Supporting Information

Extraction of Phenols from Water with Functionalized Ionic Liquids

Yunchang Fan, Yun Li, Xing Dong, Guitao Hu, Shaofeng Hua, Juan Miao*, Dongdong Zhou College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, China
*Corresponding author. E-mail address: juanmiao2013@163.com Tel.: +863913987823, Fax: +863913987815 .

I. Synthesis of ILs

1. $\left[\mathrm{C}_{4} \mathrm{C}_{7} \mathrm{im}\right] \mathrm{PF}_{6}$

1-Bromoheptane (0.2 mol) was added dropwise to N -butylimidazole (0.2 mol) under $50{ }^{\circ} \mathrm{C}$ over 20 min and then the mixture was kept at $70{ }^{\circ} \mathrm{C}$ for 10 h under stirring; the resultant sticky product $\left(\left[\mathrm{C}_{4} \mathrm{C}_{7} \mathrm{im}\right] \mathrm{Br}\right)$ was dissolved with 30 mL of water, followed by the addition of 0.2 mol of KPF_{6}. After stirring for 1 h , two phases formed where the bottom phase was $\left[\mathrm{C}_{4} \mathrm{C}_{7} \mathrm{im}\right] \mathrm{PF}_{6}$; after decanting the top phase, 10 mL of water was added to wash the IL phase; this was repeated several times until Br^{-}free, as indicated by the AgNO_{3} test of the water washings. After vacuum drying 24 h at $75^{\circ} \mathrm{C},\left[\mathrm{C}_{4} \mathrm{C}_{7} \mathrm{im}\right] \mathrm{PF}_{6}$ was obtained as a light yellow liquid (90% yield).

2. $\left[\mathrm{C}_{4} \mathrm{C}_{7} \mathrm{im}\right] \mathrm{BF}_{4}$

This synthesis followed the same procedure as for $\left[\mathrm{C}_{4} \mathrm{C}_{7} \mathrm{im}\right] \mathrm{PF}_{6}$ described above, although NaBF_{4} was used instead of $\mathrm{KPF}_{6} ;\left[\mathrm{C}_{4} \mathrm{C}_{7} \mathrm{im}\right] \mathrm{BF}_{4}$ was a light yellow liquid and the yield was 79%.

3. $\left[\mathrm{C}_{4} \mathrm{C}_{7} \mathrm{im}\right] \mathrm{NTf}_{2}$

As for the preparation of $\left[\mathrm{C}_{4} \mathrm{C}_{7} \mathrm{im}\right] \mathrm{PF}_{6}$ except LiNTf_{2} was employed to afford $\left[\mathrm{C}_{4} \mathrm{C}_{7} \mathrm{im}\right] \mathrm{NTf}_{2}$ as a light yellow liquid (92% yield).

4. $\left[\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{OHim}\right] \mathrm{PF}_{6}$

N-Butylimidazole (0.2 mol) was mixed with 6-chloro-1-hexanol (0.2 mol); this mixture was stirred at $70^{\circ} \mathrm{C}$ for 10 h , the resulting sticky product $\left(\left[\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{OHim}\right] \mathrm{Cl}\right)$ was dissolved with 30 mL of water, followed by the addition of 0.2 mol of KPF_{6}. After stirring for 1 h , two phases formed where the bottom phase was $\left[\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{OHim}\right] \mathrm{PF}_{6}$; after decanting the top phase, 10 mL of water was added to wash the IL phase; this was repeated several times until Cl^{-}free, as indicated by the AgNO_{3} test of the water washings. After vacuum drying 24 h at $75^{\circ} \mathrm{C},\left[\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{OHim}\right] \mathrm{PF}_{6}$ was obtained as a light yellow liquid (70% yield).

5. $\left[\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{OHim}\right] \mathrm{BF}_{4}$

Briefly, 0.2 mol of $\left[\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{OHim}\right] \mathrm{Cl}$ (following the same synthesis procedure described above), was dissolved with 30 mL of water, and then 0.4 mol of NaBF_{4} was added; the mixture was stirred for 2 h and two phases formed. The upper phase was $\left[\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{OHim}\right] \mathrm{BF}_{4}$, after phase separation with a separatory funnel (100 $\mathrm{mL}),\left[\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{OHim}\right] \mathrm{BF}_{4}$ was dissolved with 20 mL of dichloromethane and washed with aliquots of water until Cl^{-}free, as indicated by the AgNO_{3} test of the water washings. After vacuum drying 24 h at $75{ }^{\circ} \mathrm{C}$, $\left[\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{OHim}\right] \mathrm{BF}_{4}$ was obtained as a light yellow liquid (15\% yield).

6. $\left[\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{OHim}\right] \mathrm{NTf}_{2}$

As for the preparation of $\left[\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{OHim}\right] \mathrm{PF}_{6}$ except LiNTf_{2} was employed to afford $\left[\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{OHim}\right] \mathrm{NTf}_{2}$ as a light yellow liquid (85% yield).

7. $\left[\mathrm{C}_{4} \mathrm{C}_{8} \mathrm{OHim}\right] \mathrm{PF}_{6}$

As for the preparation of $\left[\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{OHim}\right] \mathrm{PF}_{6}$ except 8-chloro-1-octanol was employed to afford [$\left.\mathrm{C}_{4} \mathrm{C}_{8} \mathrm{OHim}\right] \mathrm{PF}_{6}$ as a light yellow liquid (82% yield).

8. $\left[\mathrm{C}_{4} \mathrm{C}_{8} \mathrm{OHim}\right] \mathrm{BF}_{4}$

As for the preparation of $\left[\mathrm{C}_{4} \mathrm{C}_{8} \mathrm{OHim}\right] \mathrm{PF}_{6}$ except NaBF_{4} was employed to afford $\left[\mathrm{C}_{4} \mathrm{C}_{8} \mathrm{OHim}\right] \mathrm{BF}_{4}$ as a light yellow liquid (61\% yield).

9. $\left[\mathrm{C}_{4} \mathrm{C}_{8} \mathrm{OHim}\right] \mathrm{NTf}_{2}$

As for the preparation of $\left[\mathrm{C}_{4} \mathrm{C}_{8} \mathrm{OHim}\right] \mathrm{PF}_{6}$ except LiNTf_{2} was employed to afford $\left[\mathrm{C}_{4} \mathrm{C}_{8} \mathrm{OHim}\right] \mathrm{NTf}_{2}$ as a light yellow liquid (86% yield).

10. $\left[\mathrm{C}_{4} \mathrm{C}_{9} \mathrm{im}\right] \mathrm{PF}_{6}$

As for the preparation of $\left[\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{OHim}\right] \mathrm{PF}_{6}$ except 1-chlorononane was used to react with equal molar amount (0.2 mol) of N -butylimidazole to afford $\left[\mathrm{C}_{4} \mathrm{C}_{9} \mathrm{im}\right] \mathrm{PF}_{6}$ as a colorless liquid (91% yield).

11. $\left[\mathrm{C}_{4} \mathrm{C}_{9} \mathrm{im}\right] \mathrm{BF}_{4}$

As for the preparation of $\left[\mathrm{C}_{4} \mathrm{C}_{9} \mathrm{im}\right] \mathrm{PF}_{6}$ except NaBF_{4} was employed to afford $\left[\mathrm{C}_{4} \mathrm{C}_{9} \mathrm{im}\right] \mathrm{BF}_{4}$ as a colorless liquid (83% yield).

12. $\left[\mathrm{C}_{4} \mathrm{C}_{9} \mathrm{im}\right] \mathrm{NTf}_{2}$

As for the preparation of $\left[\mathrm{C}_{4} \mathrm{C}_{9} \mathrm{im}\right] \mathrm{PF}_{6}$ except LiNTf_{2} was employed to afford $\left[\mathrm{C}_{4} \mathrm{C}_{9} \mathrm{im}\right] \mathrm{NTf}_{2}$ as a colorless liquid (95\% yield).

13. $\left[\mathrm{C}_{4} \mathrm{C}_{12} \mathrm{im}\right] \mathrm{PF}_{6}$

As for the preparation of $\left[\mathrm{C}_{4} \mathrm{C}_{9} \mathrm{im}\right] \mathrm{PF}_{6}$ except 1-chlorododecane was employed to afford $\quad\left[\mathrm{C}_{4} \mathrm{C}_{12} \mathrm{im}\right] \mathrm{PF}_{6}$ as a colorless liquid (92% yield).

14. $\left[\mathrm{C}_{4} \mathrm{C}_{12} \mathrm{im}\right] \mathrm{BF}_{4}$

As for the preparation of $\left[\mathrm{C}_{4} \mathrm{C}_{12} \mathrm{im}\right] \mathrm{PF}_{6}$ except NaBF_{4} was employed to afford $\left[\mathrm{C}_{4} \mathrm{C}_{12} \mathrm{im}\right] \mathrm{BF}_{4}$ as a colorless liquid (90\% yield).

15. $\left[\mathrm{C}_{4} \mathrm{C}_{\mathbf{1 2}} \mathrm{imm}^{2}\right] \mathrm{NTf}_{2}$

As for the preparation of $\left[\mathrm{C}_{4} \mathrm{C}_{12} \mathrm{im}\right] \mathrm{PF}_{6}$ except LiNTf_{2} was employed to afford $\left[\mathrm{C}_{4} \mathrm{C}_{12} \mathrm{im}\right] \mathrm{NTf}_{2}$ as a colorless liquid (96% yield).

16. $\left[\mathrm{C}_{4} \mathrm{C}_{11} \mathrm{OHim}\right] \mathrm{PF}_{6}$

Briefly, 0.2 mol of 11-bromo-1-undecanol was dissolved with 40 mL of acetonitrile, and then 0.2 mol of

N -butylimidazole was added; this mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 12 h . After removing acetonitrile under reduced pressure evaporation, the resulting product $\left(\left[\mathrm{C}_{4} \mathrm{C}_{11} \mathrm{OHim}\right] \mathrm{Br}\right)$ was dissolved with 30 mL of water, followed by the addition of 0.2 mol of KPF_{6}; After stirring for 1 h , two phases formed where the bottom phase was $\left[\mathrm{C}_{4} \mathrm{C}_{11} \mathrm{OHim}^{2}\right] \mathrm{PF}_{6}$; after decanting the top phase, 10 mL of water was added to wash the IL phase; this was repeated several times until Br^{-}free, as indicated by the AgNO_{3} test of the water washings. After vacuum drying 24 h at $75{ }^{\circ} \mathrm{C},\left[\mathrm{C}_{4} \mathrm{C}_{11} \mathrm{OHim}\right] \mathrm{PF}_{6}$ was obtained as a light yellow liquid (91% yield).

17. $\left[\mathrm{C}_{4} \mathrm{C}_{11} \mathrm{OHim}\right] \mathrm{BF}_{4}$

As for the preparation of $\left[\mathrm{C}_{4} \mathrm{C}_{11} \mathrm{OHim}\right] \mathrm{PF}_{6}$ except NaBF_{4} was employed to afford $\left[\mathrm{C}_{4} \mathrm{C}_{11} \mathrm{OHim}\right] \mathrm{BF}_{4}$ as a light yellow liquid (89% yield).

18. $\left[\mathrm{C}_{4} \mathrm{C}_{11} \mathrm{OHim}\right] \mathrm{NTf}_{2}$

As for the preparation of $\left[\mathrm{C}_{4} \mathrm{C}_{11} \mathrm{OHim}\right] \mathrm{PF}_{6}$ except LiNTf_{2} was employed to afford $\left[\mathrm{C}_{4} \mathrm{C}_{11} \mathrm{OHim}\right] \mathrm{NTf}_{2}$ as a light yellow liquid (92% yield).

19. $\left[\mathrm{C}_{4}\right.$ Beim $] \mathrm{PF}_{6}$

Briefly, 0.2 mol of N -benzylimidazole was dissolved with 40 mL of acetonitrile, and then 0.2 mol of 1-bromobutane was added; this mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 12 h . After removing acetonitrile under reduced pressure evaporation, the resulting product $\left(\left[\mathrm{C}_{4} \mathrm{Beim}\right] \mathrm{Br}\right)$ was dissolved with 30 mL of water, followed by the addition of 0.2 mol of KPF_{6}. After stirring for 1 h at $60{ }^{\circ} \mathrm{C}$, two phases formed where the bottom phase was $\left[\mathrm{C}_{4} \mathrm{Beim}\right] \mathrm{PF}_{6}$; after decanting the top phase, 10 mL of hot water $\left(60{ }^{\circ} \mathrm{C}\right)$ was added to wash the IL phase; this was repeated several times until Br^{-}free, as indicated by the AgNO_{3} test of the water washings. After vacuum drying 24 h at $75{ }^{\circ} \mathrm{C},\left[\mathrm{C}_{4} \mathrm{Beim}\right] \mathrm{PF}_{6}$ was obtained as a light yellow solid (melting point: $48-50^{\circ} \mathrm{C}, 85 \%$ yield).

20. $\left[\mathrm{C}_{4}\right.$ Beim $] \mathrm{BF}_{4}$

As for the preparation of $\left[\mathrm{C}_{4} \mathrm{Beim}\right] \mathrm{PF}_{6}$ except NaBF_{4} was employed and the ion exchange of $\left[\mathrm{C}_{4} \mathrm{Beim}\right] \mathrm{Br}$
and NaBF_{4} and the IL phase washing process were conducted at room temperature; $\quad\left[\mathrm{C}_{4} \mathrm{Beim}\right] \mathrm{BF}_{4}$ was a light yellow liquid (62% yield).

21. $\left[\mathrm{C}_{4}\right.$ Beim $]$ NTf $_{2}$

As for the preparation of $\left[\mathrm{C}_{4} \mathrm{Beim}\right] \mathrm{BF}_{4}$ except LiNTf_{2} was employed to afford $\left[\mathrm{C}_{4} \mathrm{Beim}\right] \mathrm{NTf}_{2}$ as a light yellow liquid (87\% yield).

II. Characterization of the Synthesized ILs.

All the synthesized ILs were characterized with NMR spectra (Bruker, AV-400, Karlsruhe, Germany) and elemental analysis (FLASH 2000 analyzer, Thermo Fisher Scientific, Belmont, MA, USA), the identification of signals of solvent residue and trace water in solvent was referred to the Fulmer's work (Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg. K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176.).

Fig. S1 ${ }^{1} \mathrm{HNMR}$ (a) and ${ }^{13} \mathrm{CNMR}$ (b) spectra of $\left[\mathrm{C}_{4} \mathrm{C}_{12} \mathrm{im}\right] \mathrm{PF}_{6}$; solvent: $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$.
${ }^{1}$ HNMR: 0.841-0.924 $(6 \mathrm{H}, \mathrm{m}), 1.247-1.298(20 \mathrm{H}, \mathrm{m}), 1.775-1.829(4 \mathrm{H}, \mathrm{m}), 3.371$ (signal of trace water in solvent), 4.176-4.217 (4H, m), $7.774(2 \mathrm{H}, \mathrm{s}), 9.134(1 \mathrm{H}, \mathrm{s})$;
${ }^{13}$ CNMR: 13.514, 14.218, 19.208, 22.600, 25.965, 28.861, 29.274, 29.368, 29.467, 29.570, 29.580, 29.762, 31.762, 31.834, 49.073, 49.344, 122.812, 136.344.

Elemental analysis (\%, calc.): C 52.2 (52.1), H 8.4 (8.5), N 6.4 (6.4).

Fig. S2 ${ }^{1} \mathrm{HNMR}$ (a) and ${ }^{13} \mathrm{CNMR}$ (b) spectra of $\left[\mathrm{C}_{4} \mathrm{C}_{12} \mathrm{im}\right] \mathrm{BF}_{4}$; solvent: $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$.
${ }^{1}$ HNMR: 0.849-0.934 ($6 \mathrm{H}, \mathrm{m}$), 1.255-1.319 $(20 \mathrm{H}, \mathrm{m}), 1.778-1.847(4 \mathrm{H}, \mathrm{m}), 3.384$ (signal of trace water in solvent), 4.163-4.205 (4H, m), 7.757-7.760 (2H, d), $9.165(1 \mathrm{H}, \mathrm{s})$;
${ }^{13}$ CNMR: 13.515, 14.190, 19.204, 22.611, 25.986, 28.910, 29.291, 29.416, 29.508, 29.588, 29.616, 29.832, 31.819, 31.860, 49.046, 49.304, 122.831, 136.313.

Elemental analysis (\%, calc.): C 60.2 (60.0), H 9.8 (9.8), N 7.3 (7.4).

Fig. S3 ${ }^{1} \mathrm{HNMR}$ (a) and ${ }^{13} \mathrm{CNMR}$ (b) spectra of $\left[\mathrm{C}_{4} \mathrm{C}_{12} \mathrm{im}\right] \mathrm{NTf}_{2}$; solvent: $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$.
${ }^{1}$ HNMR: 0.833-0.919 ($6 \mathrm{H}, \mathrm{m}$), $1.235(20 \mathrm{H}, \mathrm{s}), 1.740-1.792(4 \mathrm{H}, \mathrm{m}), 2.501$ (solvent residual signal), 3.336 (signal of trace water in solvent), 4.133-4.182 (4H, m), $7.791(2 \mathrm{H}, \mathrm{s}), 9.191(1 \mathrm{H}, \mathrm{s})$;
${ }^{13}$ CNMR: 13.657, 14.351, 19.217, 22.544, 25.919, 28.768, 29.171, 29.276, 29.355, 29.473, 29.708, 31.734, $31.747,49.044,49.315,118.349,121.556,122.906,136.391$.

Elemental analysis (\%, calc.): C 44.5 (44.0), H 6.4 (6.5), N 7.2 (7.3), S 11.4 (11.2).

Fig. S4 ${ }^{1} \mathrm{HNMR}$ (a) and ${ }^{13} \mathrm{CNMR}$ (b) spectra of $\left[\mathrm{C}_{4} \mathrm{C}_{11} \mathrm{OHim}\right] \mathrm{BF}_{4}$; solvent: CDCl_{3}.
${ }^{1}$ HNMR: 0.802-0.838 (3H, t), 1.140-1.258 (16H, m), 1.396-1.431 ($\left.2 \mathrm{H}, \mathrm{t}\right), 1.725-1.760(4 \mathrm{H}, \mathrm{m}), 2.543(1 \mathrm{H}, \mathrm{s})$, 3.450-3.484 (2H, t), 4.030-4.078 (4H, m), 7.271-7.281 (2H, m), $8.452(1 \mathrm{H}, \mathrm{s})$;
${ }^{13}$ CNMR: 13.120, 19.138, 25.595, 25.917, 28.700, 29.121, 29.214, 29.237, 29.352, 29.811, 31.685, 32.537, 49.626, 49.900, 62.524, 122.317, 122.386, 134.766.

Elemental analysis (\%, calc.): C 56.0 (56.6), H 9.3 (9.2), N 7.4 (7.3).

Fig. S5 ${ }^{1} \mathrm{HNMR}$ (a) and ${ }^{13} \mathrm{CNMR}$ (b) spectra of $\left[\mathrm{C}_{4} \mathrm{C}_{11} \mathrm{OHim}\right] \mathrm{PF}_{6}$; solvent: CDCl_{3}.
${ }^{1}$ HNMR: 0.769-0.806 (3H, t), 1.097-1.227 (16H, m), 1.338-1.391 (2H, m), 1.679-1.754 (4H, m), 2.658 (1H, s), 3.406-3.441 (2H, t), 4.039-4.090 (4H, m), 7.325-7.345 (2H, d), $8.745(1 \mathrm{H}, \mathrm{s})$;
${ }^{13}$ CNMR: $13.175,19.152,25.598,25.924,28.711,29.127,29.187,29.221,29.322,29.941,31.815,32.532$, 49.521, 49.806, 62.396, 122.376, 122.460, 135.254.

Elemental analysis (\%, calc.): C 49.2 (49.1), H 8.1 (8.0), N 6.5 (6.4).

Fig. S6 ${ }^{1} \mathrm{HNMR}$ (a) and ${ }^{13} \mathrm{CNMR}$ (b) spectra of $\left[\mathrm{C}_{4} \mathrm{C}_{11} \mathrm{OHim}\right] \mathrm{NTf}_{2}$; solvent: $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$.
${ }^{1}$ HNMR: 0.881-0.918 (3H, t), 1.240-1.277 (16H, d), 1.377-1.409 $(2 \mathrm{H}, \mathrm{t}), 1.739-1.805(4 \mathrm{H}, \mathrm{m}), 2.500$ (solvent residual signal), 3.347-3.392 ($2 \mathrm{H}, \mathrm{m}$), 4.133-4.181 $(4 \mathrm{H}, \mathrm{m}), 4.310-4.336(1 \mathrm{H}, \mathrm{t}), 7.786(2 \mathrm{H}, \mathrm{s}), 9.186(1 \mathrm{H}, \mathrm{s})$; ${ }^{13}$ CNMR: 13.623, 19.211, 25.913, 25.959, 28.761, 29.260, 29.328, 29.408, 29.511, 29.698, 31.717, 32.994, 49.046, 49.313, 61.156, 118.349, 121.554, 122.898, 136.384.

Elemental analysis (\%, calc.): 42.1 (41.7), H 6.2 (6.1), N 7.2 (7.3), S 10.9 (11.1).

Fig. S7 ${ }^{1} \mathrm{HNMR}$ (a) and ${ }^{13} \mathrm{CNMR}$ (b) spectra of $\left[\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{OHim}\right] \mathrm{BF}_{4}$; solvent: CDCl_{3}.
${ }^{1}$ HNMR: 0.855-0.891 (3H, t), 1.262-1.298 (6H, t), 1.440-1.470 (2H, t), 1.778-1.835 (4H, m), 3.312-3.344 (1 H , t), 3.469-3.500 ($2 \mathrm{H}, \mathrm{t}$), 4.155-4.192 ($4 \mathrm{H}, \mathrm{t}$), 7.465-7.480 (2H, d), 8.808 ($1 \mathrm{H}, \mathrm{s}$);
${ }^{13}$ CNMR: $13.254,19.218,24.868,25.605,29.855,31.857,32.113,49.562,49.657,61.861,122.561,122.604$, 135.271.

Elemental analysis (\%, calc.): C 50.1 (50.0), H 8.2 (8.1), N 9.1 (9.0).
(a) $\left.\right|_{i} ^{\stackrel{\circ}{\circ}}$

(b) $\stackrel{\stackrel{\text { ® }}{\infty}}{\stackrel{\infty}{\infty}} \stackrel{\stackrel{\infty}{\leftrightarrows}}{\underset{\sim}{\sim}}$

Fig. S8 ${ }^{1} \mathrm{HNMR}$ (a) and ${ }^{13} \mathrm{CNMR}$ (b) spectra of $\left[\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{OHim}\right] \mathrm{PF}_{6}$; solvent: CDCl_{3}.
${ }^{1}$ HNMR: 0.864-0.901 (3H, t), 1.270-1.361 (6H, m), 1.444-1.494 (2H, m), 1.781-1.838 (4H, m), $3.448(1 \mathrm{H}, \mathrm{s})$, 3.490-3.522 (2H, t), 4.123-4.159 (4H, t), $7.384(2 \mathrm{H}, \mathrm{s}), 8.553(1 \mathrm{H}, \mathrm{s})$;
${ }^{13}$ CNMR: 13.190, 19.205, 24.886, 25.630, 29.736, 31.711, 32.100, 49.652, 49.772, 61.978, 122.478, 134.887. Elemental analysis (\%, calc.): C 42.6 (42.2), H 6.7 (6.8), N 7.6 (7.6).
(a)

Fig. S9 ${ }^{1} \mathrm{HNMR}$ (a) and ${ }^{13} \mathrm{CNMR}(\mathrm{b})$ spectra of $\left[\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{OHim}\right] \mathrm{NTf}_{2}$; solvent: $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$.
${ }^{1} \mathrm{HNMR}: ~ 0.882-0.920(3 \mathrm{H}, \mathrm{t}), 1.237-1.357(6 \mathrm{H}, \mathrm{m}), 1.400-1.432(2 \mathrm{H}, \mathrm{t}), 1.748-1.822(4 \mathrm{H}, \mathrm{m}), 2.501$ (solvent residual signal), 3.318 (signal of trace water in solvent), 3.372-3.402 $(2 \mathrm{H}, \mathrm{t}), 4.149-4.184(4 \mathrm{H}, \mathrm{m}), 4.416(1 \mathrm{H}$, s), $7.767(2 \mathrm{H}, \mathrm{s}), 9.180(1 \mathrm{H}, \mathrm{s})$;
${ }^{13}$ CNMR: $13.519,19.183,25.250,25.800,29.765,31.695,32.632,49.064,49.315,60.944,118.347,121.542$, 122.831, 136.348.

Elemental analysis (\%, calc.): C 35.8 (35.7), H 4.9 (5.0), N 8.4 (8.3), S 12.4 (12.7).
(a)

(b)

Fig. S10 ${ }^{1} \mathrm{HNMR}$ (a) and ${ }^{13} \mathrm{CNMR}$ (b) spectra of $\left[\mathrm{C}_{4} \mathrm{C}_{7} \mathrm{im}\right] \mathrm{PF}_{6}$; solvent: CDCl_{3}.
${ }^{1}$ HNMR: 0.754-0.771 (3H, d), 0.818-0.854 (3H, m), 1.162-1.225 (10H, t), 1.769-1.781 (4H, t), $4.095(4 \mathrm{H}, \mathrm{s})$, $7.311(2 \mathrm{H}, \mathrm{s}), 8.528(1 \mathrm{H}, \mathrm{s})$;
${ }^{13}$ CNMR: $13.141,13.862,19.181,22.342,25.906,28.396,29.858,31.354,31.747,49.673,49.952,122.351$, $122.424,134.833$.

Elemntal analysis (\%, calc.): C 45.5 (45.7), H 7.4 (7.4), N 7.8 (7.6).

Fig. S11 ${ }^{1} \mathrm{HNMR}$ (a) and ${ }^{13} \mathrm{CNMR}$ (b) spectra of $\left[\mathrm{C}_{4} \mathrm{C}_{7} \mathrm{im}\right] \mathrm{NTf}_{2}$; solvent: $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$.
${ }^{1}$ HNMR: 0.843-0.924 ($6 \mathrm{H}, \mathrm{m}$), 1.209-1.302 ($10 \mathrm{H}, \mathrm{m}$), 1.764-1.817 ($4 \mathrm{H}, \mathrm{m}$), 2.507 (solvent residual signal), 3.346 (signal of trace water in solvent), 4.140-4.188 (4H, m), 7.793-7.796 (2H, d), $9.194(1 \mathrm{H}, \mathrm{s})$;
${ }^{13}$ CNMR: 13.633, 14.272, 19.222, 22.388, 25.881, 28.419, 29.704, 31.467, 31.718, 49.071, 49.344, 118.370, 121.569, 122.918, 136.398.

Elemental analysis: C 38.4 (38.2), H 5.5 (5.4), N 8.5 (8.3), S 12.5 (12.7).

Fig. S12 ${ }^{1} \mathrm{HNMR}$ (a) and ${ }^{13} \mathrm{CNMR}$ (b) spectra of $\left[\mathrm{C}_{4} \mathrm{C}_{7} \mathrm{im}\right] \mathrm{BF}_{4}$; solvent: CDCl_{3}.
${ }^{1}$ HNMR: 0.711-0.845 (6H, m), 1.128-1.184 (10H, t), 1.743 (4H, s), 4.089-4.102 (4H, d), 7.344-7.376 (2H, m), 8.764-8.810 (1H, m);
${ }^{13}$ CNMR: 13.181, 13.861, 19.186, 22.326, 25.911, 28.419, 29.988, 31.366, 31.864, 49.563, 49.857, 122.417, 122.510, 135.300.

Elemenal analysis (\%, calc.): C 54.1 (54.2), H 8.6 (8.8), N 9.1 (9.0).

Fig. S13 ${ }^{1} \mathrm{HNMR}$ (a) and ${ }^{13} \mathrm{CNMR}$ (b) spectra of $\left[\mathrm{C}_{4} \mathrm{C}_{9} \mathrm{im}\right] \mathrm{PF}_{6}$; solvent: CDCl_{3}.
${ }^{1}$ HNMR: 0.798-0.833 (3H, m), 0.874-0.910 (3H, m), 1.202-1.312 (14H, m), 1.796-1.832 (4H, m), 4.119-4.149 $(4 \mathrm{H}, \mathrm{m}), 7.317-7.337(2 \mathrm{H}, \mathrm{m}), 8.504(1 \mathrm{H}, \mathrm{s})$;
${ }^{13}$ CNMR: 13.187, 14.005, 19.238, 22.553, 26.049, 28.822, 29.068, 29.227, 29.921, 31.719, 31.783, 49.761, 50.042, 122.364, 122.461, 134.864.

Elemental analysis (\%, calc.): C 49.0 (48.5), H 7.9 (7.9), N 7.2 (7.1).

Fig. S14 ${ }^{1} \mathrm{HNMR}$ (a) and ${ }^{13} \mathrm{CNMR}(\mathrm{b})$ spectra of $\left[\mathrm{C}_{4} \mathrm{C}_{9} \mathrm{im}\right] \mathrm{BF}_{4}$; solvent: CDCl_{3}.
${ }^{1}$ HNMR: 0.734-0.765 (3H, m), 0.812-0.859 (3H, m), 1.144-1.270 (14H, m), 1.764-1.781 (4H, t), 4.085-4.116 $(4 \mathrm{H}, \mathrm{d}), 7.359-7.390(2 \mathrm{H}, \mathrm{t}), 8.735-8.745(1 \mathrm{H}, \mathrm{d}) ;$
${ }^{13}$ CNMR: 13.184, 13.946, 19.206, 22.481, 26.029, 28.821, 29.025, 29.210, 30.018, 31.665, 31.876, 49.603, 49.905, 122.411, 122.540, 135.315.

Elemental analysis (\%, calc.): C 56.8 (56.8), H 9.3 (9.2), N 8.4 (8.3).

Fig. S15 ${ }^{1} \mathrm{HNMR}$ (a) and ${ }^{13} \mathrm{CNMR}$ (b) spectra of $\left[\mathrm{C}_{4} \mathrm{C}_{9} \mathrm{im}\right] \mathrm{NTf}_{2}$; solvent: $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$.
${ }^{1}$ HNMR: 0.834-0.917 (6H, m), 1.239-1.277 (14H, t), 1.739-1.806 (4H, m), 2.500 (solvent residual signal), 3.341 (singal of trace water in solvent), 4.134-4.182 (4H, m), $7.791(2 \mathrm{H}, \mathrm{d}), 9.190(1 \mathrm{H}, \mathrm{s})$;
${ }^{13}$ CNMR: 13.631, 14.321, 19.214, 22.527, 25.904, 28.761, 29.007, 29.222, 29.707, 31.691, 31.731, 49.043, 49.314, 118.353, 121.553, 122.907, 136.388.

Elemental analysis (\%, calc.): C 40.6 (40.7), H 5.9 (5.9), N 7.8 (7.9), S 11.8 (12.1).

Fig. S16 ${ }^{1} \mathrm{HNMR}$ (a) and ${ }^{13} \mathrm{CNMR}$ (b) spectra of $\left[\mathrm{C}_{4} \mathrm{C}_{8} \mathrm{OHim}\right] \mathrm{BF}_{4}$; solvent: CDCl_{3}.
${ }^{1}$ HNMR: 0.704-0.740 (3H, t), 1.087-1.146 (10H, m), 1.276-1.308 (2H, t), 1.637-1.674 (4H, t), $2.942(1 \mathrm{H}, \mathrm{s})$, 3.320-3.354 (2H, t), 3.983-4.029 (4H, m), 7.292-7.294 (2H, d), $8.634(1 \mathrm{H}, \mathrm{s})$;
${ }^{13}$ CNMR: 13.145, 19.109, 25.364, 25.727, 28.555, 28.851, 29.815, 31.771, 32.354, 49.473, 49.702, 62.133, 122.434, 135.153.

Elemental analysis (\%, calc.): C 53.1 (53.0), H 8.7 (8.6), N 8.1 (8.2).

Fig. S17 ${ }^{1} \mathrm{HNMR}$ (a) and ${ }^{13} \mathrm{CNMR}$ (b) spectra of $\left[\mathrm{C}_{4} \mathrm{C}_{8} \mathrm{OHim}\right] \mathrm{PF}_{6}$; solvent: $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$.
${ }^{1}$ HNMR: $0.883-0.920(3 \mathrm{H}, \mathrm{t}), 1.221-1.276(10 \mathrm{H}, \mathrm{m}), 1.395(2 \mathrm{H}, \mathrm{s}), 1.757-1.793(4 \mathrm{H}, \mathrm{t}), 2.504$ (solvent residual signal $)$, 3.347-3.376 $(2 \mathrm{H}, \mathrm{t}$, containing the signal of trace water in solvent), 4.133-4.181 $(4 \mathrm{H}, \mathrm{m})$, $4.340(1 \mathrm{H}, \mathrm{s}), 7.791-7.794(2 \mathrm{H}, \mathrm{d}), 9.187(1 \mathrm{H}, \mathrm{s})$;
${ }^{13}$ CNMR: 13.702, 19.233, 25.834, 25.905, 28.823, 29.174, 29.700, 31.721, 32.928, 49.064, 49.337, 61.140, $122.938,136.395$.

Elemental analysis (\%, calc.): C 45.4 (45.2), H 7.4 (7.3), N 6.9 (7.0).
(a)

Fig. S18 ${ }^{1} \mathrm{HNMR}$ (a) and ${ }^{13} \mathrm{CNMR}$ (b) spectra of $\left[\mathrm{C}_{4} \mathrm{C}_{8} \mathrm{OHim}\right] \mathrm{NTf}_{2}$; solvent: $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$.
${ }^{1} \mathrm{HNMR}: ~ 0.881-0.918(3 \mathrm{H}, \mathrm{t}), 1.204-1.277(10 \mathrm{H}, \mathrm{m}), 1.380-1.411(2 \mathrm{H}, \mathrm{t}), 1.757-1.810(4 \mathrm{H}, \mathrm{m}), 2.500$ (solvent residual signal), 3.348-3.392 ($2 \mathrm{H}, \mathrm{m}$), 4.134-4.181 $(4 \mathrm{H}, \mathrm{m}), 4.322-4.347(1 \mathrm{H}, \mathrm{t}), 7.790(2 \mathrm{H}, \mathrm{s}), 9.197(1 \mathrm{H}, \mathrm{s})$; ${ }^{13}$ CNMR: 13.637, 19.216, 25.820, 25.900, 28.818, 29.172, 29.709, 31.723, 32.924, 49.045, 49.313, 61.123, 118.341, 121.545, 122.908, 136.379.

Elemental analysis (\%, calc.): C 38.7 (38.3), H 5.4 (5.5), N 7.7 (7.9), S 11.8 (12.0).
(a)
$\left.\right|^{\stackrel{\sim}{\infty}}$
$\stackrel{\underset{\sim}{\infty}}{\substack{\infty}}$

Fig. S19 ${ }^{1} \mathrm{HNMR}$ (a) and ${ }^{13} \mathrm{CNMR}$ (b) spectra of $\left[\mathrm{C}_{4} \mathrm{Beim}\right] \mathrm{BF}_{4}$; solvent: $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$.
${ }^{1}$ HNMR: 0.851-0.888 (3H, t), 1.185-1.278(2H, m), 1.723-1.798(2H, m), 2.483 (solvent residual signal), 3.392 (signal of trace water in solvent), 4.155-4.192 ($2 \mathrm{H}, \mathrm{t}$), $5.423(2 \mathrm{H}, \mathrm{s}), 7.362-7.422(5 \mathrm{H}, \mathrm{m}), 7.802-7.805$ $(2 \mathrm{H}, \mathrm{d}), 9.320(1 \mathrm{H}, \mathrm{s})$;
${ }^{13}$ CNMR: 13.687, 19.250, 31.707, 49.171, 52.399, 122.999, 123.266, 128.759, 129.220, 129.484, 135.322, 136.551.

Elemental analysis (\%, calc.): C 55.6 (55.7), H 6.4 (6.3), N 9.2 (9.3).

Fig. S20 ${ }^{1} \mathrm{HNMR}$ (a) and ${ }^{13} \mathrm{CNMR}$ (b) spectra of $\left[\mathrm{C}_{4} \mathrm{Beim}\right] \mathrm{PF}_{6}$; solvent: $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$.
${ }^{1}$ HNMR: 0.849-0.878 (3H, t), 1.234-1.279 (2H, m), 1.761-1.805 (2H, m), 4.179-4.207 (2H, t), 5.470 (2H, s), 7.371-7.419 (3H, m), 7.491-7.505 (2H, d), $7.694(1 \mathrm{H}, \mathrm{s}), 9.326(1 \mathrm{H}, \mathrm{s})$;
${ }^{13}$ CNMR: 13.329, 19.172, 31.642, 49.317, 52.561, 122.666, 122.977, 128.740, 129.276, 129.415, 134.797, 136.310.

Elemental analysis (\%, calc.): C 47.0 (46.7), H 5.4 (5.3), N 7.9 (7.8).

Table S1. Extraction Efficiencies ($E, \%$) of the ILs (average value, $n=3$).

	pH	2.0	3.0	5.0	6.0	7.0	9.0	10
			$\left[\mathrm{C}_{8} \mathrm{mim}\right] \mathrm{PF}_{6}$					

Table S1. Continued.

pH	2.0	3.0	5.0	6.0	7.0	9.0	10	12
[$\left.\mathrm{C}_{4} \mathrm{C}_{8} \mathrm{OHim}\right] \mathrm{PF}_{6}$								
resorcinol	57.2	57.8	58.8	56.6	57.9	56.7	56.1	28.3
phenol	79.5	80.5	79.8	80.4	81.0	83.3	82.7	41.2
guaiacol	83.9	83.9	84.0	84.3	85.3	86.8	85.8	40.3
p-nitrophenol	93.4	93.3	93.2	93.1	91.8	57.6	55.0	43.6
o-cresol	90.5	90.6	90.6	91.0	91.6	92.1	93.4	62.9
$\left[\mathrm{C}_{4} \mathrm{C}_{8} \mathrm{OHim}\right] \mathrm{BF}_{4}$								
resorcinol	59.3	59.2	59.6	61.3	61.8	61.5	61.8	28.5
phenol	70.1	69.1	69.6	71.2	71.5	71.2	71.7	35.7
guaiacol	68.8	68.9	68.8	70.2	71.3	70.7	70.6	37.1
p-nitrophenol	89.3	89.4	88.8	87.9	87.8	56.4	57.8	56.2
o-cresol	85.6	84.5			85.6	83.2	84.7	53.8
$\left[\mathrm{C}_{4} \mathrm{C}_{12} \mathrm{im}\right] \mathrm{PF}_{6}$								
resorcinol	12.9	12.8	13.0	13.1	13.0	13.1	12.8	6.89
phenol	63.8	64.5	63.5	65.2	66.1	66.2	65.9	24.3
guaiacol	74.3	74.2	74.3	73.0	75.4	74.9	75.0	43.7
p-nitrophenol	82.7	80.8	82.5	83.2	82.5	52.7	44.2	34.6
o-cresol	83.3	83.7	83.3	83.1	85.2	86.1	85.4	51.1
$\left[\mathrm{C}_{4} \mathrm{C}_{12} \mathrm{im}\right] \mathrm{BF}_{4}$								
resorcinol	68.9	69.0	68.5	70.3	69.1	69.2	68.8	29.3
phenol	85.0	83.9	83.2	84.3	86.2	84.9	85.4	47.0
guaiacol	83.7	83.4	83.7	84.1	84.7	84.3	84.3	49.4
p-nitrophenol	93.9	94.2	93.9	95.3	96.2	89.0	84.8	83.1
o-cresol	93.5	93.7	92.7	93.7	94.1	94.7	92.2	81.2
$\left[\mathrm{C}_{4} \mathrm{C}_{11} \mathrm{OHim}\right] \mathrm{PF}_{6}$								
resorcinol	55.8	55.5	56.3	56.0	57.2	55.4	55.3	27.7
phenol	79.6	79.2	79.0	79.0	80.0	79.6	78.8	42.6
guaiacol	83.3	83.1	82.9	82.7	83.7	83.3	83.1	43.9
p-nitrophenol	94.4	94.4	94.3	94.2	94.9	56.9	55.1	45.3
o-cresol	91.0	91.2	90.8	90.7	91.2	91.3	91.1	65.5
$\left[\mathrm{C}_{4} \mathrm{C}_{11} \mathrm{OHim}\right] \mathrm{BF}_{4}$								
resorcinol	80.2	80.4	80.0	79.9	80.6	79.0	77.7	36.7
phenol	86.5	86.3	86.5	86.5	87.0	86.9	86.4	48.0
guaiacol	85.6	85.5	85.3	85.4	86.0	86.1	85.7	49.9
p-nitrophenol	96.7	96.8	96.7	96.7	96.8	87.2	85.3	85.5
o-cresol	93.9	93.9	94.0	93.9	94.1	94.3	94.2	85.0
$\left[\mathrm{C}_{4} \mathrm{Beim}\right] \mathrm{BF}_{4}$								
resorcinol	55.7	55.4	54.4	53.5	54.4	54.6	54.7	21.8
phenol	72.9	72.8	71.7	72.3	74.9	74.0	74.9	42.1
guaiacol	80.6	80.6	79.7	80.1	79.9	78.3	78.1	46.4
p-nitrophenol	89.8	89.9	89.6	89.4	87.9	68.9	71.4	70.5
o-cresol	87.3	87.3	86.8	85.5	86.6	87.4	87.6	72.9

Table S1. Continued.

pH	2.0	3.0	5.0	6.0	7.0	9.0	10	12
[$\mathrm{C}_{8} \mathrm{mim}$] NTf_{2}								
resorcinol	11.8	11.6	12.0	11.9	12.2	11.7	12.4	5.6
phenol	67.4	66.4	66.4	66.8	67.6	66.0	64.7	4.3
guaiacol	80.2	79.4	79.4	80.0	80.4	79.5	69.6	6.6
p-nitrophenol	80.5	79.8	80.1	78.6	77.2	4.1	4.0	4.0
o-cresol	85.7	85.1	85.2	85.4	86.1	85.8	81.4	11.5
[$\left.\mathrm{C}_{4} \mathrm{C}_{7} \mathrm{im}\right]^{\text {NTf }}{ }_{2}$								
resorcinol	10.1	10.6	11.2	11.4	11.1	10.3	10.0	4.9
phenol	63.9	63.9	64.5	63.9	64.0	63.8	62.6	3.5
guaiacol	77.9	77.8	78.3	77.7	78.4	77.6	76.0	2.4
p-nitrophenol	77.9	77.7	77.7	76.2	75.6	6.0	0.3	4.6
o-cresol	85.0	84.7		84.8	85.3	85.3	82.0	9.0
$\left[\mathrm{C}_{4} \mathrm{C}_{9} \mathrm{im}\right] \mathrm{NTf}_{2}$								
resorcinol	11.3	11.0	11.8	11.5	11.2	10.8	11.6	2.4
phenol	62.5	62.4	62.9	63.4	64.2	64.1	62.3	10.8
guaiacol	75.1	75.1	76.2	76.2	77.0	76.7	74.6	7.8
p-nitrophenol	73.6	75.2	77.2	77.7	76.0	22.6	10.0	5.9
o-cresol	82.1	83.2	84.1	84.2	85.2	86.4	86.7	13.6
[$\left.\mathrm{C}_{4} \mathrm{C}_{12} \mathrm{im}\right] \mathrm{NTf}_{2}$								
resorcinol	9.2	9.0	8.9	9.1	8.7	8.8	9.0	2.3
phenol	60.0	59.8	58.5	60.2	59.6	59.9	48.3	4.0
guaiacol	75.2	74.8	73.8	74.8	74.1	73.8	69.8	3.6
p-nitrophenol	73.3	72.7	73.8	75.5	74.6	48.0	13.2	11.2
o-cresol	83.1	82.7	82.6	82.6	82.6	83.6	81.4	9.5
$\left[\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{OHim}\right] \mathrm{NTf}_{2}$								
resorcinol	48.3	47.5	49.6	50.3	50.5	50.3	48.4	10.3
phenol	78.3	77.9	78.6	78.9	80.5	81.0	79.3	4.2
guaiacol	84.4	83.8	84.1	84.3	85.5	86.1	83.9	7.3
p-nitrophenol	89.6	89.2	88.8	88.2	86.8	25.7	10.5	10.0
o-cresol	90.5	90.2	90.5	90.6	91.7	92.5	92.1	31.9
[$\left.\mathrm{C}_{4} \mathrm{C}_{8} \mathrm{OHim}\right] \mathrm{NTf}_{2}$								
resorcinol	51.3	50.2	49.3	50.4	49.8	50.1	35.0	4.0
phenol	80.0	81.2	81.2	82.4	81.8	82.4	79.3	3.8
guaiacol	84.2	85.0	84.9	85.9	85.2	85.6	82.1	2.3
p-nitrophenol	92.1	92.8	92.4	92.6	88.0	32.5	11.0	5.6
o-cresol	91.3	91.7	91.7	92.3	92.0	92.6	91.7	13.9
$\left[\mathrm{C}_{4} \mathrm{C}_{11} \mathrm{OHim}\right] \mathrm{NTf}_{2}$								
resorcinol	45.1	44.8	44.3	45.2	45.4	46.1	44.1	9.2
phenol	79.4	78.4	78.7	78.3	79.1	73.8	73.6	2.4
guaiacol	84.0	83.1	83.2	82.8	83.4	78.9	78.6	3.2
p-nitrophenol	92.4	92.0	92.1	91.6	87.9	29.5	28.0	17.0
o-cresol	91.5	90.8	90.9	90.8	91.2	89.5	90.0	17.8

Table S1. Continued.

	pH	2.0	3.0	5.0	6.0	7.0	9.0	10
		$\left[\mathrm{C}_{4} \mathrm{Beim}\right] \mathrm{NTf}_{2}$						
resorcinol	31.0	30.8	30.7	29.8	31.5	32.4	31.4	5.6
phenol	74.7	74.9	75.1	75.7	75.0	74.3	76.0	9.7
guaiacol	80.0	81.5	82.4	82.8	81.9	83.2	82.6	13.7
p-nitrophenol	89.2	89.7	90.7	90.9	88.2	28.7	2.8	2.0
o-cresol	88.4	87.4	88.5	89.0	89.4	87.8	89.9	41.2

Table S2. Extraction Efficiencies (E, \%) of ILs after the Compensation of Their Soluble Losses in Water at pH 7.0 and $V_{\mathrm{w}}: V_{\mathrm{IL}}=10: 1$ (average values, $n=3$).

	resorcinol	phenol	guaiacol	p-nitrophenol	o-cresol
$\left[\mathrm{C}_{8} \mathrm{mim}\right] \mathrm{PF}_{6}$	12.9	63.0	74.1	80.3	83.3
$\left[\mathrm{C}_{8} \mathrm{mim}\right] \mathrm{BF}_{4}$	73.9	85.1	86.1	95.4	93.1
$\left[\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{OHim}\right] \mathrm{PF}_{6}$	58.1	80.3	85.4	90.3	89.6
$\left[\mathrm{C}_{4} \mathrm{C}_{7} \mathrm{im}\right] \mathrm{PF}_{6}$	13.1	63.5	73.5	79.2	82.8
$\left[\mathrm{C}_{4} \mathrm{C}_{7} \mathrm{im}\right] \mathrm{BF}_{4}$	73.4	86.9	85.6	96.7	94.6
$\left[\mathrm{C}_{4} \mathrm{C}_{8} \mathrm{OHim}\right] \mathrm{PF}_{6}$	58.8	80.7	85.1	89.1	91.2
$\left[\mathrm{C}_{4} \mathrm{C}_{8} \mathrm{OHim}\right] \mathrm{BF}_{4}$	75.9	83.7	81.5	93.6	91.4
$\left[\mathrm{C}_{4} \mathrm{C}_{9} \mathrm{im}\right] \mathrm{PF}_{6}$	13.2	65.9	75.4	82.4	85.0
$\left[\mathrm{C}_{4} \mathrm{C}_{9} \mathrm{im}\right] \mathrm{BF}_{4}$	72.9	86.5	86.5	94.8	95.0
$\left[\mathrm{C}_{4} \mathrm{C}_{11} \mathrm{OHim}\right] \mathrm{PF}_{6}$	55.3	79.7	82.0	93.5	90.2
$\left[\mathrm{C}_{4} \mathrm{C}_{11} \mathrm{OHim}\right] \mathrm{BF}_{4}$	79.5	85.8	85.4	96.2	93.7
$\left[\mathrm{C}_{4} \mathrm{C}_{12} \mathrm{im}\right] \mathrm{PF}_{6}$	12.8	64.1	73.8	82.6	83.2
$\left[\mathrm{C}_{4} \mathrm{C}_{12} \mathrm{im}\right] \mathrm{BF}_{4}$	69.3	85.7	84.5	93.2	94.9
$\left[\mathrm{C}_{4} \mathrm{Beim}\right] \mathrm{BF}_{4}$	68.3	79.8	81.1	92.2	90.0
$\left[\mathrm{C}_{8} \mathrm{mim}\right] \mathrm{NTf}_{2}$	12.1	67.7	81.0	77.0	86.4
$\left[\mathrm{C}_{4} \mathrm{C}_{7} \mathrm{im}\right] \mathrm{NTf}_{2}$	11.2	61.2	77.6	75.8	82.3
$\left[\mathrm{C}_{4} \mathrm{C}_{6} \mathrm{OHim}\right] \mathrm{NTf}_{2}$	50.1	80.7	85.1	86.1	91.4
$\left[\mathrm{C}_{4} \mathrm{C}_{8} \mathrm{OHim}\right] \mathrm{NTF}_{2}$	52.0	81.6	85.6	86.3	92.2
$\left[\mathrm{C}_{4} \mathrm{C}_{9} \mathrm{im}\right] \mathrm{NTf}_{2}$	11.0	61.2	77.6	76.9	82.3
$\left[\mathrm{C}_{4} \mathrm{C}_{11} \mathrm{OHim}\right] \mathrm{NTf}_{2}$	48.6	80.1	84.7	87.5	91.8
$\left[\mathrm{C}_{4} \mathrm{C}_{12} \mathrm{im}\right] \mathrm{NTf}_{2}$	8.9	59.8	74.5	75.1	78.2
$\left[\mathrm{C}_{4}\right.$ Beim $] \mathrm{NTf}_{2}$	33.0	76.4	83.5	90.3	89.2

