.30-7.19(\mathrm{~m}, 7 \mathrm{H}), 3.71(\mathrm{p}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.12(\mathrm{~m}, 1 \mathrm{H})$, $2.98(\mathrm{dd}, J=13.3,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.72(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$
NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 169.17,167.31,149.93,141.94,137.42,134.06$, $129.15,129.00,128.92,128.84,128.80,128.71,127.65,126.79,84.12,43.75,40.83,35.11,28.03$, 27.95. ATR-FTIR ($\mathbf{c m}^{-1}$): 2982, 1769, 1733, 1369, 1246, 1146, 1092, 1012, 843, 734, 699; ESIMS: calculated $\left[\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}+\mathrm{Na}\right]^{+}: 421.1289$, found: 421.1286 ; The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (OD-H, hexane $/ i-\operatorname{PrOH}=70 / 30$, detector: 254 nm , flow rate: $1 \mathrm{~mL} / \mathrm{min}$), $\mathrm{t}_{1}($ major $)=7.4 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=12.9 \mathrm{~min}$.
(S)-tert-butyl 3-(4-bromophenyl)-7-oxo-5-phenyl-4,5,6,7-tetrahydro-1H-1,2-diazepine-1carboxylate (3ai)

Total yield: $53 \mathrm{mg}(60 \%)$) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.57-7.39$ (m, $4 \mathrm{H}), 7.30-7.15(\mathrm{~m}, 5 \mathrm{H}), 3.71(\mathrm{p}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=13.3,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.03-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.73(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR
($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 169.15,167.38,149.92,141.93,134.51,131.89,129.01,128.90,127.66$, 126.79, 125.90, 84.13, 43.77, 40.83, 35.07, 28.03. ATR-FTIR ($\mathbf{c m}^{-1}$): 2981, 1769, 1733, 1369, 1246, 1145, 1073, 1008, 843, 809, 758, 733, 699; ESI-MS: calculated $\left[\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}+\mathrm{Na}\right]^{+}$: 465.0784, found: 465.0783; The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (OD-H, hexane $/ i-\operatorname{PrOH}=70 / 30$, detector: 254 nm , flow rate: $1 \mathrm{~mL} / \mathrm{min}$), t_{1} (major) $=7.7 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=13.0 \mathrm{~min}$.

(S)-tert-butyl 7-oxo-5-phenyl-3-(4-(trifluoromethyl)phenyl)-4,5,6,7-tetrahydro-1H-1,2-

 diazepine-1-carboxylate (3aj)

Total yield: $52 \mathrm{mg}(61 \%) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.73(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.56 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.20(\mathrm{~m}, 5 \mathrm{H}), 3.75(\mathrm{p}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.20(\mathrm{dd}, J=13.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=13.4,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.78$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 169.08$, 166.87, 149.84, 141.76, 129.06, 127.74, 126.74, 125.63, 125.58, 125.53, 84.30, 43.92, 40.83, 35.35, 28.01. ${ }^{19} \mathbf{F}$ NMR ($\mathbf{2 8 2} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) δ-62.9. ATR-FTIR ($\mathbf{c m}^{-1}$): 2983, 1771, 1735, 1323, 1247, 1147, 1125, 1113, 1086, 1015, 848, 738, 700; ESI-MS: calculated $\left[\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}_{3}+\mathrm{Na}\right]^{+}$: 455.1553, found: 4551548; The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (OD-H, hexane $/ i-\operatorname{PrOH}=70 / 30$, detector: 254 nm , flow rate: $1 \mathrm{~mL} / \mathrm{min}$), t_{1} (major) $=6.8 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=11.1 \mathrm{~min}$.

(S)-tert-butyl 3-(naphthalen-2-yl)-7-oxo-5-phenyl-4,5,6,7-tetrahydro-1H-1,2-diazepine-1carboxylate (3ak)

 yield: $51 \mathrm{mg}(61 \%) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 8.04-7.98(\mathrm{~m}, 1 \mathrm{H})$, 7.78 (dd, $J=8.4,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 1 \mathrm{H})$, $7.50-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.21(\mathrm{~m}, 5 \mathrm{H}), 3.81(\mathrm{p}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}$, $J=13.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=13.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 169.47,168.33,150.02,142.22,134.49,133.01$, 132.70, 128.98, 128.91, 128.63, 128.49, 127.70, 127.59, 126.95, 126.67, 123.75, 84.02, 43.71, 40.74, 35.27, 28.07. ATR-FTIR (cm ${ }^{-1}$): 2981, 1767, 1732, 1454, 1369, 1246, 1144, 1051, 811, 757, 733, 699; ESI-MS: calculated $\left[\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{Na}^{+}: 437.1836\right.$, found: 437.1824; The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee $(\mathrm{OD}-\mathrm{H}$, hexane $/ i-\mathrm{PrOH}=$ $70 / 30$, detector: 254 nm , flow rate: $1 \mathrm{~mL} / \mathrm{min}$), $\mathrm{t}_{1}($ major $)=8.4 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=14.0 \mathrm{~min}$.
(S)-tert-butyl 3-(3-bromophenyl)-7-oxo-5-phenyl-4,5,6,7-tetrahydro-1H-1,2-diazepine-1carboxylate (3al)

Total yield: $53 \mathrm{mg}(60 \%)$) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 7.77(\mathrm{t}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.14(\mathrm{~m}, 6 \mathrm{H}), 3.77-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=$ $13.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 169.11,167.08,149.87,141.84,137.69$, 133.96, 130.49, 130.12, 129.02, 127.71, 126.77, 125.95, 122.94, 84.21, 43.79, 40.81, 35.34, 28.02. ATR-FTIR ($\mathbf{c m}^{-1}$): 2980, 1770, 1735, 1454, 1369, 1244, 1145, 1051, 849, 759, 735, 700; ESIMS: calculated $\left[\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}+\mathrm{Na}\right]^{+}: 465.0784$, found: 465.0783 ; The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (OD-H, hexane $/ i-\operatorname{PrOH}=70 / 30$, detector: 254 nm , flow rate: $1 \mathrm{~mL} / \mathrm{min}), \mathrm{t}_{1}($ major $)=7.7 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=14.3 \mathrm{~min}$.
(S)-tert-butyl 7-oxo-5-phenyl-3-(m-tolyl)-4,5,6,7-tetrahydro-1H-1,2-diazepine-1-carboxylate (3am)

Total yield: $50 \mathrm{mg}(67 \%) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.43$ (dd, $J=9.1$, $4.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.29-7.19(\mathrm{~m}, 7 \mathrm{H}), 3.76-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=13.2$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.99 (dd, $J=13.2,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.27$ (s, $3 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) δ 169.31, 169.04, 150.01, 142.26, 138.42, 135.60, 131.92, 128.92, 128.55, 128.08, 127.50, 126.88, 124.59, 83.93, 43.67, $40.88,35.40,28.05,21.41$. ATR-FTIR (cm $^{-1}$): 2981, 1769, 1735, 1454, 1369, 1247, 1147, 1052, 759, 734, 698; ESI-MS: calculated $\left[\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}: 401.1836$, found: 401.1836; The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee $(\mathrm{OD}-\mathrm{H}$, hexane $/ i-\mathrm{PrOH}=$ $70 / 30$, detector: 254 nm , flow rate: $1 \mathrm{~mL} / \mathrm{min}$), t_{1} (major) $=5.8 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=12.0 \mathrm{~min}$. carboxylate (3an)
 $179.88,168.74,149.85,142.78,128.90,127.32,126.74,83.33,43.43,40.69,39.54,33.74,28.00$, 27.62. ATR-FTIR ($\mathbf{c m}^{-1}$): 2976, 1768, 1737, 1456, 1368, 1267, 1245, 1149, 1025, 758, 734, 699; ESI-MS: calculated $\left[\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}: 367.1992$, found: 367.1987; The product was analyzed
by HPLC to determine the enantiomeric excess: 98% ee ($\mathrm{OD}-\mathrm{H}$, hexane $/ i-\mathrm{PrOH}=70 / 30$, detector: 254 nm , flow rate: $1 \mathrm{~mL} / \mathrm{min}), \mathrm{t}_{1}($ major $)=4.2 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=8.7 \mathrm{~min}$.
(5R,5aS)-tert-butyl 3-oxo-5-phenyl-3,4,5,5a,6,7-hexahydro-2H-naphtho[1,2-c][1,2]diazepine-2-carboxylate (3ao)

Total yield: $51 \mathrm{mg}(65 \%)$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.32-8.26(\mathrm{~m}, 1 \mathrm{H})$,
 $7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.84-6.77(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{td}, J=7.4,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.97(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=12.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dt}, J=16.7$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{ddt}, J=12.8,11.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{ddd}, J=13.9,8.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}$, 9H), $1.41(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 169.78,166.31,150.27,140.71,139.61$, $131.32,131.07,128.55,128.53,127.93,127.82,126.57,125.40,83.92,50.98,42.81,38.08,28.05$, 25.34, 23.59. ATR-FTIR (cm ${ }^{-1}$): 2980, 1769, 1735, 1369, 1267, 1243, 1148, 1047, 848, 764, 701; ESI-MS: calculated $\left[\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}: 413.1836$, found: 413.1830 ; The product was analyzed by HPLC to determine the enantiomeric excess: 87% ee (OD-H, hexane $/ i-\mathrm{PrOH}=70 / 30$, detector: 254 nm , flow rate: $1 \mathrm{~mL} / \mathrm{min}), \mathrm{t}_{1}($ major $)=5.7 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=8.0 \mathrm{~min}$.
(5R,5aS)-tert-butyl 3-oxo-5-phenyl-4,5,5a,6-tetrahydrochromeno[4,3-c][1,2]diazepine-2(3H)-carboxylate (3ap)

Total yield: $50 \mathrm{mg}(64 \%) ;{ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 8.22(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-$ $7.17(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.87(\mathrm{~m}, 3 \mathrm{H}), 6.43-6.36(\mathrm{~m}, 1 \mathrm{H})$, $4.22(\mathrm{dt}, J=6.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=8.2,3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.93(\mathrm{t}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=12.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 169.81,160.51,157.48,150.05,138.37,133.59,128.24,128.01,127.43,125.08$, 121.52, 118.09, 117.78, 84.15, 65.58, 48.78, 41.95, 37.98, 28.04. ATR-FTIR (cm ${ }^{-1}$): 2981, 1769, 1719, 1482, 1369, 1267, 1245, 1148, 1129, 1020, 831, 761, 734, 700; ESI-MS: calculated $\left[\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}: 415.1628$, found: 415.1624; The product was analyzed by HPLC to
determine the enantiomeric excess: 85% ee (OD-H, hexane $/ i-\mathrm{PrOH}=70 / 30$, detector: 254 nm , flow rate: $1 \mathrm{~mL} / \mathrm{min}), \mathrm{t}_{1}($ major $)=8.4 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=15.4 \mathrm{~min}$.

For gram scale synthesis of 3ad:
To a 50 mL flame-dried Schlenk tube was charged with hydrazone 2 d ($1.34 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.72 \mathrm{~g}, 12.5 \mathrm{mmol}, 2.5$ equiv). Then, enal $\mathbf{1 a}(1.32 \mathrm{~g}, 10 \mathrm{mmol}, 2.0$ equiv) was added to the mixture. Subsequently, triazolium salt $\mathbf{5 c}(184 \mathrm{mmol}, 0.5 \mathrm{mmol}, 0.1$ equiv) in 25 mL THF was slowly added to the mixture. When the reaction was complete, the flask was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was transferred to a round flask and concentrated. The residue was purified by flash chromatography (n-pentane/ethyl acetate $4: 1$) to give 0.92 gram of 3ad with 51% yield and $99 \% e e$.

General procedure for diverse synthesis of 4 via NHC-catalyzed formal [4+1] cycloaddition

 of in situ-derived azoalkenes and enals.A dried and argon-filled Schlenk flask was charged with Hydrazone 2d ($0.2 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{mmol})$. Then, enal $\mathbf{1 a}(0.4 \mathrm{mmol})$ was added quickly to the mixture. Subsequently, triazolium salt $5 \mathbf{c}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ in 2.5 mL THF was added to the mixture. The mixture was stirred at RT for 16 h . The reaction mixture was opened and p-toluenesulfonic acid monohydrate ($230 \mathrm{mg}, 6$ equiv) was added. After 30 min , the reaction was diluted with dichloromethane and transferred to separatory funnel containing saturate sodium hydrogen carbonate solution (15 mL). The organic phase was separated and aqueous phase was extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$). The organic phases were combined and solvent removed in vacuo. After purification by column chromatography on silica gel (Pentane: Ethyl acetate $=15: 1$) the desired product $\mathbf{4}$ was obtained.

(E)-tert-butyl 3-phenyl-5-styryl-1H-pyrazole-1-carboxylate (4ad)

Total yield: $44 \mathrm{mg}(64 \%) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.88-7.82$
 (m, 2H), 7.68 (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.50-7.44$ (m, 2H), $7.39-7.28$ (m, $5 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 1.64(\mathrm{~s}$, 9H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 153.64,146.44,136.44,133.53$, 131.90 , 128.95, 128.81, 128.62, 128.54, 126.92, 126.38, 117.30, 104.26, 85.41, 28.06. ATRFTIR ($\mathbf{c m}^{-1}$): 2979, 1742, 1555, 1439, 1352, 1311, 1155, 1104, 1078, 948, 850, 769, 693; ESIMS: calculated $\left[\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{\dagger}: 369.1573$, found: 369.1566;

(E)-tert-butyl 5-(4-fluorostyryl)-3-phenyl-1H-pyrazole-1-carboxylate (4bd)

Total yield: $41 \mathrm{mg}(57 \%)$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.74$ $7.60(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.20$ $(\mathrm{m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}$, $J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 153.63,149.02,146.33,132.65,132.26,131.85,128.99,128.63,128.58,128.50$, 126.36, 117.11, 115.95, 115.73, 104.20, 85.44, 28.04. ${ }^{19} \mathbf{F}$ NMR ($282 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-112.6$. ATR-FTIR ($\mathbf{c m}^{-1}$): 2982, 1741, 1509, 1351, 1325, 1231, 1155, 1103, 1078, 948, 822, 769, 694; ESI-MS: calculated $\left[\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}+\mathrm{Na}\right]^{+}: 387.1479$, found: 387.1473;

(E)-tert-butyl 5-(4-methylstyryl)-3-phenyl-1H-pyrazole-1-carboxylate (4ed)

Total yield: $37 \mathrm{mg}(52 \%)$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.88-$ 7.82 (m, 2H), 7.63 (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.30(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 153.63$, 149.00 , 146.66, 138.64, 133.68, 133.54, 131.94, 129.86, 129.54, 128.92, 128.61, 126.86, 126.38, 116.27, 104.03, 85.34, 28.06, 21.36. ATR-FTIR (cm^{-1}): 2980, 1741, 1681, 1554, 1460, 1440, 1351, 1311, 1154, 1102, 1078, 948, 769, 694; ESI-MS: calculated $\left[\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}:$383.1730, found: 383.1728;

(E)-tert-butyl 5-(2-(furan-2-yl)vinyl)-3-phenyl-1H-pyrazole-1-carboxylate (4gd)

Total yield: $48 \mathrm{mg}(72 \%) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.88-7.82(\mathrm{~m}$, 2H), $7.72-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.26$ $-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 153.62,152.40,148.86,146.07,143.14$, 131.88, 128.94, 128.61, 126.36, 120.82, 115.49, 111.86, 110.52, 103.83, 85.53, 28.01. ATRFTIR ($\mathbf{c m}^{-1}$): 2983, 1740, 1459, 1347, 1309, 1242, 1152, 1102, 1078, 948, 768, 730, 693; ESIMS: calculated $\left[\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}: 359.1366$, found: 359.1362;
(E)-tert-butyl 5-styryl-3-(p-tolyl)-1H-pyrazole-1-carboxylate (4ae)

Total yield: $49 \mathrm{mg}(68 \%) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.74(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.31$ (dd, $J=10.2,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.04$ (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$,
1.63 ($\mathrm{s}, 9 \mathrm{H}$). ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 153.70,149.00,146.33,138.90,136.48,133.43$,
129.32, 129.06, 128.81, 128.51, 126.91, 126.27, 117.36, 104.20, 85.33, 28.07, 21.39. ATR-FTIR $\left(\mathbf{c m}^{-1}\right): 2982,1741,1440,1333,1311,1239,1155,1102,1067,948,799,749,693$; ESI-MS: calculated $\left[\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}: 383.1730$, found: 383.1723 ;

(E)-tert-butyl 3-(4-fluorophenyl)-5-styryl-1H-pyrazole-1-carboxylate (4ag)

Total yield: 45 mg (62\%); ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.86-7.79$ $(\mathrm{m}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.28$ $(\mathrm{m}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 1.63$ ($\mathrm{s}, 9 \mathrm{H}$) . ${ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 152.71,148.89,146.59$, $136.35,133.69,128.83,128.61,128.23,128.12,126.93,117.15,115.76,115.47,104.03,85.53$, 28.04. ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($282 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-112.5. ATR-FTIR ($\mathbf{c m}^{-1}$): 2982, 1734, 1608, 1520, 1438, 1333, 1234, 1156, 1103, 1067, 842, 750, 693; ESI-MS: calculated $\left[\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}+\mathrm{Na}\right]^{+}$: 387.1479, found: 387.1477;
(E)-tert-butyl 3-(4-chlorophenyl)-5-styryl-1H-pyrazole-1-carboxylate (4ah)

Total yield: $46 \mathrm{mg}(61 \%) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.76-$ $7.70(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.35-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=$ $0.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 152.52$, $148.84,146.65,136.34,134.82,133.78,130.44,128.85,128.64,127.64,126.94,117.10,104.07$, 85.63, 28.04. ATR-FTIR (cm ${ }^{\mathbf{- 1}}$): 2981, 1743, 1432, 1331, 1310, 1154, 1102, 1091, 1066, 948, 837, 799, 750, 692; ESI-MS: calculated $\left[\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}+\mathrm{Na}\right]^{+}: 403.1184$, found: 403.1177;

(E)-tert-butyl 3-(4-bromophenyl)-5-styryl-1H-pyrazole-1-carboxylate (4ai)

Total yield: $46 \mathrm{mg}(55 \%) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.76$ $7.70(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.35-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=$ $0.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 152.55$, $148.82,146.66,136.33,133.81,131.80,130.89,128.84,128.65,127.91,126.94,123.09,117.08$, 104.04, 85.65, 28.04. ATR-FTIR ($\mathbf{c m}^{-1}$): 2982, 1744, 1431, 1331, 1310, 1156, 1102, 1072, 1011, 948, 800, 750, 692; ESI-MS: calculated $\left[\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}+\mathrm{Na}\right]^{+}: 449.0659$, found: 449.0656;

(E)-tert-butyl 3-(naphthalen-2-yl)-5-styryl-1H-pyrazole-1-carboxylate (4ak)

Total yield: $46 \mathrm{mg}(58 \%)$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.29$ (s,
 $1 \mathrm{H}), 8.03(\mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=8.8,3.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.80-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.45$
$-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=10.2,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H})$, $7.10(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 153.61$, $148.97,146.55,136.45,133.64,133.36,129.31,128.84,128.58,128.39,128.34,127.79,126.94$, $126.41,126.35,125.61,124.14,117.30,104.47,85.54,28.09$. ATR-FTIR ($\mathbf{c m}^{-1}$): 3057, 2982, 1741, 1367, 1321, 1155, 1099, 947, 802, 749, 692; ESI-MS: calculated $\left[\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}$: 419.1730, found: 419.1717;

(E)-tert-butyl 5-styryl-3-(m-tolyl)-1H-pyrazole-1-carboxylate (4am)

Total yield: 48 mg (67%); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.74$ 7.60 (m, 3H), $7.49-7.43$ (m, 2H), $7.35-7.28$ (m, 2H), $7.27-7.20$ $(\mathrm{m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}$, $J=0.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.34(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 153.78,148.97,146.33,138.28,136.45,133.47,131.71,129.75,128.82,128.53$, $128.50,126.98,126.91,123.51,117.32,104.35,85.42,28.06,21.43$. ATR-FTIR ($\mathbf{c m}^{-1}$): 2982, 1742, 1555, 1333, 1311, 1239, 1155, 1104, 1076, 963, 787, 693; ESI-MS: calculated $\left[\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}: 383.1730$, found: 383.1725 ;

4. X-ray Crystallography data

X-Ray diffraction: Data sets were collected with a D8 Venture Dual Source 100 CMOS diffractometer. Programs used: data collection: APEX2 V2014.5-0 (Bruker AXS Inc., 2014); ${ }^{2 a}$ cell refinement: SAINT V8.34A (Bruker AXS Inc., 2013); ${ }^{2 a}$ data reduction: SAINT V8.34A (Bruker AXS Inc., 2013); ${ }^{2 \mathrm{a}}$ absorption correction, SADABS V2014/2 (Bruker AXS Inc., 2014); ${ }^{2 \mathrm{a}}$ structure solution SHELXT-2014 (Sheldrick, 2014); ${ }^{2 b}$ structure refinement SHELXL-2014 (Sheldrick, 2014) ${ }^{2 b}$ and graphics, XP (Bruker AXS Inc., 2014). ${ }^{2 b} R$-values are given for observed reflections, and $w \mathrm{R}^{2}$ values are given for all reflections.

X-ray crystal structure analysis of 3gd: formula $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}, M=354.39$, colourless crystal, $0.191 \times 0.178 \times 0.067 \mathrm{~mm}, a=5.8916(3), b=11.8596(5), c=25.8111(11) \AA, V=1801.8(1) \AA^{3}$, $\rho_{\text {calc }}=1.306 \mathrm{gcm}^{-3}, \mu=0.749 \mathrm{~mm}^{-1}$, empirical absorption correction $(0.870 \leq \mathrm{T} \leq 0.952), Z=4$,
monoclinic, space group $P 2_{1}$ (No. 4), $\lambda=1.54178 \AA, T=100(2) \mathrm{K}, \omega$ and φ scans, 15935 reflections collected, 5175 independent $\left(R_{\text {int }}=0.087\right)$ and 4069 observed reflections $[1>2 \sigma(I)]$, 472 refined parameters, $R=0.054, w R^{2}=0.122$, max. (min.) residual electron density $0.33(-0.20)$ e. \AA^{-3}, hydrogen atoms calculated and refined as riding atoms. Flack parameter: 0.0(2).

Crystal structure of compound $\mathbf{3 g d}$.
Only one molecule from two found in the asymmetric unit is shown.
(Thermals ellipsoids are shown with 50% probability.)

5. Synthetic Transformation of 3ad

To a cooled ($0{ }^{\circ} \mathrm{C}$) solution of $\mathbf{3 a d}(36.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$, 4.0 equiv of TFA (31 $\mu \mathrm{L}, 0.4 \mathrm{mmol}$) was added. The solution was then allowed to warm to room temperature, and then stirred for 4 h . After 4 h , sat. NaHCO_{3} solution was added and the organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removing solvents, the residue was purified by column chromatography to give the product $\mathbf{6}$ in 95% yield (25 mg).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.29-$ $7.23(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=13.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=$ $13.2,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=13.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=13.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 171.80,166.80,143.50,136.18,130.62,128.97,128.74,127.35,126.73,126.63$, 45.48, 39.61, 36.09. ATR-FTIR ($\mathbf{c m}^{-1}$): 3211, 3084, 2914, 1651, 1447, 1341, 1305, 1159, 1021,

755, 693; ESI-MS: calculated $\left[\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}+\mathrm{Na}\right]^{+}: 287.1155$, found: 287.1152; The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (AD-H, hexane $/ i-\mathrm{PrOH}=70 / 30$, detector: 254 nm , flow rate: $1 \mathrm{~mL} / \mathrm{min}), \mathrm{t}_{1}($ major $)=7.5 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=12.1 \mathrm{~min}$.

A suspension of $\mathrm{Pd} / \mathrm{C}(20 \mathrm{mg})$ and $\mathbf{3 a d}(36.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{MeOH}(2.5 \mathrm{~mL})$ was stirred at RT under 1 atm hydrogen atmosphere. After being stirred overnight, the mixture was filtrated through a pad of Celite and the filtration was concentrated in vacuo, the residue was purified by column chromatography on silica gel to afford the desired the product 7 in 90% yield (33 mg , d.r. $=3: 1$, $e e=99 \%$).
Major isomer: ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.34-7.12(\mathrm{~m}, 10 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~m}, 2 \mathrm{H})$, $3.11-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H})$, 1.46 (s, 9H). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 172.68,172.52,150.93,150.60,145.13,139.93$, 127.84, 127.71, 125.79, 125.45, 83.54, 65.46, 58.66, 44.24, 39.96, 27.03. ATR-FTIR ($\mathbf{c m}^{-1}$): 2982, 1722, 1493, 1369, 1239, 1147, 1098, 1030, 734, 699; ESI-MS: calculated $\left[\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}+\right.$ Na^{+}: 389.1836, found: 389.1828; The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (AD-H, hexane $/ i-\mathrm{PrOH}=85 / 15$, detector: 254 nm , flow rate: 1 $\mathrm{mL} / \mathrm{min}), \mathrm{t}_{1}($ major $)=6.2 \mathrm{~min}, \mathrm{t}_{2}($ minor $)=6.7 \mathrm{~min}$.

6 References

1. (a) Chen, J.-R.; Dong, W.-R.; Candy, M.; Pan, F.-F.; Jörres, M.; Bolm, C. J. Am. Chem.Soc.

2012, 134, 6924; (b) South, M. S.; Jakuboski, T. L.; Westmeyer, M. D.; Dukesherer, D. R. J. Org. Chem. 1996, 61, 8921.
2. (a) Bruker APEX2, SAINT and SADABS 2013. Bruker AXS Inc., Madison, Wisconsin, USA; (b). SHELXT und SHELXL Sheldrick, G. M. Acta Cryst. 2008. A64, 112-122.

7 NMR spectra

tert-butyl 2-(2-chloro-1-phenylethylidene)hydrazinecarboxylate (2d)

ฺั~べ

| 10 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 1 | 1 |
| :--- |

tert-butyl 2-(2-chloro-1-(p-tolyl)ethylidene)hydrazinecarboxylate (2e)

[^0]tert-butyl 2-(2-chloro-1-(4-methoxyphenyl)ethylidene)hydrazinecarboxylate (2f)

ふั

tert-butyl 2-(2-chloro-1-(4-fluorophenyl)ethylidene)hydrazinecarboxylate (2g)

tert－butyl 2－（2－chloro－1－（4－chlorophenyl）ethylidene）hydrazinecarboxylate（2h）

\[

$$
\begin{aligned}
& \text { Sep03-2014 } \\
& \text { glo guo geh gb 328 } \\
& \text { carbon_256 cDC13/opt/topspin av1 }
\end{aligned}
$$
\]

ふ⿵⿰丿⺄⿱㇒⿱中⿰㇀丶冂木

[^1]tert-butyl 2-(1-(4-bromophenyl)-2-chloroethylidene)hydrazinecarboxylate (2i)

Sep03-2014
glo guo gh gb 326
carbon_256 ccocl3 $/ \mathrm{o}$ \qquad

[^2]tert-butyl 2-(2-chloro-1-(4-(trifluoromethyl)phenyl)ethylidene)hydrazinecarboxylate (2j)

Sep10-2014
glo guo gch gb 354
carbon 256 cDC13 /opt/topspin av1 $1 \stackrel{\infty}{\sim}$
~~

[^3]tert-butyl 2-(2-chloro-1-(naphthalen-2-yl)ethylidene)hydrazinecarboxylate (2k)

tert-butyl 2-(1-(3-bromophenyl)-2-chloroethylidene)hydrazinecarboxylate (21)

tert-butyl 2-(2-chloro-1-(m-tolyl)ethylidene)hydrazinecarboxylate (2m)

定

tert-butyl 2-(1-chloro-3,3-dimethylbutan-2-ylidene)hydrazinecarboxylate (2n)

Sep03-2014

glo guo gch gb 314
carbon 256 CDC13 /opt/topspin av1 41

```
৷
```


[^4]tert-butyl 2-(2-chloro-3,4-dihydronaphthalen-1(2H)-ylidene)hydrazinecarboxylate (20)

Sep03-2014
glo guo gch gb 322
carbon 256 CDC13

水

tert-butyl 2-(3-chlorochroman-4-ylidene)hydrazinecarboxylate (2p)

Sep15-2014
glo guo gch gb 374
carbon_256 cDC13/opt/topspin ain
an
\[

$$
\begin{aligned}
& \text { ㅇNN }
\end{aligned}
$$
\]

y

${ }^{1}$ H NMR spectrum of $\mathbf{3 a d}$

Co

${ }^{13} \mathrm{C}$ NMR spectrum of 3ad

30	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	2	10	0
									10					60	50	40	s0	20	10	

${ }^{1} \mathrm{H}$ NMR spectrum of 3bd

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3} \mathbf{b d}$

${ }^{1} \mathrm{H}$ NMR spectrum of 3cd

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 c d}$

${ }^{1}$ H NMR spectrum of 3dd

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 d d}$

$\left.\begin{array}{lllllllllllllllllllllllllll}\hline 00 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 10 \\ \mathrm{fl}(\mathrm{ppm})\end{array}\right)$
${ }^{1} \mathrm{H}$ NMR spectrum of 3ed

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 e d}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 f d}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 f d}$

Aug27-2014 glo guo gch \boldsymbol{F}^{6} 		$\underset{\underset{\sim}{\sim}}{\underset{\sim}{\sim}}$		$\overline{\bar{n}} \underset{i}{i}$	

${ }^{1}$ H NMR spectrum of $\mathbf{3 g d}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 g d}$

$$
\begin{array}{lllllllllllllllllllllllll}
\hline 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 1 & 1 \\
\hline f 1 & (\mathrm{ppma}) & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0
\end{array}
$$

${ }^{1}$ H NMR spectrum of $\mathbf{3 h d}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 h d}$

${ }^{1}$ H NMR spectrum of 3id

${ }^{13} \mathrm{C}$ NMR spectrum of 3id

${ }^{1}$ H NMR spectrum of 3ae

为

${ }^{13} \mathrm{C}$ NMR spectrum of 3ae

Sep11－2014 glo guo gch gb 362 carbon CDCl^{2}／opt／topspin ac			

${ }^{1}$ H NMR spectrum of 3af

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a f}$

190		170	160		140	130	120	110		90	80	70	60	50	40	30			
190	180	170	160	150	140	130	120	110	${ }^{100}{ }_{\text {f1 }}$		80	70	60	50	40	${ }^{3}$	20	10	0

${ }^{1}$ H NMR spectrum of $\mathbf{3 a g}$

${ }^{13}$ C NMR spectrum of $\mathbf{3 a g}$

${ }^{1}$ H NMR spectrum of $\mathbf{3 a h}$

${ }^{13} \mathrm{C}$ NMR spectrum of 3ah

${ }^{1} \mathrm{H}$ NMR spectrum of 3ai

${ }^{13} \mathrm{C}$ NMR spectrum of 3ai

${ }^{1}$ H NMR spectrum of $\mathbf{3 a j}$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3 a j}$

${ }^{1}$ H NMR spectrum of 3ak

${ }^{13} \mathrm{C}$ NMR spectrum of 3ak

[^5]${ }^{1}$ H NMR spectrum of 3al

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a l}$

Sep15-2014 glo guo gch gb $376 \quad=0$ carbon_256 CDCl3 /opt/top@ípav1 37 11		ন~~N	

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a m}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a m}$

[^6]${ }^{1}$ H NMR spectrum of 3an

${ }^{13}$ C NMR spectrum of 3an

${ }^{1} \mathrm{H}$ NMR spectrum of 3ao

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a o}$

${ }^{1} \mathrm{H}$ NMR spectrum of 3ap

${ }^{13} \mathrm{C}$ NMR spectrum of 3ap

gcosy spectrum of 3ap

dept spectrum of 3ap

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a d}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a d}$

${ }^{1}$ H NMR spectrum of $\mathbf{4 b d}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 b d}$

${ }^{1} \mathrm{H}$ NMR spectrum of 4ed

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 e d}$

${ }^{1}$ H NMR spectrum of $\mathbf{4 g d}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 g d}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a e}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a e}$

	$\begin{aligned} & \text { İ } \\ & \text { I } \\ & \text { I } \end{aligned}$	-	M N N	$\stackrel{\sim}{\sim}$

${ }^{1}$ H NMR spectrum of $\mathbf{4 a g}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a g}$

${ }^{1}$ H NMR spectrum of 4ah

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{a h}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a i}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a i}$

${ }^{1} \mathrm{H}$ NMR spectrum of 4ak

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a k}$

${ }^{1} \mathrm{H}$ NMR spectrum of 4 am

${ }^{13} \mathrm{C}$ NMR spectrum of 4 am

${ }^{1}$ H NMR spectrum of 6

${ }^{13} \mathrm{C}$ NMR spectrum of 6

$$
\text { Ph } \overbrace{\mathrm{Ph}}^{\mathrm{N}^{+N}-\mathrm{N}^{\circ}}
$$

[^7]${ }^{1} \mathrm{H}$ NMR spectrum of 7

${ }^{13} \mathrm{C}$ NMR spectrum of 7

8. HPLC traces

Rac-3ad

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{\star} \mathrm{s}\right]} \end{gathered}$	Height [mAU]	Area
1	6.519		0.2446	1057.58069	66.85200	50.2613
2	15.342	BB	0.6795	1046.58472	22.54806	49.7387

Totals : 2104.1654189 .40006

Asy-3ad

Totals : $2412.71222 \quad 143.94661$

Rac-3bd

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	5.935		0.2299	5499.33789	368.92136	49.4744
2	8.635	MM	0.3824	5616.19238	244.80255	50.5256

Totals : $\quad 1.11155 \mathrm{e} 4$ 613.72391

Asy-3bd

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	5.912		0.2262	1.13650 e 4	774.56903	99.7927
2	8.696	MM	0.3539	23.60300	$8.16146 \mathrm{e}-1$	0.2073

Totals :
$1.13886 e 4 \quad 775.38518$

Rac-3cd

	2	4	-1 !	8	, ${ }_{10} \mathrm{~mm}$
Peak \#	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	6.337 BB	0.2540	2712.96411	164.87769	49.3707
2	8.729 MM	0.3930	2782.12939	117.97935	50.6293
Total	s :		5495.09351	282.85704	

Asy-3cd

Rac-3dd

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	10.569	BB	0.4580	1129.25488	38.07580	49.0073
2	15.851	BB	0.6504	1175.00537	26.19232	50.9927
Total	s :			2304.26025	64.26812	

Asy-3dd

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area
1	10.564	BB	0.4383	610.34760	20.67969	97.8729
2	16.349	MM	0.8174	13.26503	$2.70487 e-1$	2.1271

Totals :
$623.61263 \quad 20.95018$

Rac-3ed

Asy-3ed

Totals : 2724.83936 218.41327

Rac-3fd

Asy-3fd

Rac-3gd

Asy-3gd

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{*}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	5.790	BB	0.1946	3160.44360	251.50658	99.6102
2	10.086	MM	0.3643	12.36638	$5.65741 \mathrm{e}-1$	0.389

Totals : 3172.80999252 .07232

Rac-3hd

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	5.030	BB	0.1451	585.11322	62.56184	49.4623
2	5.907	MM	0.1952	597.83429	51.05091	50.5377

```
Totals : 1182.94751 113.61274
```


Asy-3hd

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	4.961		0.1392	348.61063	38.64572100 .0000	
Total	s :			348.61063	38.6457	

Rac-3id

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	5.508	MM	0.1788	495.35330	46.18275	49.3816
2	7.092	BB	0.2323	507.75891	33.98175	50.6184

```
Totals :
```

1003.1122180 .16451

Asy-3id

Rac-3ae

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	6.841	MM	0.3292	2543.76880	128.78394	49.2579
2	12.710	MM	0.6758	2620.41821	64.62562	50.7421
Total	s :			5164.18701	193.40955	

Asy-3ae

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	Area
1	6.761		0.2947	3295.54297	172.68240	99.4929
2	11.960		0.7761	16.79625	$3.60699 \mathrm{e}-1$	0.5071

Totals :
$3312.33922 \quad 173.04310$

Rac-3af

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	9.587	BB	0.3660	259.67239	8.41628	49.3752
2	16.633	MM	0.9672	266.24475	4.58812	50.6248
Total	s :			525.91714	13.00440	

Asy-3af

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{U}^{*}\right. \text {] }} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	9.558		0.4703	907.971	29.894	00.00

Totals :

$907.97192 \quad 29.89494$

Rac-3ag

Totals : 6854.94727 266.89964

Asy-3ag

Rac-3ah

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~S}^{2}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	7.407	VB	0.3139	624.24194	30.48642	50.0897
2	12.940	BB	0.6065	622.00671	15.48974	49.9103

Totals : $1246.24866 \quad 45.97616$

Asy-3ah

Rac-3ai

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * S]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	7.789	MM	0.3745	912.12292	40.59372	49.7293
2	13.015	BB	0.6289	922.05469	21.91245	50.2707
Total	s :			1834.17761	62.50617	

Asy-3ai

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	7.761		0.3435	3154.674	141.8445	100.0000
Total	S :			3154.674	141.8445	

Rac-3aj

$\begin{gathered} \text { Peak } \\ \hline \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	6.806	BB	0.3083	1938.12451	97.32986	49.1794
2	11.185	BB	0.5730	2002.80701	52.97967	50.8206
Total	:			3940.93152	150.30952	

Asy-3aj

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime Type [min]	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	6.786 BB	. 3	386.409	70	0.00

Totals :
$1386.40991 \quad 70.17199$

Rac-3ak

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	8.406		0.4453	5828.34326	199.20988	49.5245
2	14.048	MM	0.8089	5940.26416	122.39760	50.4755

Totals :
1.17686 e 431.60748

Asy-3ak

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	8.426		0.4339	1563.86292	55.13797	99.4888
2	13.902		0.6622	8.03569	$2.02237 \mathrm{e}-1$	0.511

[^8]
Rac-3al

Asy-3al

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { * } \mathrm{s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	7.756	BB	0.3312	830.96478	38.74724	99.2880
2	13.770	MM	0.5221	5.95931	90237e-1	0.712

Rac-3am

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	5.887	MM	0.2588	181.36459	11.67959	49.1788
2	12.097	BB	0.4356	187.42157	5.11334	50.8212
Total	s :			368.78616	16.79293	

Asy-3am

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	5.834		0.2263	467.37708	99.9397	00.00

Totals : $1467.37708 \quad 99.93972$

Rac-3an

Asy-3an

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$	Area \%
1	4.242		0.1211	455.86874	57.77176	98.8244
2	8.421		0.3636	5.42285	$2.48561 e-1$	1.1756
Totals	S :			461.29160	58.02032	

Rac-3ao

Asy-3ao

Rac-3ap

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	8.450		0.4699	174.10521	6.17553	50.1604
2	15.451		0.8290	172.99203	3.47783	49.8396

Totals :
347.09724
9.65336

Asy-3ap

	1	$\underline{1}$	${ }_{8}^{1} 10$	12	${ }_{14}^{1} 1{ }_{16}^{1}$
Peak \#	$\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	8.383 MM	0.4597	1011.84161	36.68555	92.6908
2	15.450 MM	0.8265	79.78970	1.60906	7.3092
Total	s :		1091.63132	38.29461	

Rac-6

Asy-6

Rac-7

Asy-7

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{U}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	6.178		0.1382	226.54669	25.1317	100.0000
Total	s :			226.54669	25.1317	

[^0]:

[^1]:

[^2]:

[^3]:

[^4]:

[^5]:

[^6]:

[^7]: $\left.\begin{array}{lllllllllllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 10 & 10 & 1 & 1 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

[^8]: Totals : 1571.8986055 .34020

