Tuning Interfacial Electron Transfer in Nanostructured Cuprous Oxide Photoelectrochemical Cells with Charge-Selective Molecular Coatings

Keith M. Haynes, Kaci C. Kratch, Sean D. Stovall, Christopher O. Obondi, Casey R. Thurber, W. Justin

Youngblood*

Department of Chemistry, University of North Texas, Denton, Texas, 76203.

youngblood@unt.edu

Supporting Information (14 pp.)

Table of Contents Page(s) **Experimental Section** 2 Figures S1/S2: Device data for adamantane-sensitized Cu₂O films 3 Figure S3: Device data for PTCDA-sensitized Cu₂O films 4 Table S1: Device data for all devices 4 Figures S4/S5: SEM images of ZnP-A film before/after soaking 24 h 5 Figures S6/S7: SEM images of C60M-A film before/after soaking 24 h 6 Figures S8/S9: SEM images of C343 film before/after soaking 24 h 7 Figures S10/S11: SEM images of NcQ-A film before/after soaking 24 h 8 Figures S12/S13: SEM images of PTCDA film before/after soaking 24 h 9 Figures S14/S15: SEM images of N3 film before/after soaking 24 h 10 Figures S16/S17: 11 SEM images of N3 film after soaking 6 h Figures S18/S19: SEM images of 1-adamantanecarboxylic acid before/after soaking 24 h 12 Cyclic and Differential Pulse Voltammetry data for C343 (vs. Fc/Fc⁺) Figures S20/S21: 13 References 14

Experimental Section:

Sensitizers. The syntheses of **NcQ-A**, **C60M-A**, and **ZnP-A** have been reported elsewhere.¹⁻⁴ C343 and 1-adamantanecarboxylic acid were obtained commercially (Aldrich), as was the N3 dye (Solaronix) and all were used as received.

Preparation of Cu₂O Nanorod arrays. Cu₂O nanorod films were prepared as previously described,⁵ with changes that included passivation of bare F-SnO₂ areas of the conductive glass substrate, as well as slightly elevated temperature and pH for Cu₂O deposition. The elevation of pH and temperature was observed to improve the reproducibility of Cu₂O nanorod growth. ZnO nanorods that were hydrothermally grown on F-SnO₂/glass substrates pre-seeded with MnOOH nanoparticles in an aqueous bath of ZnSO₄, ethanolamine and NH₄OH at 90°C were then subjected to anodic passivation of bare F-SnO2 via graft polymerization of poly(phenylene oxide).^{6,7} Retail fingernail polish, diluted to 15% solution (v/v) in 1,2-dichloroethane/acetone (1:1) was spincoated over the ZnO nanorod films at 2000 rpm for 2 min. Fingernail polish is typically 13-22 wt% nitrocellulose, so the final nitrocellulose solution for spin-casting is estimated at 1-2 wt% nitrocellulose. Polymer-coated slides were then immersed in an aqueous solution of phosphoric acid (0.5 M) or boric acid (0.5 M) and left for 5 min or overnight, respectively. Nanopore membrane-coated substrates were subjected to electrodeposition using the F-SnO₂/glass substrate as a working electrode, and fitting a glass joint with an o-ring over the substrate with a clamp to make a seal. The glass vessel was filled with an aqueous solution containing lactic acid and CuSO₄, adjusted to pH 10 with 1 M NaOH (aq). A platinum counterelectrode and Ag/AgCl quasi reference electrode were each fitted into the vessel and wired through a septum used to seal the vessel. The electrolyte was purged with argon through the septum. The vessel was immersed in a water bath at 40°C and electrodeposition was performed cathodically at constant potential (400–600 mV).⁸

Sensitization of the Cu₂O films. Sensitizers were dissolved in anhydrous CH₃CN (N3, C343) or anhydrous DMF (C60M-A, ZnP-A, NcQ-A) to 1-3 mM concentration, and allowed to soak for 24 h. SEM images were collected before and after soaking (*vide infra*). Upon observation of etching by the N3 dye, an additional film was soaked for just 6 h to assess the etching at shorter time.

Preparation and testing of photoelectrochemical cells. Cells were assembled by melt-adhesion of a thin film of Surlyn® polymer between the Cu₂O/F-SnO₂ electrode and a platinized F-SnO₂ counterelectrode.⁹ The cells were filled by capillary action with an electrolyte composed of 0.1 M LiClO₄, 50 mM methyl viologen tetrafluoroborate, and 25 mM decamethylcobaltocene. After filling the cells with electrolyte, the entry/exit ports were sealed with Hysol 1C epoxy. Current-voltage measurements were done with a Keithley 2400 sourcemeter and solar simulator (SolarLight, Inc.). IPCE spectra were measured against a calibrated silicon photodiode using monochromatic light from a Xenon lamp (PV Measurements QEX7).

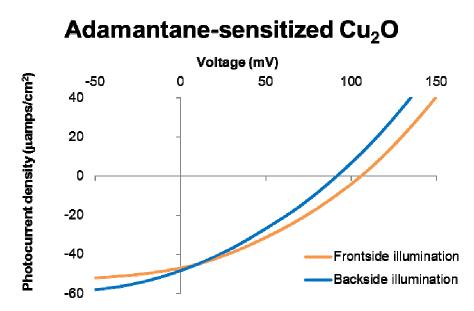


Figure S1. Current-voltage behavior of a photoelectrochemical cell wherein the Cu_2O nanorod film was sensitized with 1-adamantanecarboxylic acid (from EtOH soln, for 24 h) prior to cell assembly. The decreased photocurrent relative to bare Cu_2O nanorods suggest that forward electron transport to the methyl viologen has been inhibited by the adamantyl sensitization.

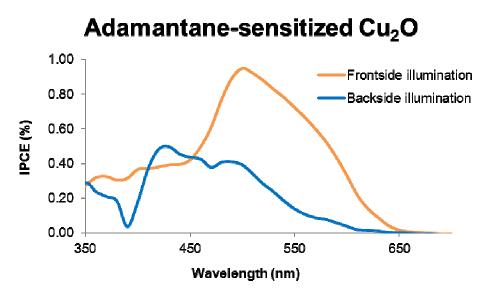


Figure S2. External quantum efficiency behavior of a photoelectrochemical cell wherein the Cu_2O nanorod film was sensitized with 1-adamantanecarboxylic acid (from EtOH soln, for 24 h) prior to cell assembly.

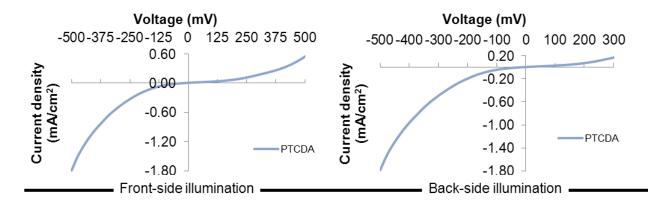


Figure S3. Device data for PTCDA-coated cuprous oxide nanorods (full voltage range).

Table S1. Device Performance Metrics for Photoelectrochemical Cells using Bare and Molecule-Coated Cu₂O Nanorod films.

Surface coating	Illumination	Active area (cm ²)	J_{SC} (µAmp/cm ²)	V _{OC} (mV)	FF	η (%)
ZnP-A	Front	0.60	1760	197	0.28	0.096
ZnP-A	Back	0.60	836	183	0.28	0.043
C60M-A	Front	0.52	1480	175	0.29	0.076
C60M-A	Back	0.52	575	140	0.30	0.024
NcQ-A	Front	0.53	688	140	0.24	0.023
NcQ-A	Back	0.53	299	103	0.26	7.9 x 10 ⁻³
C343	Front	0.42	717	102	0.27	0.020
C343	Back	0.42	271	102	0.27	7.4 x 10 ⁻³
bare Cu ₂ O	Front	0.60	207	81	0.27	4.6 x 10 ⁻³
bare Cu ₂ O	Back	0.60	140	90	0.28	3.5×10^{-3}
N3	Front	0.63	56	124	0.22	1.5 x 10 ⁻³
N3	Back	0.63	32	94	0.26	7.7 x 10 ⁻⁴
Adamantane-A	Front	0.61	47	104	0.33	1.6 x 10 ⁻³
Adamantane-A	Back	0.61	48	92	0.29	1.3 x 10 ⁻³
PTCDA	Front	0.46	-32*	-27*	n/a	n/a
PTCDA	Back	0.46	10	5	0.26	1.3 x 10 ⁻⁵

Front side illumination (through Cu_2O) is shown in shaded rows. Surface coatings (and bare Cu_2O) are vertically arranged in descending order of highest to lowest overall efficiency across each given illumination direction. Adamantane-A = adamantane-1-carboxylic acid. *Device photocurrent broke down before reaching short-circuit conditions.

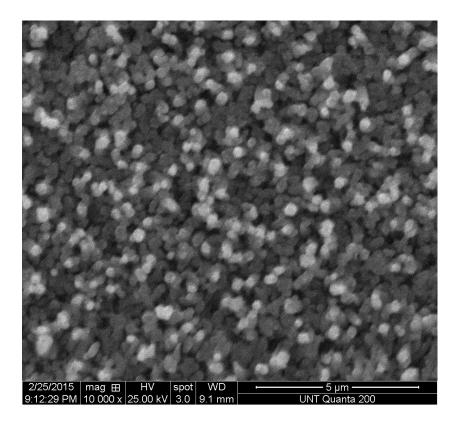


Figure S4. SEM image of Cu₂O nanorod film before sensitization with **ZnP-A**.

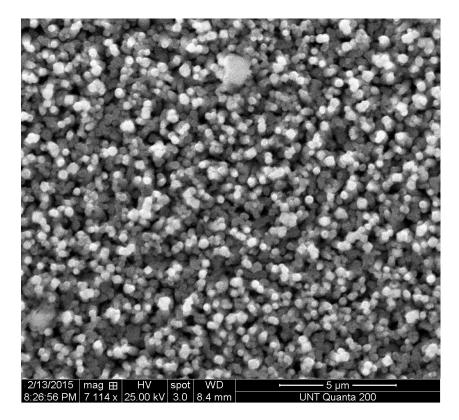


Figure S5. SEM image of Cu₂O nanorod film after 24 h sensitization with **ZnP-A**.

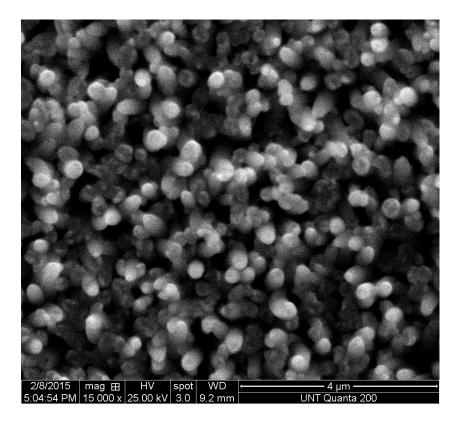


Figure S6. SEM image of Cu₂O nanorod film before sensitization with C60M-A.

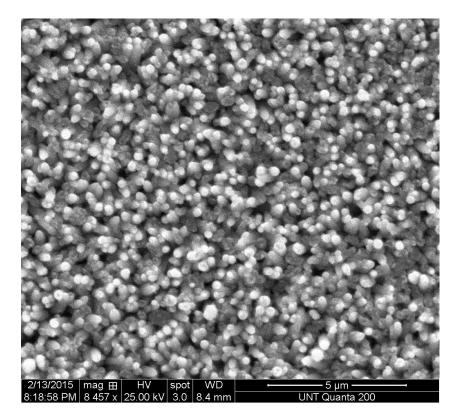


Figure S7. SEM image of Cu₂O nanorod film after 24 h sensitization with C60M-A.

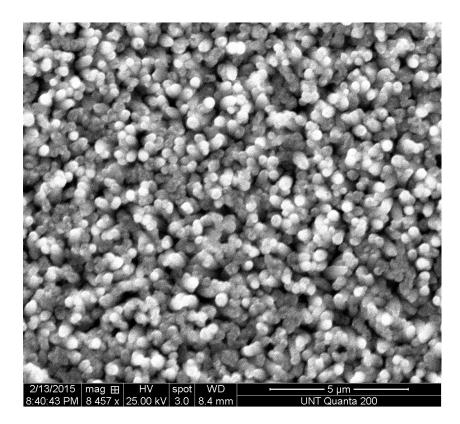


Figure S8. SEM image of Cu_2O nanorod film before sensitization with C343.

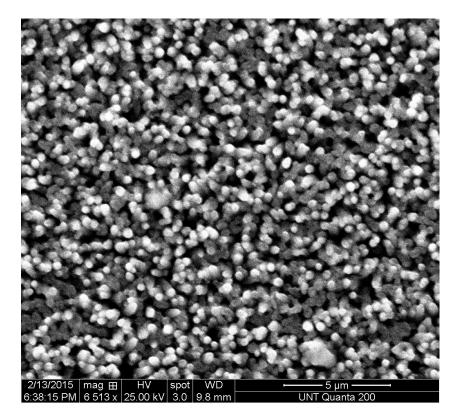


Figure S9. SEM image of Cu₂O nanorod film after 24 h sensitization with C343.

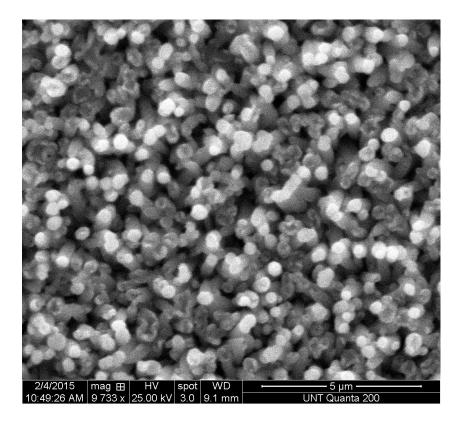


Figure S10. SEM image of Cu₂O nanorod film before sensitization with NcQ-A.

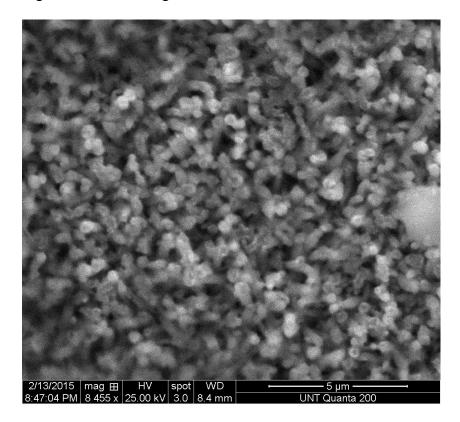


Figure S11. SEM image of Cu₂O nanorod film after 24 h sensitization with NcQ-A.

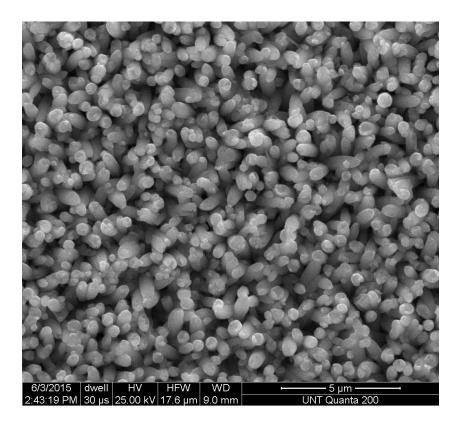


Figure S12. SEM image of Cu₂O nanorod film before sensitization with N3.

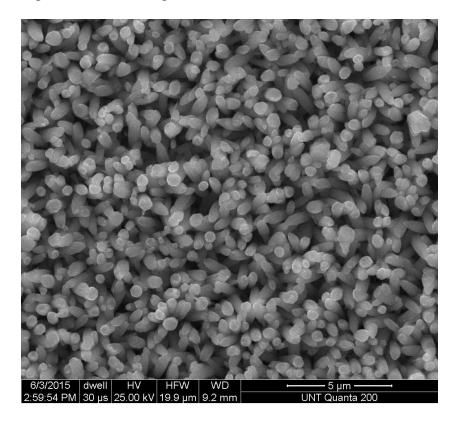


Figure S13. SEM image of Cu₂O nanorod film after sensitization with PTCDA



Figure S14. SEM image of Cu₂O nanorod film before sensitization with N3.

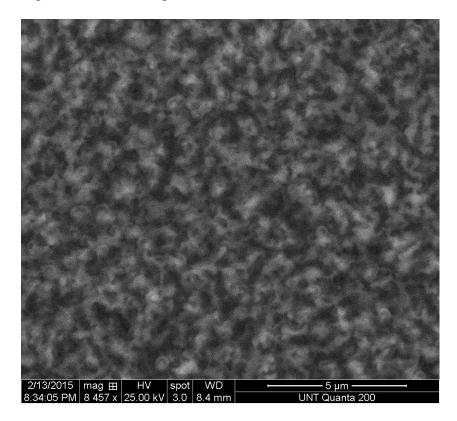


Figure S15. SEM image of Cu_2O nanorod film after 24 h sensitization with N3.

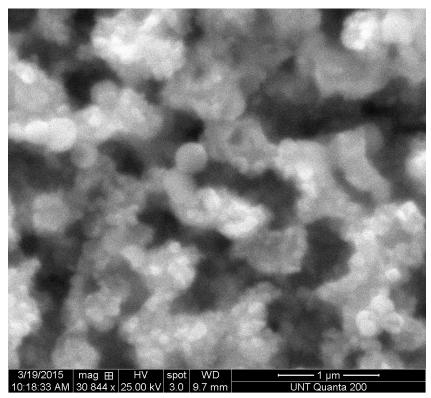


Figure S16. SEM image of Cu₂O nanorod film after 6 h sensitization with N3.

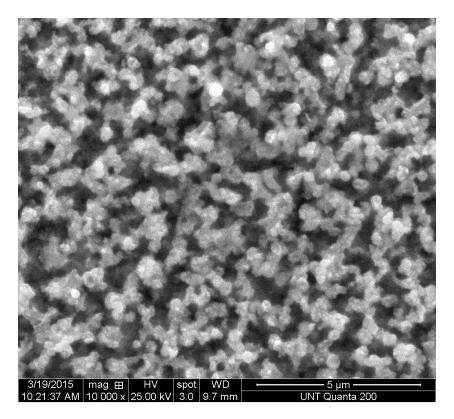
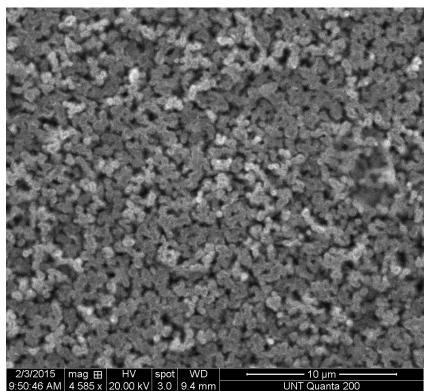



Figure S17. SEM image of Cu₂O nanorod film after 6 h sensitization with N3.

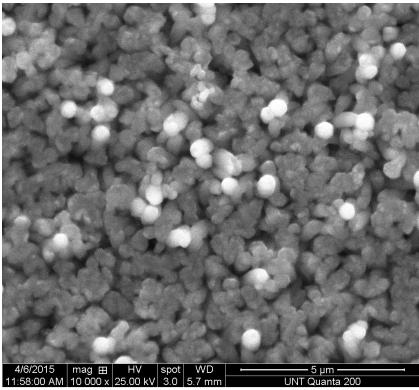


Figure S19. SEM image of Cu_2O nanorod film after 24 h sensitization with - adamantanecarboxylic acid.

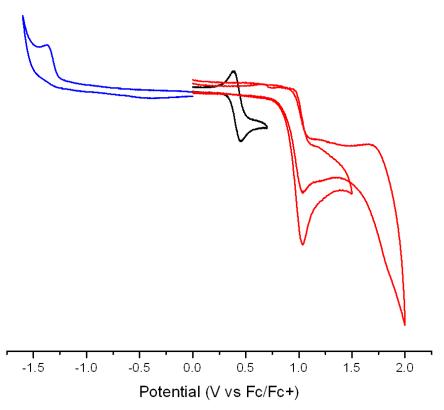


Figure S20. Cyclic voltammogram of Coumarin C343 in acetonitrile containing 0.1 M (t-Bu₄N)ClO₄@ scan rate = 50mV/s.

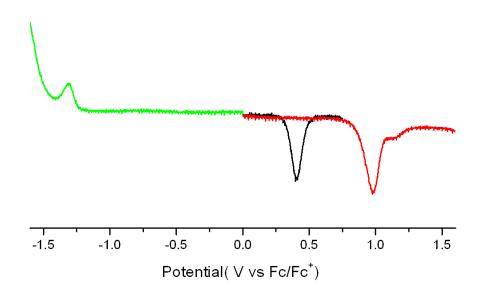


Figure S21. Differential pulse voltammogram of Coumarin C343 in acetonitrile containing 0.1 M (t-Bu₄N)ClO₄@ Scan rate = 20mV/s

References

1. Berhe, S. A.; Gobeze, H. B.; Pokharel, S. D.; Park, E.; Youngblood, W. J., "Solid-State Photogalvanic Dye-Sensitized Solar Cells" *ACS Appl. Mater. Interfaces* **2014**, *6*, 10696–10705.

2. Camps, X.; Hirsch, A., "Efficient cyclopropanation of C60 starting from malonates" *J. Chem. Soc., Perkin Trans.* **1997**, 1595–1596.

3. Lamparth, I.; Hirsch, A., "Water-soluble Malonic Acid Derivatives of C60 with a Defined Three-Dimensional Structure" *J. Chem. Soc., Chem. Commun.* **1994**, 1727–1728.

4. Muthiah, C.; Taniguchi, M.; Kim, H.-J.; Schmidt, I.; Kee, H. L.; Holten, D.; Bocian, D. F.; Lindsey, J. S., "Synthesis and Photophysical Characterization of Porphyrin, Chlorin and Bacteriochlorin Molecules Bearing Tethers for Surface Attachment" *Photochem. Photobiol.* **2007**, *83*, 1513–1528.

5. Haynes, K. H.; Perry, C.; Rivas, M.; Bazan, A.; Golden, T. D.; Quintana, M.; Nesterov, V. N.; Rodríguez, J.; Estrada, W.; Youngblood, W. J., "Templated Electrodeposition and Photocatalytic Activity of Cuprous Oxide Nanorod Arrays" *ACS Appl. Mater. Interfaces* **2015**, *7*, 830–837.

6. Kokotov, M.; Hodes, G., "Reliable chemical bath deposition of ZnO films with controllable morphology from ethanolamine-based solutions using $KMnO_4$ substrate activation" *J. Mater. Chem.* **2009**, *19*, 3847–3854.

7. Gregg, B. A.; Pichot, F.; Ferrere, S.; Fields, C. L., "Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods to Passivate the Interfaces" *J. Phys. Chem. B* **2001**, *105*, 1422-1429.

8. Golden, T. D.; Shumsky, M. G.; Zhou, Y.; VanderWerf, R. A.; Van Leeuwen, R. A.; Switzer, J. A., "Electrochemical Deposition of Copper (I) Oxide Films" *Chem. Mater.* **1996**, *8*, 2499–2504.

9. Papageorgiou, N.; Maier, W. F.; Gratzel, M., "An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media" *J. Electrochem. Soc.* **1997**, *144*, 876–884.