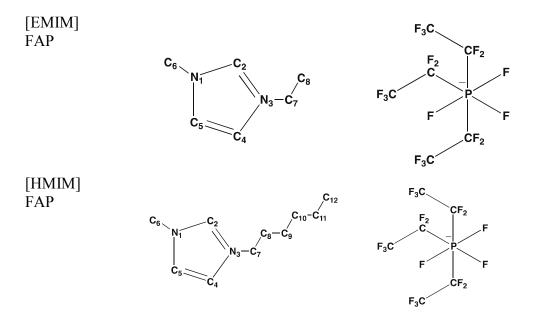
Environmental influence on the surface chemistry of ionic-liquid-mediated lubrication in a silica / silicon tribopair

Andrea Arcifa^a, Antonella Rossi^{a, b}, Rosa M. Espinosa-Marzal^{a,c}, Nicholas D. Spencer^a

^a Lab. for Surface Science and Technology, Dept. of Materials, ETH Zurich, CH-8093 Zurich, Switzerland


^b Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, 09042 Cagliari, Italy

^c Laboratory for Smart Interfaces in Environmental Nanotechnology, Department of Civil & Environmental Engineering, University of Illinois at Urbana-Champaign

3215 Newmark Lab, MC 2 , Urbana, IL 61801, USA

The peak-**fitting** parameters for the high-resolution XP-spectra of tribostressed samples are reported in Tables S1-S2. A list of the binding energies of the compounds considered for the chemical-state analysis of the tribostressed wafer is reported in Table S3. Three replicas of a tribological test carried out in the presence of humid air with [HMIM] FAP as a lubricant, applying a load of 0.5 N are reported in Figure S1. Replicas of the tribological tests carried out applying a load of 4.5 N are reported in Figure S2, S3, S4, and S5. The survey and high-resolution spectra of tribostressed silicon disks lubricated with [EMIM] FAP, applying a load of 4.5 N, are reported in Figures S6-S8. Optical and scanning electron micrographs of tribostressed disks lubricated with [EMIM] FAP are reported in Figures S9 and S10.

Ionic Liquids used in the present study:

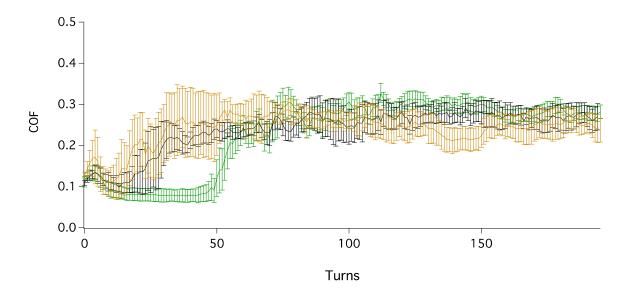
Table S1: Peak-fitting parameters for the XP-spectra of silicon samples tribostressed with [EMIM] FAP or [HMIM] FAP ionic liquids in the presence of a nitrogen atmosphere. Normal load: 4.5 N, sliding speed: 50 mm/min, number of cycles: 200, radius: 3.2 mm. The uncertainty in the binding energies (BE) and in the full widths at half-maximum (FWHM) is 0.2 eV.

		Line shape	Contact area		Non-contact area	
			BE (eV)	FWHM (eV)	BE (eV)	FWHM (eV)
C1s*	SiC_xO_y	GL(30)	283.8	1.4	-	-
	С-С	GL(30)	285.0	1.4	285.0	1.4
	С-О	GL(30)	286.3	1.4	286.3	1.4
	С=О	GL(30)	287.6	1.4	286.6	1.4
N1s	SiN_xO_y	GL(30)	398.2	1.8	-	-
F1s	F-Si	GL(30)	686.8	1.8	-	-
	SiO_xF_y	GL(30)	687.9	1.8	687.9	1.7
Ols	O-Si	GL(50)	532.9	1.9	533.1	1.7
Si2p _{3/2} **	Si ⁰	LA(1.5,1.8,65)	99.3	0.6	99.3	0.6
	Si ⁺	GL(30)	100.3	0.9	100.3	0.9
	Si ²⁺	GL(30)	101.2	0.9	101.2	0.9
	Si ³⁺	GL(30)	101.8	0.9	101.8	0.9
	Si ⁴⁺	GL(30)	103.2	1.8	103.6	1.5

*The position of the C-O and COOX components are constrained at a distance of +1.3 and +1.6 eV from the C-C signal. The FWHM of the C1s components is constrained at 1.4 eV.

** The position of the components having intermediate oxidation states are constrained according to Seah et al.¹

Table S2: Peak-fitting parameters for the XP-spectra of silicon samples tribostressed with [EMIM] FAP or [HMIM] FAP ionic liquids in the presence of a humid air (45% - 55% RH). Normal load: 4.5 N, sliding speed: 50 mm/min, number of cycles: 200, radius: 3.2 mm. The uncertainty of the binding energies (BE) and of the full widths at half-maximum (FWHM) is 0.2 eV.


		Line shape	Contact area		Non contact area	
			BE (eV)	FWHM (eV)	BE (eV)	FWHM (eV)
C1s	SiC_xO_y	GL(30)	284.0	1.4	-	-
	С-С	GL(30)	285.0	1.4	285.0	1.4
	С-О	GL(30)	286.3	1.4	286.3	1.4
	<i>C=0</i>	GL(30)	287.6	1.4	286.6	1.4
N1s	SiN_xO_y	GL(30)	-	-	-	-
F1s	F-Si	GL(30)	686.8	1.8	-	-
	SiO_xF_y	GL(30)	687.9	1.8	687.9	1.8
Ols	O-Si	GL(50)	533.1	2.0	533.1	1.7
Si2p _{3/2}	Si ⁰	LA(1.5,1.8,65)	93.0	0.6	93.0	0.6
	Si ⁺	GL(30)	100.3	0.9	100.3	0.9
	Si ²⁺	GL(30)	101.2	0.9	101.2	0.9
	Si ³⁺	GL(30)	101.8	0.9	101.8	0.9
	Si ⁴⁺	GL(30)	103.6	1.8	103.6	1.5

*The positions of the C-O and COOX components are constrained at a distance of +1.3 and +1.6 eV from the C-C signal. The FWHM of the C1s components is constrained at 1.4 eV.

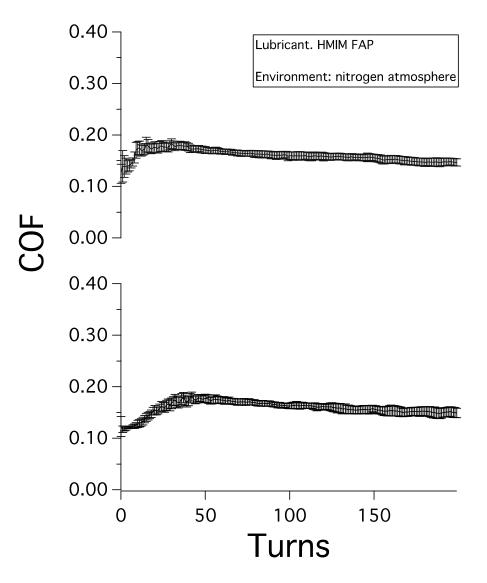
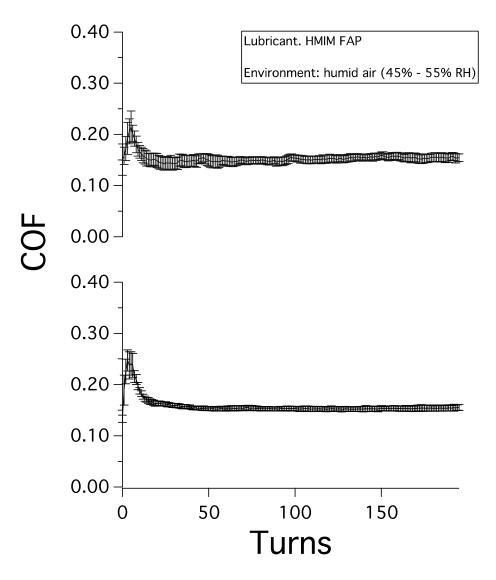
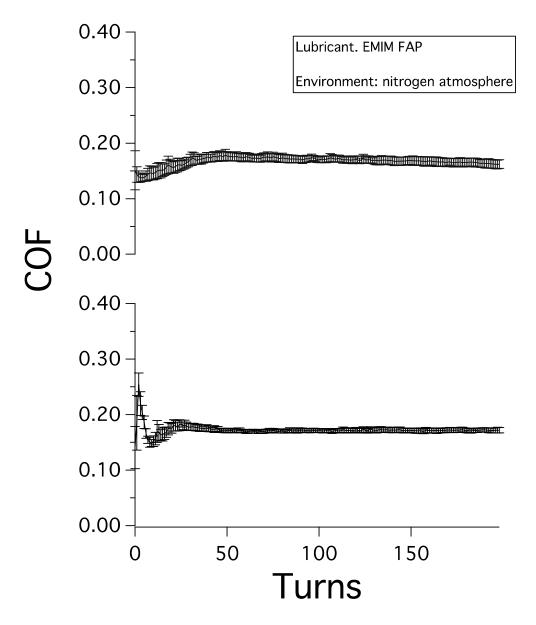
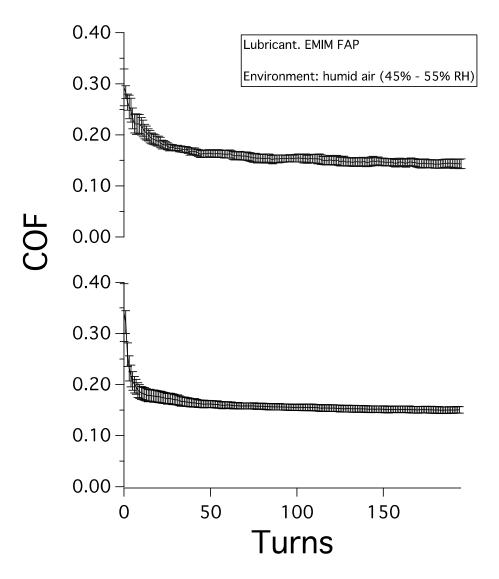
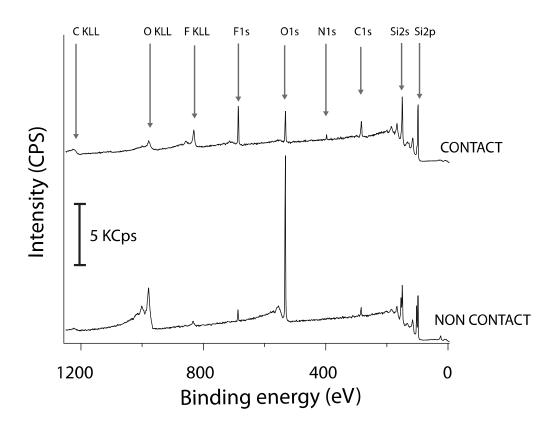

** The position of the components having intermediate oxidation states is constrained according to Seah et al.¹

Table S3: Binding energies of the compounds considered for the chemical-state analysis of the tribostressed silicon disks.


	Chemical state	Binding energy (eV)		
Si2p	Silicon ²	99.3		
	Silicon carbide ³	100.2		
	Silicon oxycarbide ³	100.6-101.4		
	$SiO_x (Si^{+1})^{-1}$	100.3		
	$SiO_x (Si^{+2})^{1}$	101.2		
	$SiO_x (Si^{+3})^{1}$	101.8		
	$SiO_x(Si^{4+})^{-1}$	102.6 - 104.1		
	$Si-F(Si^{+1})^{4}$	100.3 - 100.5		
	S-F $(Si^{+2})^4$	101.3 - 100.8		
	$Si-F(Si^{+3})^{4}$	102.4 - 102.8		
C1s	Silicon carbide ⁵	283.0		
	Silicon oxycarbide ³	283.6		
	Graphitic ⁶	284.4		
	Organic bonded to Si ⁷	283.9		
	Aliphatic ⁸	285.0		
	Carbon bound to oxygen ⁸	286.1-286.6		
		287.8		
N1s	Silicon oxynitride ⁹	398.3		
F1s	Silicon oxyfluoride ¹⁰	686.4		
	Si-F ¹⁰	687.8 - 688.0		


Figure S1: Coefficient of friction versus number of cycles (sliding time) during three tribological tests (normal load: 0.5 N sliding speed: 50 mm/min, radius: 3.2 mm) carried out in the presence of [HMIM] FAP at room temperature (296 ± 2 K) and humid air (45% - 55% RH). Error bars express the standard deviation of friction data over a single cycle.


Figure S2: Coefficient of friction versus number of cycles (sliding time) during two tribological tests (normal load: 0.5 N sliding speed: 50 mm/min, radius: 3.2 mm) carried out in the presence of [HMIM] FAP at room temperature (296 ± 2 K) and under nitrogen. Error bars express the standard deviation of friction data over a single cycle.


Figure S3: Coefficient of friction versus number of cycles (sliding time) during two tribological tests (normal load: 0.5 N sliding speed: 50 mm/min, radius: 3.2 mm) carried out in the presence of [HMIM] FAP at room temperature (296 ± 2 K) and humid air (45% - 55% RH). Error bars express the standard deviation of friction data over a single cycle.

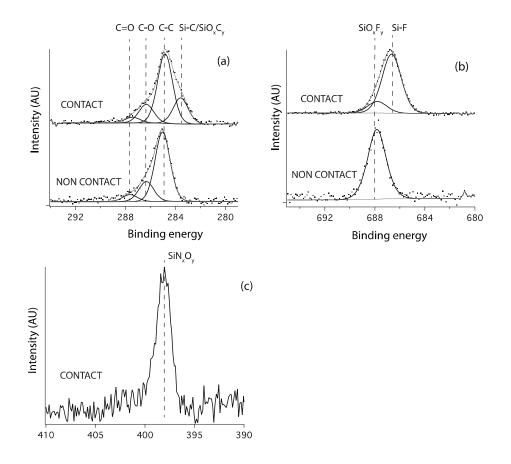
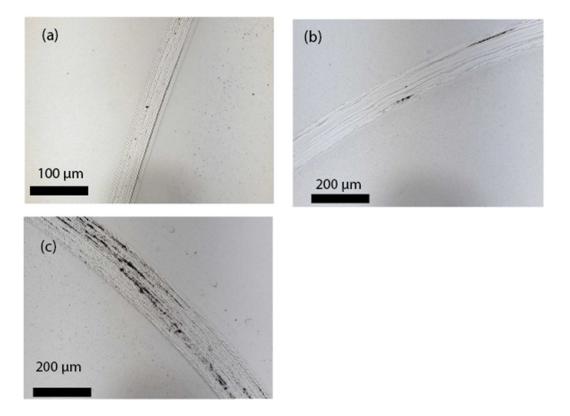

Figure S4: Coefficient of friction versus number of cycles (sliding time) during two tribological tests (normal load: 0.5 N sliding speed: 50 mm/min, radius: 3.2 mm) carried out in the presence of [EMIM] FAP at room temperature (296 ± 2 K) and under nitrogen. Error bars express the standard deviation of friction data over a single cycle.

Figure S5: Coefficient of friction versus number of cycles (sliding time) during two tribological tests (normal load: 0.5 N sliding speed: 50 mm/min, radius: 3.2 mm) carried out in the presence of [EMIM] FAP at room temperature (296 ± 2 K) and humid air (45% - 55% RH). Error bars express the standard deviation of friction data over a single cycle.


Figure S6: Survey XP-spectra of a silicon disk lubricated with [EMIM] FAP under a nitrogen atmosphere. Normal load: 4.5 N, sliding speed: 50 mm/min, number of cycles: 200, radius: 3.2 mm.

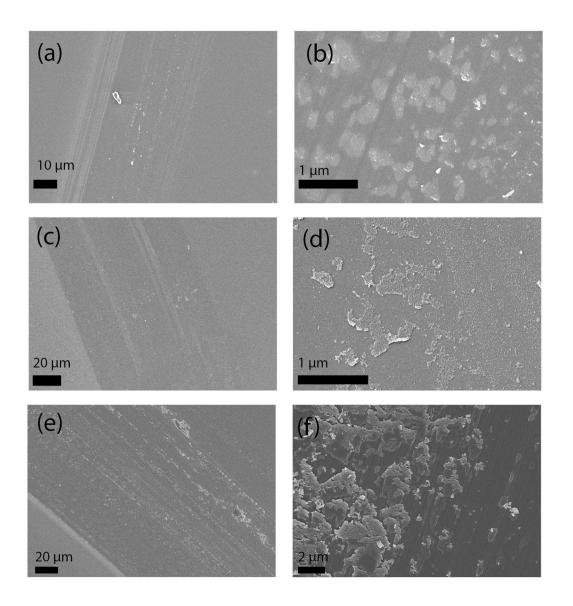

Figure S7: C1s (a), F1s (b) and N1s (c) regions of the XP- spectra of a silicon disk lubricated with [EMIM] FAP in the presence of a nitrogen atmosphere. Normal load: 4.5 N, sliding speed: 50 mm/min, number of cycles: 200, radius: 3.2 mm.

Figure S8: O1s (a) and Si2p (b) XP-spectra of a silicon disk lubricated with [EMIM] FAP in the presence of a nitrogen atmosphere. Each Si signal is fitted with two components due to spin-orbit coupling $(2p_{3/2} \text{ and } 2p_{1/2})$. The region labeled as "Silicon suboxides" could also contain contributions from SiO_xF_y, SiC_xO_y, SiN_xO_y. Normal load: 4.5 N sliding speed: 50 mm/min, Normal load: 4.5 N, sliding speed: 50 mm/min, number of cycles: 200, radius: 3.2 mm.

Figure S9: Optical micrographs of the contact area of silicon wafers lubricated with [EMIM] FAP; (a) normal load: 0.5 N, environment: humid air (45%-55% RH); (b) normal load: 4.5 N, environment: nitrogen atmosphere; (c) normal load: 4.5 N, environment: humid air (45%-55% RH). All the tests were performed at a sliding speed of 50 mm/min and a duration of 200 cycles (radius: 3.2 mm)

Figure S10: SEM images of the contact area of silicon wafers lubricated with [EMIM] FAP; (a) and (b) normal load: 0.5 N, environment: humid air (45%-55% RH); (c) and (d) normal load: 4.5 N, environment: nitrogen atmosphere; (e) and (f) normal load: 4.5 N, environment: humid air (45%-55% RH). All the tests were performed at a sliding speed of 50 mm/min and for a duration of 200 cycles (radius: 3.2 mm).

References

1. Seah, M. P.; Spencer, S. J., Ultrathin SiO₂ on Si IV. Intensity Measurement in XPS and Deduced Thickness Linearity. *Surf. Interface Anal.* **2003**, *35*, 515-524.

2. Keister, J. W.; Rowe, J. E.; Kolodziej, J. J.; Niimi, H.; Tao, H.-S.; Madey, T. E.; Lucovsky, G., Structure of ultrathin SiO₂/Si(111) Interfaces Studied by Photoelectron Spectroscopy. *J. Vac. Sci. Technol., A* **1999**, *17*, 1250-1257.

3. Guinel, M. J.-F.; Norton, M. G., Oxidation of Silicon Carbide and the Formation of Silica Polymorphs. *J. Mater. Res.* **2006**, *21*, 2550-2563.

4. McFeely, F. R.; Morar, J. F.; Shinn, N. D.; Landgren, G.; Himpsel, F. J., Synchrotron Photoemission Investigation of the Initial Stages of Fluorine Attack on Si surfaces: Relative Abundance of Fluorosilyl Species. *Phys. Rev. B* **1984**, *30*, 764-770.

5. Kusunoki, I.; Igari, Y., XPS study of a SiC Film Produced on Si(100) by Reaction with a CH₂H₂ Beam. *Appl. Surf. Sci.* **1992**, *59*, 95-104.

6. Díaz, J.; Paolicelli, G.; Ferrer, S.; Comin, F., Separation of the sp3 and sp2 Components in the C1s Photoemission Spectra of Amorphous Carbon Films. *Phys. Rev. B* **1996**, *54*, 8064-8069.

Nemanick, E. J.; Hurley, P. T.; Webb, L. J.; Knapp, D. W.; Michalak, D. J.; Brunschwig,
 B. S.; Lewis, N. S., Chemical and Electrical Passivation of Single-Crystal Silicon(100) Surfaces
 through a Two-Step Chlorination/Alkylation Process. *J. Phys. Chem. B* 2006, *110*, 14770-14778.

8. Beamson, G.; Briggs, D., *High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database. 1992.* John Wiley & Sons: Chichester (UK), 1992.

9. Cerofolini, G. F.; Caricato, A. P.; Meda, L.; Re, N.; Sgamellotti, A., Quantummechanical Study of Nitrogen Bonding Configurations at the Nitrided SiO₂ Interface via Model Molecules. *Phys. Rev. B* **2000**, *61*, 14157-14166.

10. Haring, R. A.; Liehr, M., Reactivity of a fluorine Passivated Silicon Surface. J. Vac. Sci. Technol., A 1992, 10, 802-805.