Supporting Information

Glycosides of Indole Alkaloids from the Aerial Parts of Strobilanthes cusia

Wei Gu,^{†,‡} Yu Zhang,[§]Xiao-Jiang Hao,[§]Fu-Mei Yang,[‡]Qian-Yun Sun,[‡] Susan L. Morris-Natschke,[⊥] Kuo-Hsiung Lee,^{⊥,||} Yue-Hu Wang,*[†] and Chun-Lin Long*,^{†,},[¬]

[†]Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China

[‡]The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences 550002, People's Republic of China

[§]State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China

[⊥]Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States

Chinese Medicine Research and Development Center, China Medical University and Hospital,

Taichung, Taiwan

^vCollege of Life and Environmental Sciences, Minzu University of China, Beijing 100081, People's

Republic of China

* To whom correspondence should be addressed: (C.-L. L.) Tel & Fax: +86-10-68930381. Email: long@mail.kib.ac.cn.

(Y.-H. W.) Tel & Fax: +86-0871-65223318. Email: wangyuehu@mail.kib.ac.cn.

List of Content

NO.	content
Figure S1	The simplified structures 11a-11d in ECD calculation
Figure S2	The most stable conformers of simplified structures 11a-11d .
Figure S3	Standard orientation of 11a-11d at B3LYP/6-31G(d) level
Figure S4	¹ H NMR spectrum of compound 1 (600 MHz, CD_3OD).
Figure S5	13 C NMR spectrum of compound 1 (150 MHz, CD ₃ OD).
Figure S6	HSQC spectrum of compound 1 (150 MHz, CD ₃ OD).
Figure S7	HMBC spectrum of compound 1 (150 MHz, CD ₃ OD).
Figure S8	1 H- 1 H COSY spectrum of compound 1 (600 MHz, CD ₃ OD).
Figure S9	ROSEY spectrum of compound 1 (600 MHz, CD ₃ OD).
Figure S10	¹ H NMR spectrum of compound 2 (600 MHz, CD_3OD).
Figure S11	¹³ C NMR spectrum of compound 2 (150 MHz, CD_3OD).
Figure S12	HSQC spectrum of compound 2 (150 MHz, CD ₃ OD).
Figure S13	HMBC spectrum of compound 2 (150 MHz, CD ₃ OD).
Figure S14	¹ H- ¹ H COSY spectrum of compound 2 (600 MHz, CD_3OD).
Figure S15	ROSEY spectrum of compound 2 (600 MHz, CD ₃ OD).
Figure S16	¹ H NMR spectrum of compound 3 (600 MHz, CD_3OD).
Figure S17	13 C NMR spectrum of compound 3 (150 MHz, CD ₃ OD).
Figure S18	HSQC spectrum of compound 3 (150 MHz, CD ₃ OD).
Figure S19	HMBC spectrum of compound 3 (150 MHz, CD ₃ OD).
Figure S20	$^{1}\text{H}-^{1}\text{H}$ COSY spectrum of compound 3 (600 MHz, CD ₃ OD).
Figure S21	ROSEY spectrum of compound 3 (600 MHz, CD ₃ OD).
Figure S22	HREI-MS spectrum of compound 1.
Figure S23	HREI-MS spectrum of compound 2.
Figure S24	HREI-MS spectrum of compound 3.

ECD calculation for simplified structures 11a-11d

The CONFLEX searches based on molecular mechanics with MMFF94S force fields were performed for **11a-11d** which gave 15, 15, 14, 14 stable conformers, respectively.^{1,2} Selected conformers (7, 7, 6, 6) with distributions higher than 1% were further optimized by the density functional theory method at the B3LYP/6-31G* level in Gaussian 09 program package,³ leading to one minimum geometry ($\Delta E > 2$ kcal/mol), respectively, which was further checked by frequency calculation and resulted in no imaginary frequencies. The ECD was calculated using TD-DFT-B3LYP/6-31G(d,p) of theory on B3LYP/6-31G(d) optimized geometry through the IEFPCM model (in MeOH). The calculated ECD curve was generated using SpecDis 1.60 with $\sigma = 0.28$ ev, and UV shift -15 nm, respectively.⁴

Figure S1. The simplified structures 11a-11d in ECD calculation

(2''''*R*, 2'''''*S*)**-11a**

(2""S, 2"""R)-**11b**

Figure S2. The most stable conformers of simplified structures 11a-11d.

11a:

Standard orientation:

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	2. 582026	0. 283002	2. 333191
2	6	0	3. 799528	0. 249827	1.593778
3	6	0	3. 495740	0. 310160	0.090594
4	6	0	2.729157	-0. 903642	-0.401054
5	6	0	3. 416434	-2. 107891	-0.644524
6	6	0	2.760891	-3. 284932	-1.012090
7	6	0	1.368586	-3. 306942	-1.134200
8	6	0	0.693874	-2. 114700	-0.905675
9	6	0	1.340513	-0. 932621	-0.564969
10	8	0	-0.679899	-2.021214	-0.970756
11	8	0	0.726634	-4. 464873	-1.458691
12	7	0	-2.174263	-0. 194169	-1.106445
13	8	0	-0.910631	-1. 370185	1.961895
14	6	0	-1.587628	-0. 968970	1.033673
15	6	0	-1.042440	-0. 725635	-0.416983
16	6	0	0.271769	0. 142924	-0.469398
17	7	0	0.380572	1.087445	0.633714
18	6	0	0.508388	2. 376541	0.155169
19	6	0	0.721334	3. 555097	0.887253
20	6	0	0.783604	4. 754796	0.181308
21	6	0	0.641992	4.812558	-1.221033
22	6	0	0.445368	3. 640984	-1.944606
23	6	0	0.390818	2. 428430	-1.249037

24	6	0	0.229355	1.063215	-1.736932
25	8	0	0.041930	0.662109	-2.875520
26	6	0	-3.320501	-0.238417	-0.327611
27	6	0	-4.629760	0. 103830	-0.676956
28	6	0	-5.612528	-0.003130	0.311047
29	6	0	-5.320406	-0. 434951	1.617057
30	6	0	-4.011442	-0. 775561	1.956372
31	6	0	-3.021049	-0.674922	0.978887
32	6	0	2.688444	-0. 242589	3.648543
33	1	0	4.340172	-0. 679207	1.824674
34	1	0	4. 435038	1.098418	1.889270
35	1	0	4. 459223	0. 370114	-0.430330
36	1	0	2.964090	1. 239135	-0.131596
37	1	0	4. 498654	-2. 125204	-0. 539393
38	1	0	3. 313115	-4. 201767	-1.192710
39	1	0	-0.222936	-4. 278806	-1.471557
40	1	0	-2.166663	-0. 092097	-2.110668
41	1	0	0.901502	0. 793917	1.456100
42	1	0	0.822796	3. 531726	1.967906
43	1	0	0.942403	5.678344	0.732670
44	1	0	0.692210	5.770946	-1.728412
45	1	0	0.346454	3. 647994	-3.026515
46	1	0	-4.877310	0. 443578	-1.678185
47	1	0	-6.636961	0.257832	0.057717
48	1	0	-6.114471	-0. 502372	2.354035
49	1	0	-3.752634	-1.116688	2.954774
50	1	0	1.676573	-0.247180	4.057372
51	1	0	3.340385	0. 377742	4.279604
52	1	0	3.073464	-1.270822	3.631731

11b:

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)					
Number	Number	Туре	Х	Y	Z			
1	8	0	-2. 582027	0. 283002	2. 333191			
2	6	0	-3.799528	0.249825	1.593778			
3	6	0	-3. 495740	0. 310159	0.090594			
4	6	0	-2.729157	-0.903644	-0. 401054			
5	6	0	-3. 416433	-2. 107893	-0.644524			
6	6	0	-2.760889	-3. 284933	-1.012090			
7	6	0	-1.368584	-3. 306943	-1.134200			
8	6	0	-0.693873	-2. 114701	-0.905675			
9	6	0	-1.340513	-0. 932621	-0. 564969			
10	8	0	0.679900	-2.021214	-0.970756			
11	8	0	-0.726632	-4. 464874	-1.458690			
12	7	0	2.174263	-0. 194168	-1.106445			
13	8	0	0.910631	-1.370184	1.961895			
14	6	0	1.587628	-0. 968969	1.033673			
15	6	0	1.042441	-0. 725635	-0. 416983			
16	6	0	-0.271769	0. 142924	-0.469398			
17	7	0	-0.380573	1.087445	0.633714			
18	6	0	-0. 508389	2. 376541	0.155169			
19	6	0	-0.721335	3. 555097	0.887253			
20	6	0	-0.783606	4. 754796	0.181308			
21	6	0	-0.641995	4.812558	-1.221033			
22	6	0	-0, 445369	3, 640983	-1.944606			

23	6	0	-0.390819	2. 428429	-1.249037
24	6	0	-0.229356	1.063215	-1.736932
25	8	0	-0.041930	0.662109	-2.875519
26	6	0	3. 320501	-0.238416	-0.327611
27	6	0	4.629760	0. 103832	-0.676956
28	6	0	5.612528	-0.003128	0.311047
29	6	0	5.320407	-0. 434949	1.617057
30	6	0	4.011443	-0. 775560	1.956372
31	6	0	3.021049	-0.674922	0.978887
32	6	0	-2.688445	-0. 242589	3.648543
33	1	0	-4. 435039	1.098416	1.889269
34	1	0	-4.340171	-0. 679208	1.824673
35	1	0	-2.964091	1.239134	-0.131597
36	1	0	-4. 459223	0. 370112	-0.430330
37	1	0	-4.498653	-2. 125205	-0.539393
38	1	0	-3.313113	-4. 201768	-1.192710
39	1	0	0.222938	-4. 278806	-1.471557
40	1	0	2.166663	-0. 092096	-2.110668
41	1	0	-0.901502	0. 793916	1.456100
42	1	0	-0.822798	3. 531726	1.967906
43	1	0	-0.942406	5.678343	0.732671
44	1	0	-0.692212	5.770945	-1.728413
45	1	0	-0.346456	3. 647993	-3.026515
46	1	0	4.877310	0. 443580	-1.678185
47	1	0	6.636961	0. 257834	0.057717
48	1	0	6.114471	-0. 502370	2.354035
49	1	0	3.752635	-1.116687	2.954774
50	1	0	-1.676574	-0. 247179	4.057373
51	1	0	-3.340386	0.377741	4.279604

11c:

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)					
Number	Number	Туре	Х	Y	Z			
1	8	0	-4. 536037	0. 807848	1. 705194			
2	6	0	-3.633708	-0. 262161	1.461147			
3	6	0	-3.325636	-0. 291302	-0.040094			
4	6	0	-2.388667	-1. 419231	-0. 414973			
5	6	0	-2.886846	-2. 724778	-0.581215			
6	6	0	-2.062963	-3.807833	-0.896405			
7	6	0	-0.684948	-3.631852	-1.061578			
8	6	0	-0.193290	-2. 339225	-0.903049			
9	6	0	-1.007647	-1.256196	-0. 574592			
10	8	0	1.135862	-2. 023102	-1.070965			
11	8	0	0.116103	-4. 692572	-1.376789			
12	7	0	2.375486	0. 020279	-1.032725			
13	8	0	1.278718	-1. 735726	1.810447			
14	6	0	1.839893	-1.007341	1.012159			
15	6	0	1.313554	-0. 709665	-0. 447059			
16	6	0	-0.107566	-0. 030882	-0. 580704			
17	7	0	-0.195954	0.702722	-1.852264			
18	6	0	-0.515908	2. 028417	-1.634856			
19	6	0	-0.772538	3. 031226	-2. 580093			
20	6	0	-1.032659	4. 315314	-2.105170			
21	6	0	-1.042834	4.622681	-0.728820			

22	6	0	-0.802204	3. 622020	0.205201
23	6	0	-0. 545578	2. 324910	-0.256753
24	6	0	-0.315221	1.091077	0.484426
25	8	0	-0.270562	0. 923018	1.695701
26	6	0	3. 421062	0. 232253	-0.152735
27	6	0	4.616675	0. 924301	-0.363801
28	6	0	5. 522196	0. 986845	0.698326
29	6	0	5.265368	0. 383459	1.943030
30	6	0	4.069804	-0. 302322	2.145996
31	6	0	3.149628	-0.364660	1.096667
32	6	0	-4.839284	0.955086	3.081714
33	1	0	-4. 081157	-1.219945	1.774890
34	1	0	-2.706534	-0. 123416	2.037941
35	1	0	-2.910511	0. 680073	-0.329187
36	1	0	-4.273369	-0. 403323	-0.580209
37	1	0	-3.953464	-2. 897265	-0.460199
38	1	0	-2. 477871	-4. 804569	-1.016060
39	1	0	1.042453	-4. 395145	-1.361813
40	1	0	2.299038	0. 432175	-1.951560
41	1	0	-0. 528967	0. 220497	-2.677413
42	1	0	-0.763237	2.817800	-3.644651
43	1	0	-1.231080	5. 106747	-2.823553
44	1	0	-1.244748	5. 639321	-0.405689
45	1	0	-0.818290	3.824436	1.272568
46	1	0	4.838883	1. 391640	-1.318306
47	1	0	6.458984	1. 518738	0.552313
48	1	0	5.998880	0. 456161	2.740071
49	1	0	3.842237	-0. 775807	3.097177
50	1	0	-5.527523	1.800036	3.175247

51	1	0	-5.322377	0.053156	3. 489152
52	1	0	-3.934852	1.161103	3.674884

11d:

Standard orientation:

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	3. 844696	0. 908337	-0. 785600
2	6	0	4. 318765	0. 512139	0.493811
3	6	0	3.166261	0. 024961	1.381144
4	6	0	2.472949	-1.203164	0.834907
5	6	0	3. 131805	-2. 443365	0.834990
6	6	0	2. 580987	-3. 586439	0.250996
7	6	0	1.334144	-3. 534012	-0.376118
8	6	0	0.679203	-2. 302281	-0.366415
9	6	0	1.198219	-1. 170911	0.253928
10	8	0	-0. 514769	-2. 111404	-1.007111
11	8	0	0.787087	-4. 635437	-0.969125
12	7	0	-1.875733	-0. 183795	-1.399274
13	8	0	-1.881079	-2. 159105	1.503492
14	6	0	-2.119367	-1.351938	0.634218
15	6	0	-1.070082	-0.877126	-0.460031
16	6	0	0.196707	-0. 052526	0.035985
17	7	0	0.627485	0. 900204	-1.018447
18	6	0	0.550789	2. 202952	-0.508790
19	6	0	0.939683	3. 387582	-1.145127
20	6	0	0.729384	4.590139	-0.473331

21	6	0	0.148070	4.637304	0.807454
22	6	0	-0.212779	3. 457263	1.447157
23	6	0	-0.000761	2.246552	0.780442
24	6	0	-0.199914	0.868921	1.245844
25	8	0	-0.627621	0. 488350	2.316428
26	6	0	-3.174411	-0. 017831	-0.952510
27	6	0	-4.215646	0. 704817	-1.540858
28	6	0	-5. 456197	0. 694943	-0.899610
29	6	0	-5.675833	-0.008121	0.295718
30	6	0	-4.630318	-0. 718662	0.881857
31	6	0	-3.382835	-0. 707215	0.260000
32	6	0	4.890805	1.337624	-1.631630
33	1	0	5.063627	-0. 294797	0.374751
34	1	0	4.829818	1.362022	0.981332
35	1	0	3.602164	-0. 197952	2.365313
36	1	0	2.458881	0.847750	1.536367
37	1	0	4. 108736	-2. 520245	1.309686
38	1	0	3. 109123	-4. 536147	0.276692
39	1	0	-0.122326	-4. 400213	-1.239310
40	1	0	-1.433844	0. 419733	-2.079781
41	1	0	1.563703	0.678222	-1.363539
42	1	0	1.386957	3. 370088	-2.136144
43	1	0	1.022211	5. 520384	-0.956531
44	1	0	-0.009528	5. 597296	1.292561
45	1	0	-0.642531	3. 451450	2.446034
46	1	0	-4.070269	1.251219	-2.469753
47	1	0	-6.278305	1.250711	-1.346579
48	1	0	-6.658267	0.008717	0.760087
49	1	0	-4.759830	-1.268564	1.810828

-	0	4. 400104	1. 629779	-2.592457
1	0	5.423477	2. 205686	-1.207192
1	0	5. 626526	0. 534444	-1.807163
	1	1 0 1 0 1 0	1 0 4.433134 1 0 5.423477 1 0 5.626526	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

REFERENCES

(1) Goto, H.; Osawa, E.; J. Am. Chem. Soc. 1989, 111, 8950-8951.

(2) Goto, H.; Osawa, E.; J. Chem. Soc., Perkin Trans. 2, 1993, 187–198.

(3) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; and Fox, D. J.; Gaussian *09*, Revision B.01,Gaussian, Inc., Wallingford CT, 2010.

(4) Bruhn, T.; Hemberger, Y.; Schaumlöffel, A.; Bringmann, G. *Spec Dis*, version 1.50, University of Würzburg, Germany, 2010.

Figure S3. Standard orientation of 11a-11d at B3LYP/6-31G(d) level

Figure S4. ¹H NMR spectrum of compound **1** (600 MHz, CD₃OD).

Figure S5. ¹³C NMR spectrum of compound 1 (150 MHz, CD₃OD).

Figure S7. HMBC spectrum of compound 1 (150 MHz, CD₃OD).

Figure S8. 1 H- 1 H COSY spectrum of compound 1 (600 MHz, CD₃OD).

Figure S9. ROSEY spectrum of compound 1 (600 MHz, CD₃OD).

Figure S10. ¹H NMR spectrum of compound 2 (600 MHz, CD₃OD).

Figure S11. ¹³C NMR spectrum of compound 2 (150 MHz, CD₃OD).

Figure S12. HSQC spectrum of compound 2 (150 MHz, CD₃OD).

Figure S13. HMBC spectrum of compound 2 (150 MHz, CD₃OD).

Figure S14. ¹H-¹H COSY spectrum of compound 2 (600 MHz, CD₃OD).

Figure S15. ROSEY spectrum of compound 2 (600 MHz, CD₃OD).

Figure S16. ¹H NMR spectrum of compound 3 (600 MHz, CD₃OD).

Figure S17. ¹³C NMR spectrum of compound 3 (150 MHz, CD₃OD).

Figure S18. HSQC spectrum of compound 3 (150 MHz, CD₃OD).

Figure S19. HMBC spectrum of compound 3 (150 MHz, CD₃OD).

Figure S20. ¹H-¹H COSY spectrum of compound **3** (600 MHz, CD₃OD).

Figure S21. ROSEY spectrum of compound 3 (600 MHz, CD₃OD).

Single Ma Tolerance Selected fi	ss Analysis = 10.0 PPM / ilters: None	DBE: m	nin = -10.0), max = 1	120.0								
Monoisotopii 28 formula(e Elements Us C: 0-200 H pcd32 14:23:43 24-Ap Voltage El+	c Mass, Odd and E e) evaluated with 1 sed: l: 0-400 N: 2-2 pr-2013	Even Electr results wit O: 16-18	on lons hin limits (u	p to 51 clos	sest results fo M13042	r each i Ki 4EA-06A 884.:	mass B FAMM 2643) 56 (5.139)				А	utospec Premier P776 1
%- - - - - - - - - - - - - - - - - - -			1	884.00	·····	84 20		884.40		1	884 80	 	m/z
Minimum: Maximum:	003.00	200.0	10.0	-10.0		04.20		004.40	00	4.00	004.00		
Mass 884.2643	Calc. Mass 884.2640	mDa 0.3	PPM 0.3	DBE 25.0	i-FIT 5546025.5	Formu C45	la H44	N2 017					

Figure S23. HREI-MS spectrum of compound 2.

Single Ma Tolerance Selected fi	ss Analysis = 10.0 PPM / ilters: None	DBE: m	in = -10.0), max = 1	20.0							
Monoisotopii 16 formula(e Elements US C: 0-200 H pod23 11:11:55 02-Aj Voltage El+	c Mass, Odd and E •) evaluated with 1 sed: 1: 0-400 N: 1-1 pr-2013	Even Electri results with O: 7-9	on lons nin limits (u	p to 51 clos	est results fo M13040	r each K 3EA-02A 379.	mass) IB FAMM 20 (1.836) 1258			,	Autospec Premier P778 1	
04	378.800	378.900		379.000	3	79.100	379	.200	379.300	379.400	379.500	
Minimum: Maximum:		200.0	10.0	-10.0 120.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Form	la					
379.1258	379.1267	-0.9	-2.4	9.0	5546026.0	C18	H21 N OB					

Figure S24. HREI-MS spectrum of compound 3.