Supporting information

for

[Re(CO)₃]⁺ complexes of exo-functionalized tridentate "click" macrocycles: Synthesis, stability, photophysical properties, bioconjugation and antibacterial activity

Asif Noor,^a Gregory S. Huff,^{a.b} Sreedhar V. Kumar,^{a,c} James E. M. Lewis,^a Brett M. Paterson,^d Christine Schieber,^d Paul S. Donnelly,^d Heather J. L. Brooks,^c Keith C. Gordon,^{a,b} Stephen C. Moratti,^{a,b} and James D. Crowley,^{a,*}

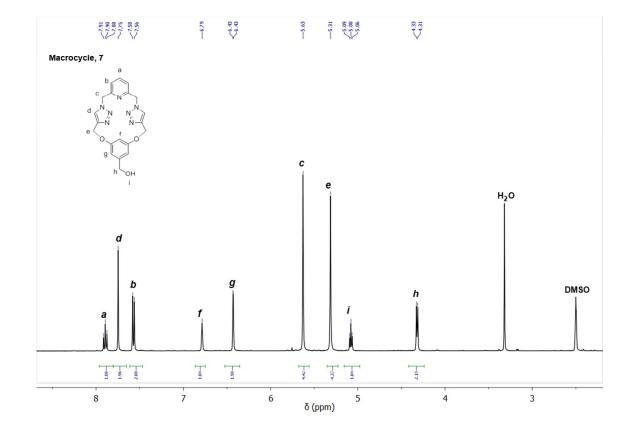
^aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand.

^bMacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand.

^cDepartment of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.

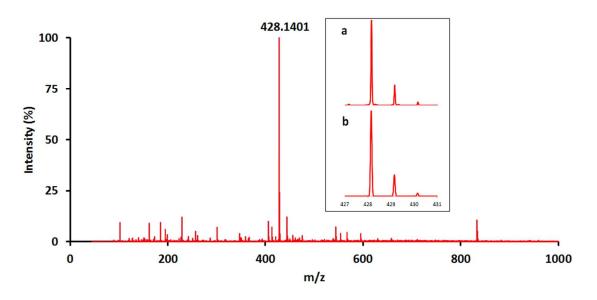
^dSchool of Chemistry and Bio21 Molecular Science Biotechnology Institute, University of Melbourne, Melbourne 3010, Australia.

E-mail: jcrowley@chemistry.otago.ac.nz


Fax: +64 3 479 7906; Tel: +64 3 479 7731.

KEYWORDS: macrocycles, CuAAC, click, Re(I), 1,2,3-triazole, pyridyl.

Contents


1	Sele	Selected ¹ H NMR and HR-ESI-MS spectra of synthesized compounds						
2	Selected stacked ¹ H NMR spectra of the ligands and metal complexes							
3	Stability and Re(I) labelling experiments							
	3.1	Temperature Stability20						
	3.2	Histidine competition experiments						
	3.3	Labelling experiment of 7-Re23						
4	Biological Study25							
5	Photo Physical Properties and Density Functional Theory Calculations							
6	X-Ray data collection and refinement							
	6.1	Macrocycle (7)						
	6.2	Re(I) complex of macrocycle (7-Re)28						
	6.3	Re(I) complex of macrocycle (Re-10a)						
	6.4	Structure Refinement Data						
7	7 References							

1 Selected ¹H NMR and HR-ESI-MS spectra of synthesized compounds

Macrocycle, 7

Figure S 1¹H NMR spectrum (400 MHz, DMSO-*d*₆, 298 K) of macrocycle 7

Figure S 2 HR-ESI-MS spectrum of macrocycle 7, inset a) observed and b) calculated isotopic patterns for the peaks at m/z = 428.1404 due to $[7+Na]^+$ ion.

Macrocycle, 8

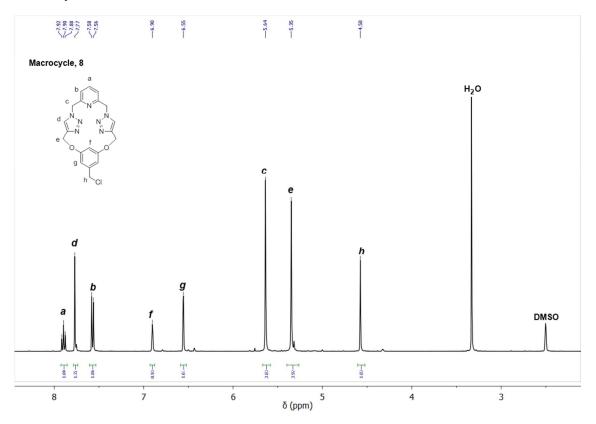
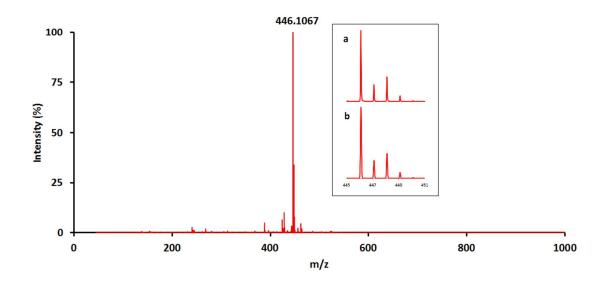



Figure S 3 ¹H NMR spectrum (400 MHz, DMSO-*d*₆, 298 K) of macrocycle 8

Figure S 4 HR-ESI-MS spectrum of macrocycle **8**, inset a) observed and b) calculated isotopic patterns for the peak at m/z = 446.1067 due to $[8+Na]^+$ ion.

Macrocycle, 9

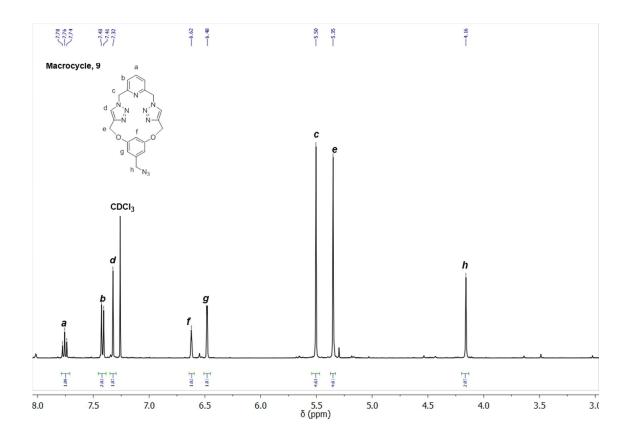
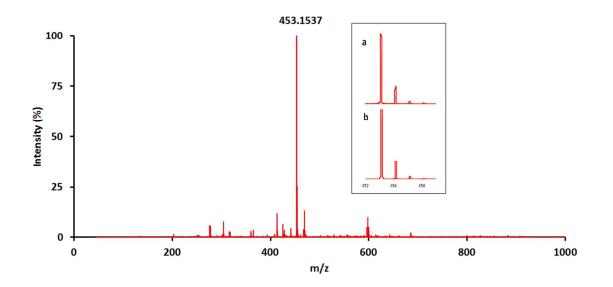



Figure S 5¹H NMR spectrum (400 MHz, CDCl₃, 298 K) of macrocycle 9

Figure S 6 HR-ESI-MS spectrum of macrocycle 9, inset a) observed and b) calculated isotopic patterns for the peak at m/z = 453.1537 due to $[9+Na]^+$ ion.

Acid functionalized macrocycle, 10a

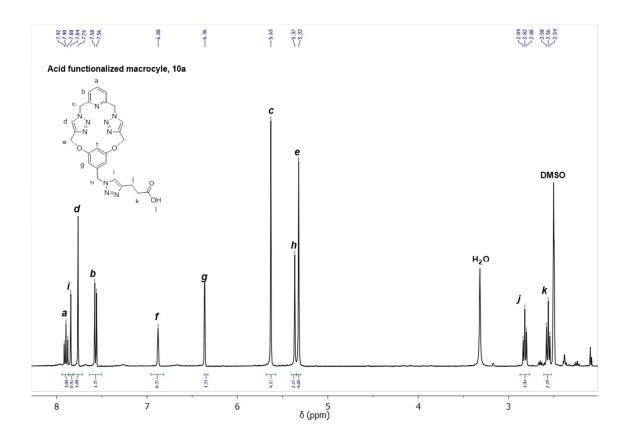
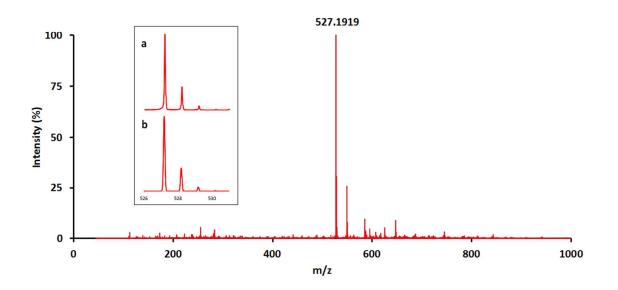



Figure S 7¹H NMR spectrum (400 MHz, DMSO-*d*₆, 298 K) of macrocycle 10a

Figure S 8 HR-ESI-MS spectrum of macrocycle **10a**, inset a) observed and b) calculated isotopic patterns for the peak at m/z = 527.1919 due to [**10a**-H]⁻ ion.

NHS activated ester functionalized macrocycle, 10b

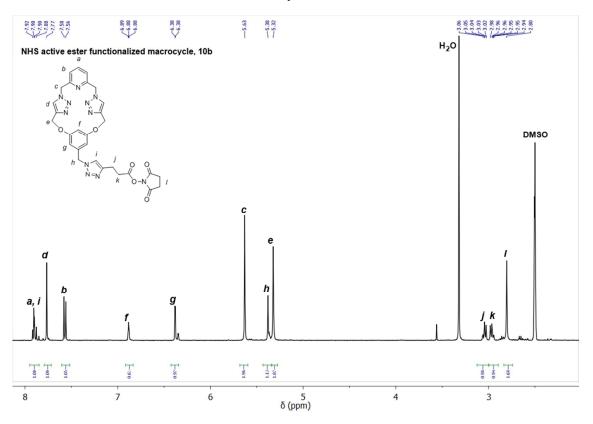
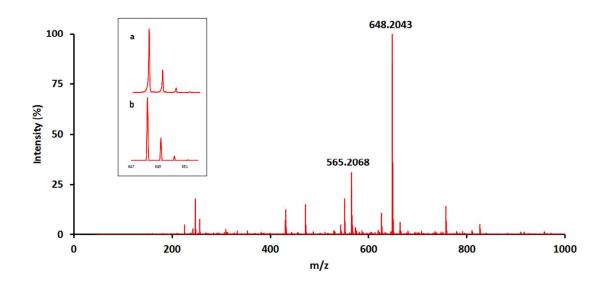
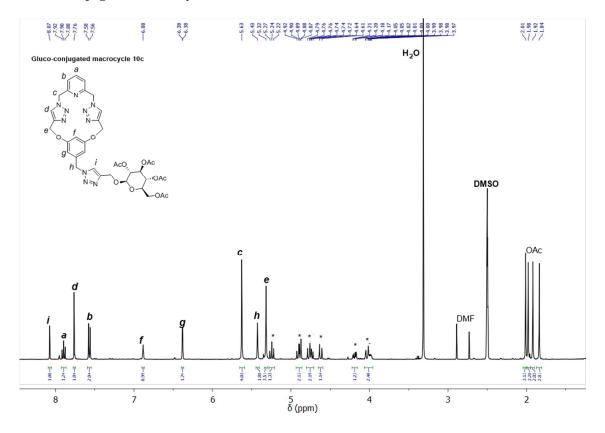




Figure S 9 ¹H NMR spectrum (400 MHz, DMSO- d_6 , 298 K) of macrocycle 10b.

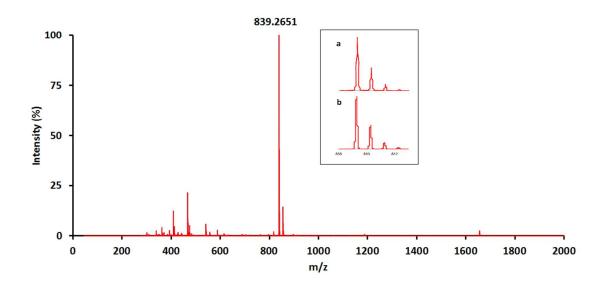


Figure S 10 HR-ESI-MS spectrum of macrocycle **10b**, inset a) observed and b) calculated isotopic patterns for the peak at m/z = 648.2043 due to $[10b+Na]^+$ ion, also showing peak due to $[10b-NHS+CH_3+Na]^+$ at m/z = 565.2068.

Gluco-conjugated macrocycle 10c

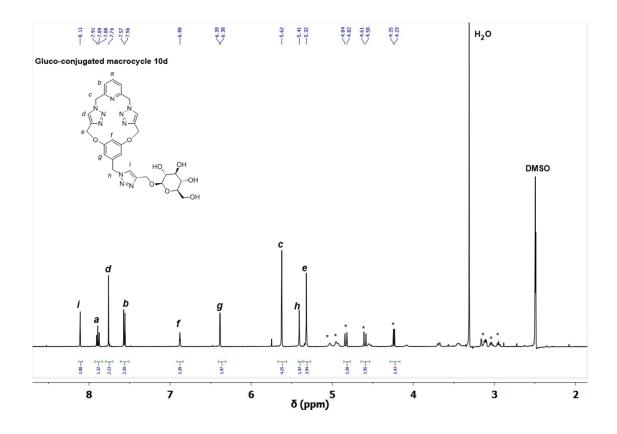


Figure S 11 ¹H NMR spectrum (400 MHz, DMSO- d_6 , 298 K) of macrocycle **10c** (* peaks from sugar molecule).

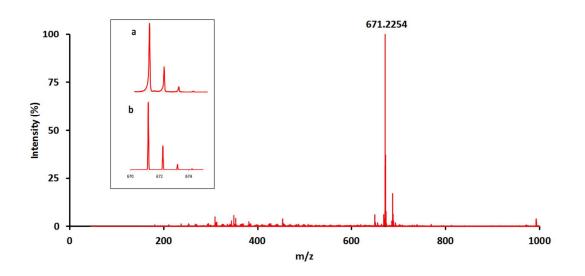


Figure S 12 HR-ESI-MS spectrum of macrocycle **10c**, inset a) observed and b) calculated isotopic patterns for the peak at m/z = 839.2651 due to $[10c+Na]^+$ ion.

Gluco-conjugated macrocycle 10d

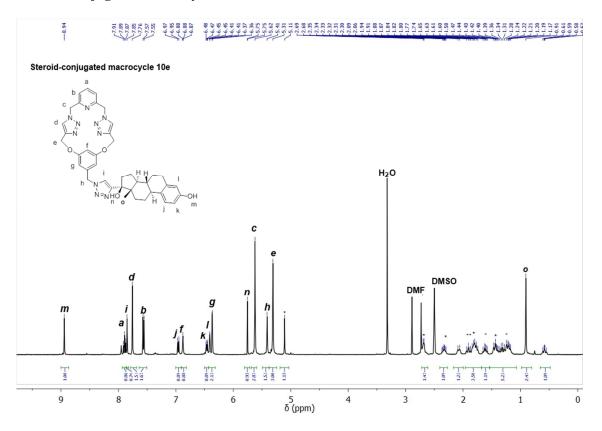


Figure S 13 ¹H NMR spectrum (500 MHz, DMSO- d_6 , 298 K) of macrocycle **10d** (* peaks from sugar molecule).

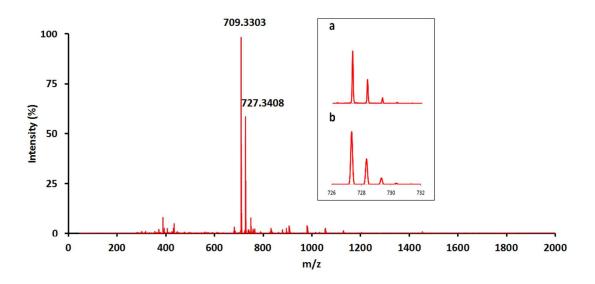


Figure S 14 HR-ESI-MS spectrum of macrocycle **10d**, inset a) observed and b) calculated isotopic patterns for the peak at m/z = 671.2254 due to $[10d+Na]^+$ ion.

Steroid-conjugated macrocycle 10e

Figure S 15 ¹H NMR spectrum (400 MHz, DMSO-*d*₆, 298 K) of macrocycle **10e** (* peaks from steroid molecule).

Figure S 16 HR-ESI-MS spectrum of macrocycle **10e**, inset a) observed and b) calculated isotopic patterns for the peak at m/z = 727.3408 due to $[10e+H]^+$ ion.

[Re(CO)₃(7)]Br, (7-Re)

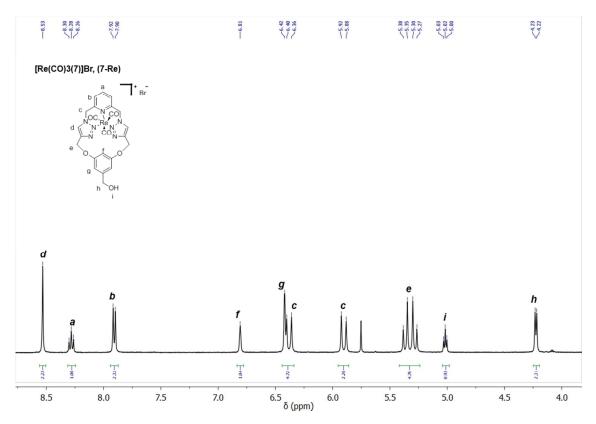
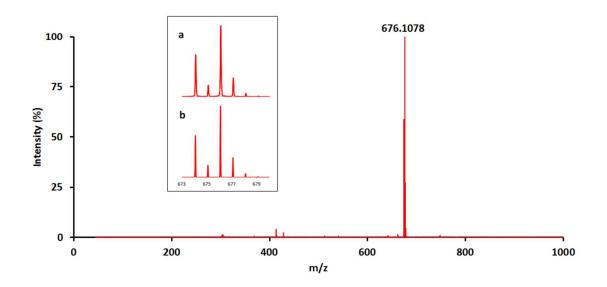



Figure S 17 ¹H NMR spectrum (400 MHz, DMSO- d_6 , 298 K) of macrocycle 7-Re.

Figure S 18 HR-ESI-MS spectrum of macrocycle **7-Re**, inset a) observed and b) calculated isotopic patterns for the peak at m/z = 676.1078 due to $[\text{Re}(\text{CO})_3+7]^+$ ion.

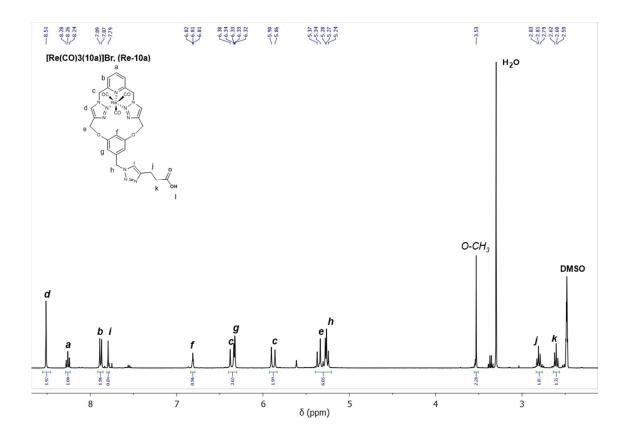
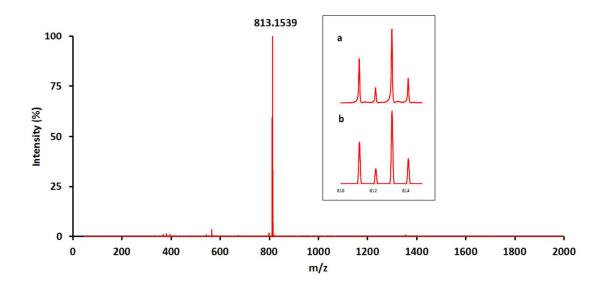



Figure S 19¹H NMR spectrum (400 MHz, DMSO-*d*₆, 298 K) of macrocycle Re-10a

Figure S 20 HR-ESI-MS spectrum of macrocycle **Re-10a** showing peaks at m/z = 813.1539 due to esterified complex **Re-10a**, inset a) observed and b) calculated isotopic patterns for the peak at m/z = 813.1539 due to $[\text{Re}(\text{CO})_3 + 10a(-\text{H+CH}_3)]^+$ ion.

[Re(CO)₃(10b)]Br, (Re-10b)

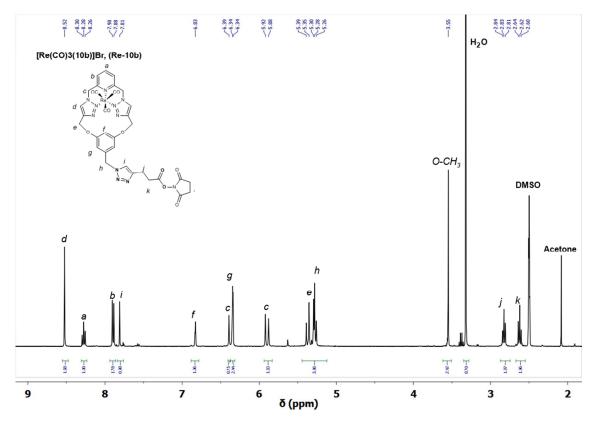
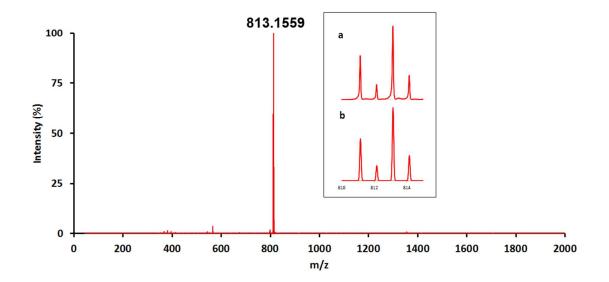
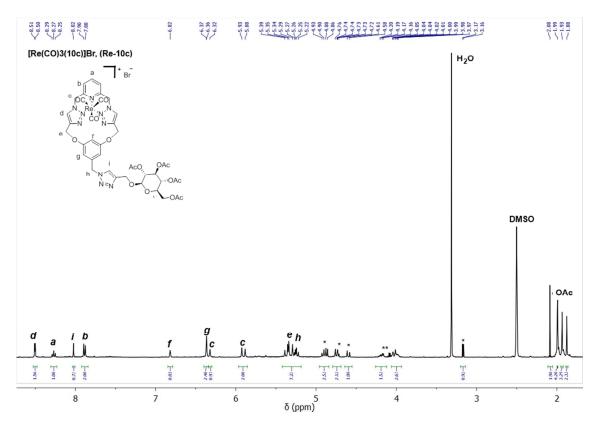




Figure S 21 ¹H NMR spectrum (400 MHz, DMSO-*d*₆, 298 K) of macrocycle Re-10b

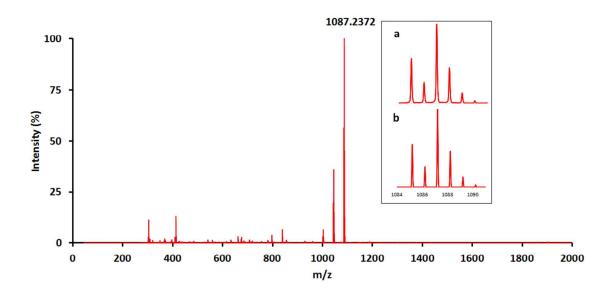


Figure S 22 HR-ESI-MS spectrum of macrocycle **Re-10b** showing peaks at m/z = 813.1559 due to esterified complex **Re-10b**, inset a) observed and b) calculated isotopic patterns for the peak at m/z = 813.1539 due to [Re(CO)₃+10a(-NHS+CH₃)]⁺ ion.

[Re(CO)₃(10c)]Br, (Re-10c)

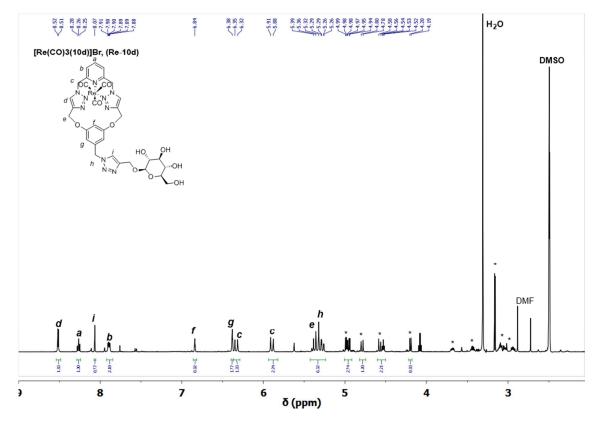


Figure S 23 ¹H NMR spectrum (400 MHz, DMSO-*d*₆, 298 K) of macrocycle **Re-10c** (* peaks from sugar molecule).

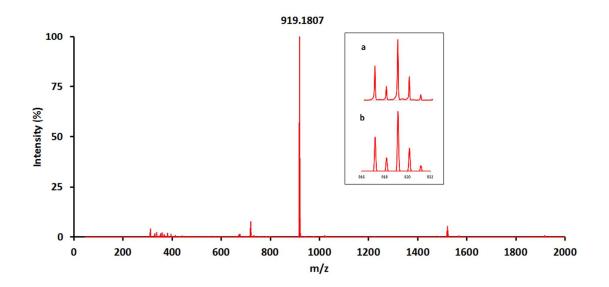


Figure S 24 HR-ESI-MS spectrum of macrocycle complex **Re-10c**, inset a) observed and b) calculated isotopic patterns for the peak at m/z = 1087.2372 due to $[\text{Re}(\text{CO})_3+10c]^+$ ion.

[Re(CO)₃(10d)]Br, (Re-10d)

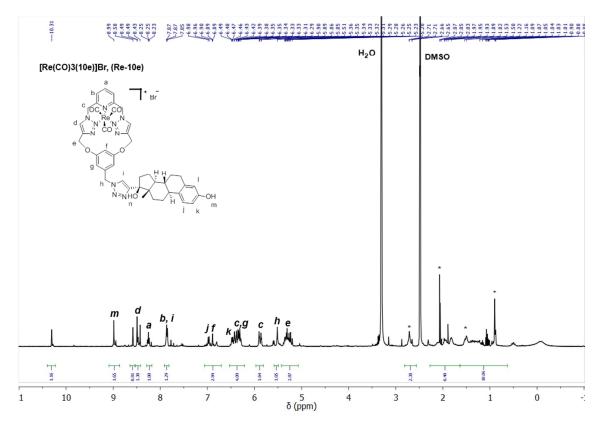


Figure S 25 ¹H NMR spectrum (500 MHz, DMSO-*d*₆, 298 K) of macrocycle **Re-10d** (* peaks from sugar molecule).

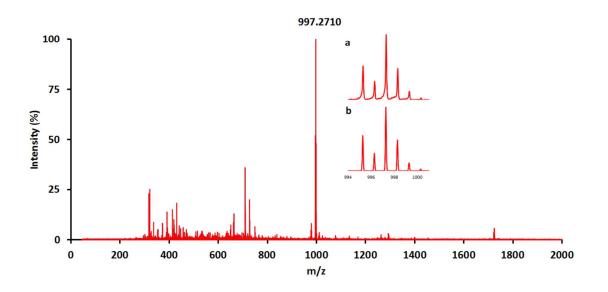


Figure S 26 HR-ESI-MS spectrum of macrocycle complex **Re-10d**, inset a) observed and b) calculated isotopic patterns for the peak at m/z = 919.1807 due to $[\text{Re(CO)}_3+10\text{d}]^+$ ion.

[Re(CO)₃(10e)]Br, (Re-10e)

Figure S 27 ¹H NMR spectrum (400 MHz, DMSO-*d*₆, 298 K) of macrocycle **Re-10e** (* peaks from steroid molecule)

Figure S 28 HR-ESI-MS spectrum of macrocycle **Re-10e**, inset a) observed and b) calculated isotopic patterns for the peak at m/z = 997.2710 due to $[\text{Re}(\text{CO})_3+10\text{e}]^+$ ion.

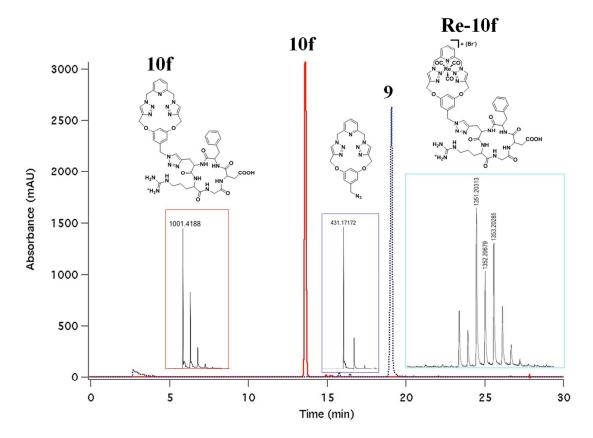
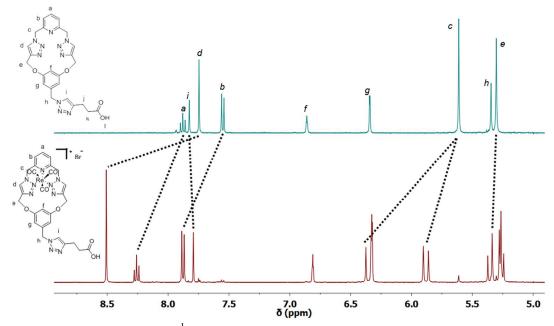
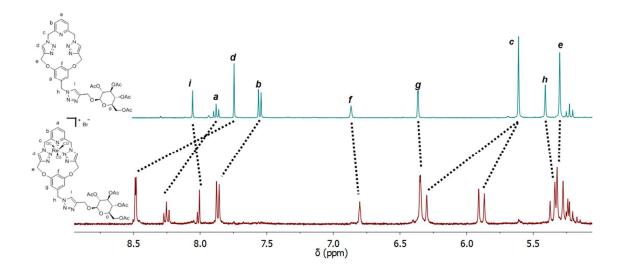
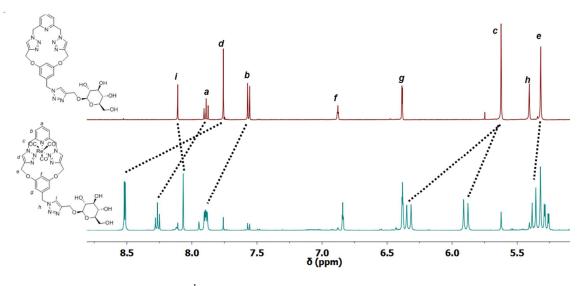




Figure S 29 RP-HPLC traces for 10f (Method: 0-60% CH₃CN), 9 (Method: 0-100% CH₃CN) and observed ESI-MS isotopic patterns for 10f (m/z = 1001.4188), 9 (m/z = 431.1717) and Re-10f (m/z = 1351.2031).


2 Selected stacked ¹H NMR spectra of the ligands and metal complexes

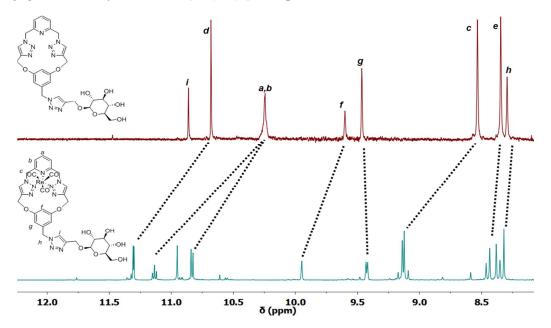

Figure S 30 Partial stacked ¹H NMR spectra (400 MHz, DMSO- d_6 , 298 K) of acidconjugated macrocycle **10a** and $[\text{Re}(\text{CO})_3]^+$ complex **Re-10a**.

Figure S 31 Partial stacked ¹H NMR spectra (400 MHz, DMSO- d_6 , 298 K) of sugarconjugated macrocycle **10c** and [Re(CO)₃]⁺ complex **Re-10c**.

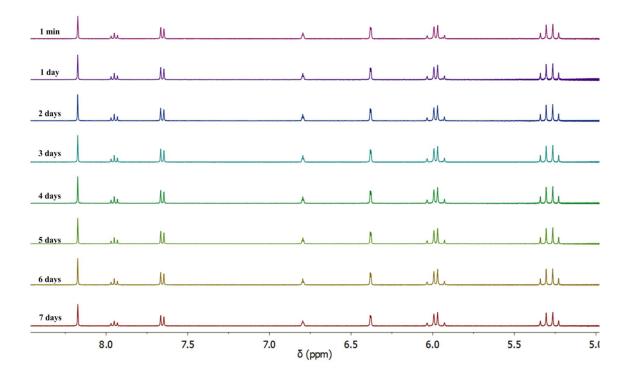
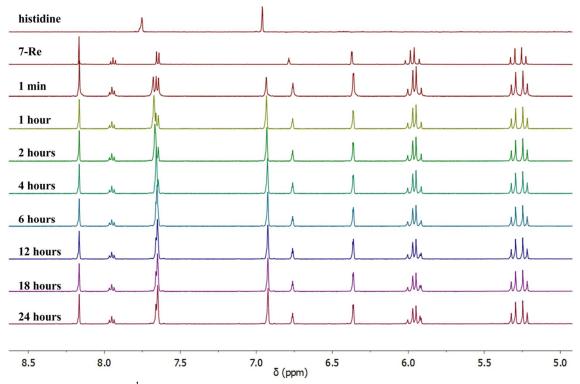


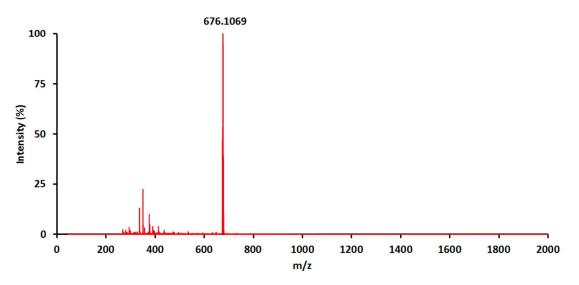
Figure S 32 Partial stacked ¹H NMR spectra (400 MHz, DMSO- d_6 , 298 K) of sugarconjugated macrocycle **10d** and [Re(CO)₃]⁺ complex **Re-10d**.

Figure S 33 Partial stacked ¹H NMR spectra (400 MHz, D₂O, 298 K) of sugar-conjugated macrocycle **10d** and $[Re(CO)_3]^+$ complex **Re-10d** showing aqueous solubility of both ligand and complex at room temperature.

3 Stability and Re(I) labelling experiments



3.1 Temperature Stability


Figure S 34 Partial ¹H NMR spectra (400 MHz, D_2O , 298 K) of the Re(I) complex, **7-Re** over a period of one week.

3.2 Histidine competition experiments

7-Re vs Histidine

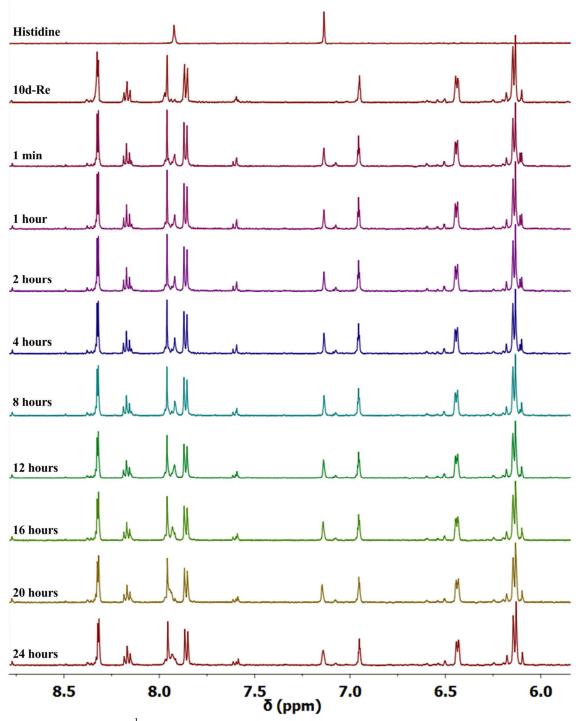


Figure S 35 Partial ¹H NMR spectra (500 MHz, D_2O , 313 K) of the histidine competition experiments showing top to bottom, histidine, the Re(I) complex 7-Re, and the reaction mixtures of both after specified interval of time over 24 hours

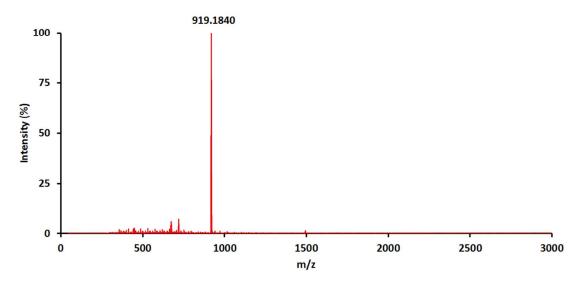


Figure S 36 HR-ESI-MS spectrum of the reaction mixture after completion of histidine competition experiment showing only major peak due to the $[\text{Re}(\text{CO})_3+7]^+$ ions at m/z = 676.1069

10d-Re vs Histidine

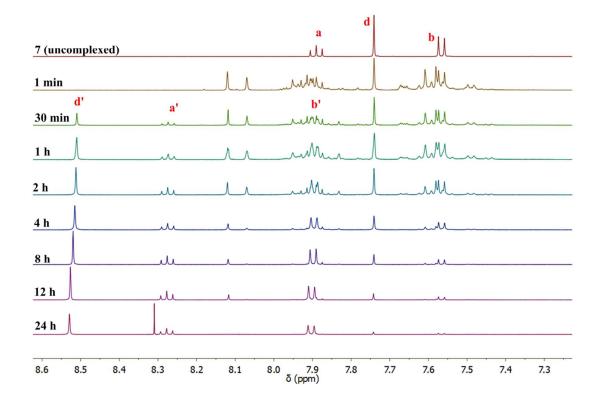


Figure S 37 Partial ¹H NMR spectra (500 MHz, D_2O , 313 K) of the histidine competition experiments showing top to bottom, histidine, the Re(I) complex **10d-Re**, and the reaction mixtures of both after specified interval of time over 24 hours

Figure S 38 HR-ESI-MS spectrum of reaction mixture after completion of histidine competition experiment showing only a major peak due to the $[\text{Re}(\text{CO})_3+10d]^+$ ions at m/z = 919.1840

3.3 Labelling experiment of 7-Re

Figure S 39 Partial ¹H NMR spectra (500 MHz, DMSO- d_6 , 298 K) of the labelling time experiments showing top to bottom, uncomplexed macrocycle 7, and the reaction mixture containing 7 and 7-Re after specified interval of time over 24 hours

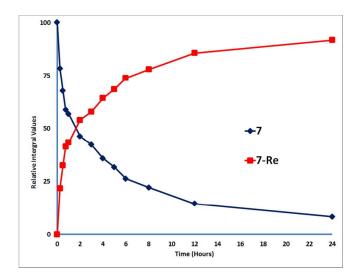
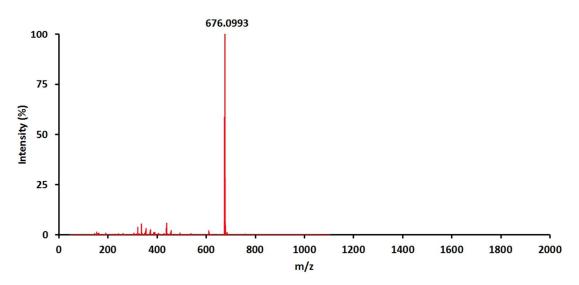
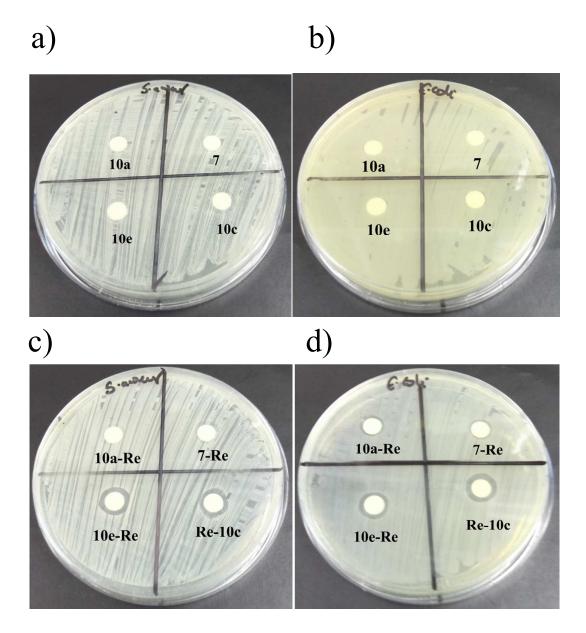




Figure S 40 Time vs integral values of the NMR labelling experiment of 7-Re

Figure S 41 HR-ESI-MS spectrum of reaction mixture after completion of labelling experiment showing only a major peak due to the $[\text{Re}(\text{CO})_3+7]^+$ ions at m/z 676.0993.

4 Antibacterial Activity

Figure S 42 a) & b) Disk diffusion assay of ligands on *S. aureus* and *E. coli*. c) & d) Disk diffusion assay of rhenium complexes on *S. aureus* and *E. coli*.

5 Photophysical Properties and Density Functional Theory Calculations

cryst	al structure	B3LYP		PBEO		CAM-B3L	/P	M06		M062X	
Bond I	ength (Å)	Bond Length (Å)	Error								
Re-N2	2.160	2.205	2.06%	2.175	0.67%	2.191	1.44%	2.200	1.86%	2.220	2.80%
Re-N4	2.252	2.306	2.41%	2.259	0.31%	2.285	1.48%	2.295	1.93%	2.324	3.19%
Re-Ne	2.158	2.207	2.27%	2.177	0.87%	2.193	1.64%	2.205	2.16%	2.225	3.12%
An	gle (°)	Angle (°)	Error								
N4-Re-N2	79.14	79.95	1.03%	80.46	1.66%	79.98	1.06%	79.76	0.79%	78.96	0.23%
N4-Re-Ne	80.44	79.90	0.68%	80.38	0.08%	79.93	0.63%	79.51	1.16%	78.69	2.18%
N2-Re-N6	86.14	89.72	4.15%	89.65	4.08%	89.45	3.84%	89.34	3.71%	89.13	3.47%

Table S 1 Calculated bond lengths and angles for 7-Re

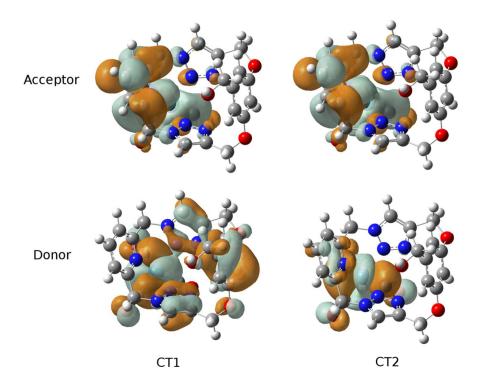
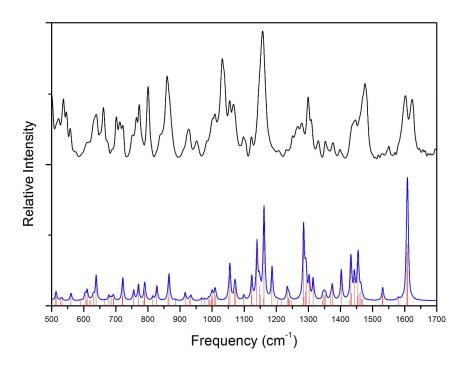



Figure S 43 Natural transitions orbitals for 7-Re using M062X/6-31G(d)-LANL2DZ

Figure S 44 ATR-IR spectrum of **7-Re** (top) and Calculated IR spectrum using CAM-B3LYP/6-31G(d)-LANL2DZ (bottom)

6 X-Ray data collection and refinement

6.1 Macrocycle (7)

X-Ray data for 7 was recorded using a Bruker APEX II CCD diffractometer using Mo-K α radiation ($\lambda = 0.71073$ Å). The structure was solved in the monoclinic space group C2/c and refined to a R_1 value 7.2%. Hydrogen atoms were placed in calculated positions and refined using a riding model.

6.2 Re(I) complex of macrocycle (7-Re)

X-Ray data for **7-Re** was recorded using a Bruker APEX II CCD diffractometer using Mo-K α radiation ($\lambda = 0.71073$ Å). The structure was solved in triclinic space group $P\overline{1}$ using Fourier methods and refined using SHELXL¹ to a R_1 value 6.3%. Hydrogen atoms were placed in calculated positions and refined using a riding model.

6.3 Re(I) complex of macrocycle (Re-10a)

X-ray data for macrocycle **Re-10a** was collected at 100 K on a CrysAlisPro², Agilent Technologies diffractometer using Mo-K α radiation ($\lambda = 0.71073$ Å). The structure was solved by direct methods and refined against F^2 using anisotropic thermal displacement parameters for all non-hydrogen atoms using the xSeed³ and SHELXS-97⁴ program to a R_1 value 5.7%. Hydrogen atoms were placed in calculated positions and refined using a riding model. The crystal lattice contained a small amount of diffuse electron density that could not be appropriately modelled. The SQUEEZE routine within PLATON was employed to resolve this problem. Void electron count of 58 electrons can be accounted for by four molecules of water (10 electrons each) and a molecule of methanol (18 electrons) to give a total electron count of 58.

6.4 Structure Refinement Data

CCDC	991260	991260				
Empirical formula	$C_{20}H_{19}N_7O_3$	$C_{20}H_{19}N_7O_3$				
Formula weight	405.42	405.42				
Temperature	93(2) K	93(2) K				
Wavelength	0.71073 Å					
Crystal system	Monoclinic	Monoclinic				
Space group	C_2/c	C_2/c				
Unit cell dimensions	a = 8.918(3) Å	$\alpha = 90^{\circ}$.				
	b = 16.352(4) Å	$\beta = 96.008(11)^{\circ}.$				
	c = 25.482(7) Å	$\gamma = 90^{\circ}$.				
Volume	3695.7(17) Å ³					
Z	8					
Density (calculated)	1.457 Mg/m ³	1.457 Mg/m ³				
Absorption coefficient	0.103 mm ⁻¹	0.103 mm ⁻¹				
F(000)	1696	1696				
Crystal size	0.22 x 0.21 x 0.05 m	0.22 x 0.21 x 0.05 mm ³				
Theta range for data collection	1.61 to 20.21°.	1.61 to 20.21°.				
Index ranges	-8<=h<=8, -15<=k<=	-8<=h<=8, -15<=k<=15, -24<=l<=24				
Reflections collected	11510	11510				
Independent reflections	1761 [R(int) = 0.082	1761 [R(int) = 0.0826]				
Completeness to theta = 20.21°	99.5 %	99.5 %				
Absorption correction	Semi-empirical from	Semi-empirical from equivalents				
Max. and min. transmission	0.9949 and 0.9777	0.9949 and 0.9777				
Refinement method	Full-matrix least-squ	Full-matrix least-squares on F ²				
Data / restraints / parameters	1761 / 0 / 273	1761 / 0 / 273				
Goodness-of-fit on F ²	1.144	1.144				
Final R indices [I>2sigma(I)]	R1 = 0.0725, wR2 =	R1 = 0.0725, $wR2 = 0.1684$				
R indices (all data)	R1 = 0.0873, wR2 =	R1 = 0.0873, $wR2 = 0.1800$				
Extinction coefficient	0.0024(5)	0.0024(5)				
Largest diff. peak and hole	0.332 and -0.250 e.Å	0.332 and -0.250 e.Å ⁻³				

 Table S2 Crystal data and structure refinement for macrocycle 7

CCDC	991258				
Empirical formula	C ₂₃ H ₁₉ BrN ₇ O ₆ Re	C ₂₃ H ₁₉ BrN ₇ O ₆ Re			
Formula weight	755.56	755.56			
Temperature	89(2) K	89(2) K			
Wavelength	0.71073 Å				
Crystal system	Triclinic				
Space group	$P\overline{1}$				
Unit cell dimensions	a = 9.5826(17) Å	$\alpha = 66.484(11)^{\circ}.$			
	b = 11.031(2) Å	$\beta = 76.119(11)^{\circ}.$			
	c = 13.594(3) Å	$\gamma = 70.788(11)^{\circ}$.			
Volume	1234.5(4) Å ³				
Z	2				
Density (calculated)	2.033 Mg/m ³ 6.595 mm ⁻¹ 728 0.15 x 0.12 x 0.05 mm ³ 1.65 to 26.54°. -11<=h<=11, -13<=k<=13, -17<=1<=17 32686 5000 [R(int) = 0.0988] 97.6 %				
Absorption coefficient					
F(000)					
Crystal size					
Theta range for data collection					
Index ranges					
Reflections collected					
Independent reflections					
Completeness to theta = 26.54°					
Absorption correction	Semi-empirical from equivalents				
Max. and min. transmission	0.7339 and 0.4379				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	5000 / 0 / 344				
Goodness-of-fit on F ²	1.070				
Final R indices [I>2sigma(I)]	R1 = 0.0633, $wR2 = 0.1573$				
R indices (all data)	R1 = 0.0996, $wR2 = 0.1866$				
Largest diff. peak and hole	3.019 and -2.161 e.Å ⁻³				

 Table S3 Crystal data and structure refinement for Re(I) complex 7-Re

5					
ССРС	991259				
Empirical formula	C29H26BrN10O7Re				
Formula weight	892.71				
Temperature	100.0(1) K				
Wavelength	0.71073 Å				
Crystal system	Triclinic				
Space group	$P\overline{1}$				
Unit cell dimensions	a = 10.4722(4) Å	$\alpha = 93.303(3)^{\circ}$.			
	b = 16.0868(8) Å	$\beta = 90.356(3)^{\circ}$.			
	c = 23.1434(7) Å	$\gamma = 108.644(4)^{\circ}$.			
Volume	3686.8(3) Å ³				
Z	4				
Density (calculated)	1.608 Mg/m ³				
Absorption coefficient	4.434 mm ⁻¹				
F(000)	1744				
Crystal size	0.20 x 0.17 x 0.06 mm	m ³			
Theta range for data collection	2.88 to 26.37°.				
Index ranges	-13<=h<=12, -20<=k	<=20, -28<=1<=28			
Reflections collected	31782				
Independent reflections	14778 [R(int) = 0.048	33]			
Completeness to theta = 26.37°	98.6 %				
Absorption correction	Semi-empirical from	equivalents			
Max. and min. transmission	0.7768 and 0.4708	0.7768 and 0.4708			
Refinement method	Full-matrix least-squa	ares on F ²			
Data / restraints / parameters	14778 / 35 / 869				
Goodness-of-fit on F ²	1.043				
Final R indices [I>2sigma(I)]	R1 = 0.0572, wR2 = 0	0.1491			
R indices (all data)	R1 = 0.0772, wR2 = 0	R1 = 0.0772, $wR2 = 0.1598$			
Largest diff. peak and hole	2.784 and -2.246 e.Å ⁻	3			

 Table S4
 Crystal data and structure refinement for Re-10a

	7- R e	Re-10a	$[\text{Re(CO)}_{3}(4 \text{ R} = \text{C}_{3}\text{H}_{7})]\text{PF}_{6}^{5}$			
Bond Lenghts (Å)						
Re(1)-C(30)/C(29)	1.907(11)	1.906(9)	1.928(9)			
Re(1)-C(32)/C(27)	1.917(14)	1.926(10)	1.924(5)			
Re(1)-C(31)/C(28)	1.921(16)	1.934(10)	1.934(8)			
Re(1)-N(6)	2.158(9)	2.179(6)	2.173(3)			
Re(1)-N(2)/N(3)	2.159(9)	2.171(6)	2.155(4)			
Re(1)-N(4)/N(1)	2.252(11)	2.241(6)	2.252(3)			
	Bond Ar	ngles (°)				
C(29) /C(30)-Re(1)-N(6)	92.9(5)	90.8(3)	91.47(16)			
C(27)/C(32)-Re(1)-N(6)	178.4(4)	175.8(3)	176.92(15)			
C(28)/C(31)-Re(1)-N(6)	91.7(4)	94.5(3)	94.64(16)			
C(29)/C(30)-Re(1)-N(2)/N(3)	178.8(4)	177.5(3)	177.96(15)			
C(27)/C(32)-Re(1)-N(2)/N(3)	95.5(4)	96.3(3)	95.55(16)			
C(28)/C(31)-Re(1)-N(2)/N(3)	91.7(4)	92.5(3)	91.77(17)			
N(6)-Re(1)-N(2)/N(3)	86.1(3)	86.9(2)	79.9(2)			
C(29)/C(30)-Re(1)-N(4)/N(1)	101.3(5)	101.8(3)	101.35(16)			
C(27)/C(32)-Re(1)-N(4)/N(1)	100.3(5)	98.5(3)	97.88(15)			
C(28)/C(31)-Re(1)-N(4)/N(1)	168.2(4)	169.6(3)	169.64(15)			
N(6) -Re(1)-N(4)/ N(1)	80.3(4)	79.6(2)	80.9(2)			
N(3)/N(2)-Re(1)-N(4)/N(1)	79.1(3)	78.7(2)	78.95(13)			

Table S5 Selected bond lengths (Å) and angles (°) for 7-Re, Re-10a and similar acyclic complex $[Re(CO)_3(4 \ R = C_3H_7)]PF_6$ (atom labels in bold correspond to the labelling of structure **Re-10a** in **Figure S19**)

7 References

- 1. Sheldrick, G. M., Act. Crys. Sec. A: Found. Crys. 2008, A64, 112-122.
- 2. CrysAlisPro, Agilent Technologies: Yarnton, Oxfordshire, England, 2012.
- 3. Barbour, L. J., J. Supramol. Chem. 2001, 1, 189-191.
- 4. Sheldrick, G., Acta Cryst. 2008, A64, 112-122.
- Anderson, C. B.; Elliott, A. B. S.; Lewis, J. E. M.; McAdam, C. J.; Gordon, K. C.; Crowley, J. D., *Dalton Trans.* 2012, 41, 14625-14632.