Supporting Information

Opto-electrochemical biorecognition by optically-transparent highly conductive graphene-modified Fluorine-doped Tin Oxide substrates

F. Lamberti^{1,2,3}, L. Brigo^{1,3}, M. Favaro⁴, C. Luni^{1,2,3}, A. Zoso^{1,2}, M. Cattelan⁴, S. Agnoli⁴, G. Brusatin^{1,3}, G. Granozzi⁴, M. Giomo^{1,3}, N. Elvassore^{*1,2,3}

¹ Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova

² Venetian Institute of Molecular Medicine (VIMM), Via Orus 2, 35129 Padova

³ National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giuseppe Giusti, 9, 50121 Firenze

⁴ Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova

* Corresponding author: <u>nicola.elvassore@unipd.it</u>

Figure S1. CVs showing egFTO + GO sample electrochemical reduction: the irreversible reduction peak at about -1.2 V is related to the reduction of GO oxygenated species, found only at the first reduction cycle.

Figure S2. AFM topography images of *Bare FTO* and *egFTO+erGO* samples acquired in non-contact mode together, same areas as shown in Figure 4 a and b, respectively. A 26-nm RMS roughness was calculated for both systems.

Figure S3. Equivalent circuit model for studying egFTO + erGO samples. *Rs* is the associated resistance of the solution, *CPE* the constant-phase element used instead of an idealized capacitance, *Rct* the charge transfer resistance, and *W* the Warburg impedance.

Figure S4. Fluorescence emission intensity for different samples, obtained by quantitative analyses of images obtained by confocal fluorescence microscopy. A: *Bare FTO*, B: $egFTO + erGO + IBA_{ads}$, C: $egFTO + erGO + IBA_{rel}$. Error bars, standard deviation (n=4).